Nowadays, hepatocellular carcinoma (HCC) is the second leading cause of cancer deaths, and identifying the effective factors in causing this disease can play an important role in its prevention and treatment. Tumors provide effective agents for invasion and metastasis to other organs by establishing appropriate communication between cancer cells and the microenvironment. Epithelial-to-mesenchymal transition (EMT) can be mentioned as one of the effective phenomena in tumor invasion and metastasis. Several factors are involved in inducing this phenomenon in the tumor microenvironment, which helps the tumor survive and migrate to other places. It can be effective to identify these factors in the use of appropriate treatment strategies and greater patient survival. This study investigated the molecular differences between tumor border cells and tumor core cells or internal tumor cells in HCC for specific EMT genes. Expression of NOTCH1, ID1, and LST1 genes showed a significant increase at the HCC tumor border. Targeting these genes can be considered as a useful therapeutic strategy to prevent distant metastasis in HCC patients.
{"title":"Functional Enrichment Analysis of Tumor Microenvironment-Driven Molecular Alterations That Facilitate Epithelial-to-Mesenchymal Transition and Distant Metastasis.","authors":"Mahnaz Abdolahi, Parnian Ghaedi Talkhounche, Mohammad Hossein Derakhshan Nazari, Haniyeh Sadat Hosseininia, Niloofar Khoshdel-Rad, Amin Ebrahimi Sadrabadi","doi":"10.1177/11779322241227722","DOIUrl":"10.1177/11779322241227722","url":null,"abstract":"<p><p>Nowadays, hepatocellular carcinoma (HCC) is the second leading cause of cancer deaths, and identifying the effective factors in causing this disease can play an important role in its prevention and treatment. Tumors provide effective agents for invasion and metastasis to other organs by establishing appropriate communication between cancer cells and the microenvironment. Epithelial-to-mesenchymal transition (EMT) can be mentioned as one of the effective phenomena in tumor invasion and metastasis. Several factors are involved in inducing this phenomenon in the tumor microenvironment, which helps the tumor survive and migrate to other places. It can be effective to identify these factors in the use of appropriate treatment strategies and greater patient survival. This study investigated the molecular differences between tumor border cells and tumor core cells or internal tumor cells in HCC for specific EMT genes. Expression of NOTCH1, ID1, and LST1 genes showed a significant increase at the HCC tumor border. Targeting these genes can be considered as a useful therapeutic strategy to prevent distant metastasis in HCC patients.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840405/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-26eCollection Date: 2024-01-01DOI: 10.1177/11779322231223857
Marcus D Ayoola, Yetunde B Ogundeko, Temiloluwa D Obanleowo, Deborah O Omole, Blessing N Chukwu, Kolade O Faloye
The study investigated the antidiabetic potentials of the fruit extract of Parquetina nigrescens with the aim of justifying its folkloric antidiabetic usage in some part of Nigeria. Acute toxicity test of the plant extract was assessed using Lorke's method. Its antidiabetic activities were assayed in α-amylase, α-glucosidase, glucose, and streptozotocin-induced diabetic rats' models at various doses with acarbose and glibenclamide (5 mg/kg) as positive controls. Molecular docking studies were performed to identify the antidiabetic constituent of the extract and elucidate its possible mechanism of action. The estimated median lethal dose (LD50) of the extract was above 5000 mg/kg. In the α-amylase, α-glucosidase study, the extract elicited concentration-dependent activity similar to acarbose. In the glucose-induced hyperglycaemic model, 200 mg/kg of the extract was the most effective dose with comparable (P > .05) antihyperglycaemic activity to glibenclamide (5 mg kg) at 1 to 4 h. Also in the streptozotocin-induced diabetic rats model, 100 and 200 mg/kg of the extract gave comparable (P > 0.05) activity on days 4 to 14 that were significantly better than that of glibenclamide on days 4 to 7. The n-hexane and ethylacetate fractions of the extract, both at 200 mg/kg were the most active with comparable activity to glibenclamide at all time points. The molecular docking studies identified isorhoifolin as the best binder against alpha amylase with binding energy (-9.1 kcal/mol), alpha glucosidase (-9.4 kcal/mol), sodium-glucose cotransporter-2 (-9.5 kcal/mol), peroxisome proliferator activated receptor gamma (-10.3 kcal/mol), 11β-Hydroxysteroid dehydrogenase (-10.8 kcal/mol), and dipeptidyl peptidase IV (-9.4 kcal/mol). The results of the antidiabetic study of P nigrescence fruit extract justified its usage in ethnomedicne in diabetes management.
{"title":"Evaluation of the Antidiabetic Activities of the Fruit of <i>Parquetina nigrescens</i> (Afzel.) Bullock and <i>In Silico</i> Identification of Its Antidiabetic Agent.","authors":"Marcus D Ayoola, Yetunde B Ogundeko, Temiloluwa D Obanleowo, Deborah O Omole, Blessing N Chukwu, Kolade O Faloye","doi":"10.1177/11779322231223857","DOIUrl":"10.1177/11779322231223857","url":null,"abstract":"<p><p>The study investigated the antidiabetic potentials of the fruit extract of <i>Parquetina nigrescens</i> with the aim of justifying its folkloric antidiabetic usage in some part of Nigeria. Acute toxicity test of the plant extract was assessed using Lorke's method. Its antidiabetic activities were assayed in α-amylase, α-glucosidase, glucose, and streptozotocin-induced diabetic rats' models at various doses with acarbose and glibenclamide (5 mg/kg) as positive controls. Molecular docking studies were performed to identify the antidiabetic constituent of the extract and elucidate its possible mechanism of action. The estimated median lethal dose <b>(LD<sub>50</sub>)</b> of the extract was above 5000 mg/kg. In the α-amylase, α-glucosidase study, the extract elicited concentration-dependent activity similar to acarbose. In the glucose-induced hyperglycaemic model, 200 mg/kg of the extract was the most effective dose with comparable (<i>P</i> > .05) antihyperglycaemic activity to glibenclamide (5 mg kg) at 1 to 4 h. Also in the streptozotocin-induced diabetic rats model, 100 and 200 mg/kg of the extract gave comparable (<i>P</i> > 0.05) activity on days 4 to 14 that were significantly better than that of glibenclamide on days 4 to 7. The n-hexane and ethylacetate fractions of the extract, both at 200 mg/kg were the most active with comparable activity to glibenclamide at all time points. The molecular docking studies identified isorhoifolin as the best binder against alpha amylase with binding energy (-9.1 kcal/mol), alpha glucosidase (-9.4 kcal/mol), sodium-glucose cotransporter-2 (-9.5 kcal/mol), peroxisome proliferator activated receptor gamma (-10.3 kcal/mol), <i>11β</i>-<i>Hydroxysteroid dehydrogenase</i> (-10.8 kcal/mol), and dipeptidyl peptidase IV (-9.4 kcal/mol). The results of the antidiabetic study of <i>P nigrescence</i> fruit extract justified its usage in ethnomedicne in diabetes management.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10822077/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139569643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24eCollection Date: 2024-01-01DOI: 10.1177/11779322231224187
Masriana Vivi Simanjuntak, Muhammad Miftah Jauhar, Putri Hawa Syaifie, Adzani Gaisani Arda, Etik Mardliyati, Wervyan Shalannanda, Beni Rio Hermanto, Isa Anshori
Breast cancer is the most commonly diagnosed cancer globally, with the highest incidence of breast cancer occurring in Asian countries including Indonesia. Among the types of breast cancer, the estrogen receptor (ER)-positive subtype which is prominent with estrogen receptor alpha (ERα) and heat shock protein 90 (HSP90) overexpression genes becomes the most prevalent than the others, approximately 75% of all breast cancer cases. ERα and HSP90 play a role in breast cancer activities including breast tumor growth, invasion, and metastasis mechanism. Propolis, a natural bee product, has been explored for its anticancer activity. However, there is lack of studies that evaluated the potential inhibitor from propolis compounds to the ERα and HSP90 proteins. Therefore, this article focuses on examining the correlation between ERα and HSP90's role in breast cancer and investigating the potential of 93 unique propolis compositions in inhibiting these genes in breast cancer using in silico approaches. This study revealed the positive correlation between ERα and HSP90 genes in breast cancer disease development. Furthermore, we also found novel potential bioactive compounds of propolis against breast cancer through binding with ERα and HSP90; they were 3',4',7-trihydroxyisoflavone and baicalein-7-O-β-D glucopyranoside, respectively. Further research on these compounds is needed to elucidate deeper mechanisms and activity in the real biological system to develop new breast cancer drug treatments.
{"title":"Revealing Propolis Potential Activity on Inhibiting Estrogen Receptor and Heat Shock Protein 90 Overexpressed in Breast Cancer by Bioinformatics Approaches.","authors":"Masriana Vivi Simanjuntak, Muhammad Miftah Jauhar, Putri Hawa Syaifie, Adzani Gaisani Arda, Etik Mardliyati, Wervyan Shalannanda, Beni Rio Hermanto, Isa Anshori","doi":"10.1177/11779322231224187","DOIUrl":"10.1177/11779322231224187","url":null,"abstract":"<p><p>Breast cancer is the most commonly diagnosed cancer globally, with the highest incidence of breast cancer occurring in Asian countries including Indonesia. Among the types of breast cancer, the estrogen receptor (ER)-positive subtype which is prominent with estrogen receptor alpha (<i>ERα</i>) and heat shock protein 90 (<i>HSP90</i>) overexpression genes becomes the most prevalent than the others, approximately 75% of all breast cancer cases. ERα and HSP90 play a role in breast cancer activities including breast tumor growth, invasion, and metastasis mechanism. Propolis, a natural bee product, has been explored for its anticancer activity. However, there is lack of studies that evaluated the potential inhibitor from propolis compounds to the ERα and HSP90 proteins. Therefore, this article focuses on examining the correlation between ERα and HSP90's role in breast cancer and investigating the potential of 93 unique propolis compositions in inhibiting these genes in breast cancer using in silico approaches. This study revealed the positive correlation between <i>ERα</i> and <i>HSP90</i> genes in breast cancer disease development. Furthermore, we also found novel potential bioactive compounds of propolis against breast cancer through binding with ERα and HSP90; they were 3',4',7-trihydroxyisoflavone and baicalein-7-O-β-D glucopyranoside, respectively. Further research on these compounds is needed to elucidate deeper mechanisms and activity in the real biological system to develop new breast cancer drug treatments.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10809879/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139563486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-17eCollection Date: 2024-01-01DOI: 10.1177/11779322231223851
Ayobami J Olusola, Samson O Famuyiwa, Kolade O Faloye, Oluwaseun E Olatunji, Uduak I Olayemi, Abiodun A Adeyemi, John O Balogun, Seun B Ogundele, Blessing O Babamuyiwa, Rajesh B Patil
Type 2 diabetes is a major health concern contributing to most of diabetic cases worldwide. Mangiferin and its congeners are known for their diverse pharmacological properties. This study sought to investigate the inhibitory property of naturally occurring mangiferin congeners on sodium-glucose co-transporter 2 protein (SGLT-2) using comprehensive computational methods. The naturally occurring mangiferin congeners were subjected to molecular docking, molecular dynamics (MDs) simulation (100 ns), molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy, density functional theory calculations (B3LYP 6-31G basis set), and ADMET approaches to identify potential SGLT-2 inhibitor. The molecular docking studies revealed neomangiferin (-9.0 kcal/mol) as the hit molecule compared with dapagliflozin (-8.3 kcal/mol). Root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) plots from the MD simulations established that neomangiferin stabilizes SGLT-2 better than the dapagliflozin, a standard drug. The MM-PBSA binding free energy calculations showed that neomangiferin (-26.05 kcal/mol) elicited better binding affinity than dapagliflozin (-17.42 kcal/mol). The electronic studies showed that neomangiferin (3.48 eV) elicited high electrophilicity index compared with mangiferin (3.31 eV) and dapagliflozin (2.11 eV). Also, the ADMET properties showed that the hit molecule is safe when administered to diabetic subjects. The current in silico studies suggest that neomangiferin could emerge as a promising lead molecule as a SGLT-2 inhibitor.
{"title":"Neomangiferin, a Naturally Occurring Mangiferin Congener, Inhibits Sodium-Glucose Co-transporter-2: An <i>In silico</i> Approach.","authors":"Ayobami J Olusola, Samson O Famuyiwa, Kolade O Faloye, Oluwaseun E Olatunji, Uduak I Olayemi, Abiodun A Adeyemi, John O Balogun, Seun B Ogundele, Blessing O Babamuyiwa, Rajesh B Patil","doi":"10.1177/11779322231223851","DOIUrl":"10.1177/11779322231223851","url":null,"abstract":"<p><p>Type 2 diabetes is a major health concern contributing to most of diabetic cases worldwide. Mangiferin and its congeners are known for their diverse pharmacological properties. This study sought to investigate the inhibitory property of naturally occurring mangiferin congeners on sodium-glucose co-transporter 2 protein (SGLT-2) using comprehensive computational methods. The naturally occurring mangiferin congeners were subjected to molecular docking, molecular dynamics (MDs) simulation (100 ns), molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy, density functional theory calculations (B3LYP 6-31G basis set), and ADMET approaches to identify potential SGLT-2 inhibitor. The molecular docking studies revealed neomangiferin (-9.0 kcal/mol) as the hit molecule compared with dapagliflozin (-8.3 kcal/mol). Root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) plots from the MD simulations established that neomangiferin stabilizes SGLT-2 better than the dapagliflozin, a standard drug. The MM-PBSA binding free energy calculations showed that neomangiferin (-26.05 kcal/mol) elicited better binding affinity than dapagliflozin (-17.42 kcal/mol). The electronic studies showed that neomangiferin (3.48 eV) elicited high electrophilicity index compared with mangiferin (3.31 eV) and dapagliflozin (2.11 eV). Also, the ADMET properties showed that the hit molecule is safe when administered to diabetic subjects. The current <i>in silico</i> studies suggest that neomangiferin could emerge as a promising lead molecule as a SGLT-2 inhibitor.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10798119/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139511512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salmonella species are Enterobacteriaceae associated with typhoid fever. In this study, the distribution of broad-spectrum β-lactamase regulatory genes and genetic relatedness of isolates was determined. Stool samples (400) were collected from patients with fever in Dalhatu Araf Specialist Hospital (DASH), Lafia, Nigeria, between March 2020 and April 2021. Salmonella species were isolated and extended-spectrum β-lactamase distribution was determined among resistant isolates using polymerase chain reaction (PCR). Genetic relatedness of Salmonella species resistant to the 10 first-line antibiotics administered was determined among S typhi isolated. Of the 60 isolates that were confirmed to belong to the genus Salmonella, 12 (20.0%) isolates with bla SHV genes were the most prevalent, blaOXA-1 and blaCTX-M-9 were present in 5 isolates each, while blaCTX-M-4 and blaTEM genes with a prevalence of 1.7% each were the least obtained in the isolates. Two isolates had a multidrug-resistant index (MDRI) of 1, and 2 others were positive with the S typhi staG gene. Sequencing to determine their diversity showed that isolates ST36 and ST138, respectively, had MDRI = 1 and are clustered in a group with a similarity coefficient of 0.00634. The 2 isolates had the highest genetic similarity, which indicates that the genetic diversity between the isolates is low, while Salmonella strain ST313L2 had a high level of genetic distance from the other isolates. The most resistant isolates are closely related which calls for concern.
{"title":"Phylogenetic Characterization of Resistant <i>Salmonella</i> Strains in Typhoid Fever Patients in Nigeria.","authors":"Olukayode Olugbenga Orole, Jebes Ngolo Lamini, Aleruchi Chuku","doi":"10.1177/11779322231220194","DOIUrl":"10.1177/11779322231220194","url":null,"abstract":"<p><p><i>Salmonella</i> species are Enterobacteriaceae associated with typhoid fever. In this study, the distribution of broad-spectrum β-lactamase regulatory genes and genetic relatedness of isolates was determined. Stool samples (400) were collected from patients with fever in Dalhatu Araf Specialist Hospital (DASH), Lafia, Nigeria, between March 2020 and April 2021. <i>Salmonella</i> species were isolated and extended-spectrum β-lactamase distribution was determined among resistant isolates using polymerase chain reaction (PCR). Genetic relatedness of <i>Salmonella</i> species resistant to the 10 first-line antibiotics administered was determined among <i>S typhi</i> isolated. Of the 60 isolates that were confirmed to belong to the genus <i>Salmonella</i>, 12 (20.0%) isolates with <i>bla SHV</i> genes were the most prevalent, <i>blaOXA-1</i> and <i>blaCTX-M-9</i> were present in 5 isolates each, while <i>blaCTX-M-4</i> and <i>blaTEM</i> genes with a prevalence of 1.7% each were the least obtained in the isolates. Two isolates had a multidrug-resistant index (MDRI) of 1, and 2 others were positive with the <i>S typhi staG</i> gene. Sequencing to determine their diversity showed that isolates ST36 and ST138, respectively, had MDRI = 1 and are clustered in a group with a similarity coefficient of 0.00634. The 2 isolates had the highest genetic similarity, which indicates that the genetic diversity between the isolates is low, while <i>Salmonella</i> strain ST313L2 had a high level of genetic distance from the other isolates. The most resistant isolates are closely related which calls for concern.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10777790/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139428314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-28eCollection Date: 2023-01-01DOI: 10.1177/11779322231212751
Luisa Alejandra García Galindo, Martha Margarita González, Jairo Alonso Cerón Salamanca, Sonia Amparo Ospina Sánchez
The DSR-IBUN dextransucrase produced by Leuconostoc mesenteroides strain IBUN 91.2.98 has a short production time (4.5 hours), an enzymatic activity of 24.8 U/mL, and a specific activity of purified enzyme 2 times higher (331.6 U/mg) than that reported for similar enzymes. The aim of this study was to generate a structural model that, from an in silico approach, allows a better understanding, from the structural point of view, of the activity obtained by the enzyme of interest, which is key to continue with its study and industry application. For this, we translated the nucleotide sequence of the dsr_IBUN gene. With the primary structure of DSR-IBUN, the in silico prediction of physicochemical parameters, the possible subcellular localization, the presence of signal peptide, and the location of domains and functional and structural motifs of the protein were established. Subsequently, its secondary and tertiary structure were predicted and a homology model of the dextransucrase under study was constructed using Swiss-Model, performing careful template selection. The values obtained for the model, Global Model Quality Estimation (0.63), Quality Mean (-1.49), and root-mean-square deviation (0.09), allow us to affirm that the model for the enzyme dextransucrase DSR-IBUN is of adequate quality and can be used as a source of information for this protein.
{"title":"In Silico Analysis of the Dextransucrase Obtained From <i>Leuconostoc mesenteroides</i> Strain IBUN 91.2.98.","authors":"Luisa Alejandra García Galindo, Martha Margarita González, Jairo Alonso Cerón Salamanca, Sonia Amparo Ospina Sánchez","doi":"10.1177/11779322231212751","DOIUrl":"10.1177/11779322231212751","url":null,"abstract":"<p><p>The DSR-IBUN dextransucrase produced by <i>Leuconostoc mesenteroides</i> strain IBUN 91.2.98 has a short production time (4.5 hours), an enzymatic activity of 24.8 U/mL, and a specific activity of purified enzyme 2 times higher (331.6 U/mg) than that reported for similar enzymes. The aim of this study was to generate a structural model that, from an in silico approach, allows a better understanding, from the structural point of view, of the activity obtained by the enzyme of interest, which is key to continue with its study and industry application. For this, we translated the nucleotide sequence of the <i>dsr_IBUN</i> gene. With the primary structure of DSR-IBUN, the in silico prediction of physicochemical parameters, the possible subcellular localization, the presence of signal peptide, and the location of domains and functional and structural motifs of the protein were established. Subsequently, its secondary and tertiary structure were predicted and a homology model of the dextransucrase under study was constructed using Swiss-Model, performing careful template selection. The values obtained for the model, Global Model Quality Estimation (0.63), Quality Mean (-1.49), and root-mean-square deviation (0.09), allow us to affirm that the model for the enzyme dextransucrase DSR-IBUN is of adequate quality and can be used as a source of information for this protein.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685778/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138457725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-27eCollection Date: 2023-01-01DOI: 10.1177/11779322231210098
Tahera Mahnaz Meem, Umama Khan, Md Bazlur Rahman Mredul, Md Abdul Awal, Md Habibur Rahman, Md Salauddin Khan
Huntington disease (HD) is a degenerative brain disease caused by the expansion of CAG (cytosine-adenine-guanine) repeats, which is inherited as a dominant trait and progressively worsens over time possessing threat. Although HD is monogenetic, the specific pathophysiology and biomarkers are yet unknown specifically, also, complex to diagnose at an early stage, and identification is restricted in accuracy and precision. This study combined bioinformatics analysis and network-based system biology approaches to discover the biomarker, pathways, and drug targets related to molecular mechanism of HD etiology. The gene expression profile data sets GSE64810 and GSE95343 were analyzed to predict the molecular markers in HD where 162 mutual differentially expressed genes (DEGs) were detected. Ten hub genes among them (DUSP1, NKX2-5, GLI1, KLF4, SCNN1B, NPHS1, SGK2, PITX2, S100A4, and MSX1) were identified from protein-protein interaction (PPI) network which were mostly expressed as down-regulated. Following that, transcription factors (TFs)-DEGs interactions (FOXC1, GATA2, etc), TF-microRNA (miRNA) interactions (hsa-miR-340, hsa-miR-34a, etc), protein-drug interactions, and disorders associated with DEGs were predicted. Furthermore, we used gene set enrichment analysis (GSEA) to emphasize relevant gene ontology terms (eg, TF activity, sequence-specific DNA binding) linked to DEGs in HD. Disease interactions revealed the diseases that are linked to HD, and the prospective small drug molecules like cytarabine and arsenite was predicted against HD. This study reveals molecular biomarkers at the RNA and protein levels that may be beneficial to improve the understanding of molecular mechanisms, early diagnosis, as well as prospective pharmacologic targets for designing beneficial HD treatment.
{"title":"A Comprehensive Bioinformatics Approach to Identify Molecular Signatures and Key Pathways for the Huntington Disease.","authors":"Tahera Mahnaz Meem, Umama Khan, Md Bazlur Rahman Mredul, Md Abdul Awal, Md Habibur Rahman, Md Salauddin Khan","doi":"10.1177/11779322231210098","DOIUrl":"10.1177/11779322231210098","url":null,"abstract":"<p><p>Huntington disease (HD) is a degenerative brain disease caused by the expansion of CAG (cytosine-adenine-guanine) repeats, which is inherited as a dominant trait and progressively worsens over time possessing threat. Although HD is monogenetic, the specific pathophysiology and biomarkers are yet unknown specifically, also, complex to diagnose at an early stage, and identification is restricted in accuracy and precision. This study combined bioinformatics analysis and network-based system biology approaches to discover the biomarker, pathways, and drug targets related to molecular mechanism of HD etiology. The gene expression profile data sets GSE64810 and GSE95343 were analyzed to predict the molecular markers in HD where 162 mutual differentially expressed genes (DEGs) were detected. Ten hub genes among them (<i>DUSP1, NKX2-5, GLI1, KLF4, SCNN1B, NPHS1, SGK2, PITX2, S100A4</i>, and <i>MSX1</i>) were identified from protein-protein interaction (PPI) network which were mostly expressed as down-regulated. Following that, transcription factors (TFs)-DEGs interactions (FOXC1, GATA2, etc), TF-microRNA (miRNA) interactions (hsa-miR-340, hsa-miR-34a, etc), protein-drug interactions, and disorders associated with DEGs were predicted. Furthermore, we used gene set enrichment analysis (GSEA) to emphasize relevant gene ontology terms (eg, TF activity, sequence-specific DNA binding) linked to DEGs in HD. Disease interactions revealed the diseases that are linked to HD, and the prospective small drug molecules like cytarabine and arsenite was predicted against HD. This study reveals molecular biomarkers at the RNA and protein levels that may be beneficial to improve the understanding of molecular mechanisms, early diagnosis, as well as prospective pharmacologic targets for designing beneficial HD treatment.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138457723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-27eCollection Date: 2023-01-01DOI: 10.1177/11779322231214445
Abdulla Al Noman, Md Kobirul Islam, Tasmiah Feroz, Md Monir Hossain, Md Shahariar Kabir Shakil
Having a previous history of sexually transmitted diseases (STDs) such as gonorrhea and chlamydia increases the chance of developing prostate cancer, the second most frequent malignant cancer among men. However, the molecular functions that cause the development of prostate cancer in persons with gonorrhea and chlamydia are yet unknown. In this study, we studied RNA-seq gene expression profiles using computational biology methods to find out potential biomarkers that could help us in understanding the patho-biological mechanisms of gonorrhea, chlamydia, and prostate cancer. Using statistical methods on the Gene Expression Omnibus (GEO) data sets, it was found that a total of 22 distinct differentially expressed genes were shared among these 3 diseases of which 14 were up-regulated (PGRMC1, TSC22D1, SH3BGRL, NNT, CTSC, FRMD3, CCR2, FAM210B, VCL, PTGS1, SLFN11, SLC40A1, PROS1, and DSE) and the remaining 8 genes were down-regulated (PRNP, HINT3, MARCKSL1, TMED10, SH3KBP1, ENSA, DERL1, and KMT2B). Investigation on these 22 unique dysregulated genes using Gene Ontology, BioCarta, KEGG, and Reactome revealed multiple altered molecular pathways, including regulation of amyloid precursor protein catabolic process, ferroptosis, effects on gene expression of Homo sapiens PPAR pathway, and innate immune system R-HSA-168249. Four significant hub proteins namely VCL, SH3KBP1, PRNP, and PGRMC1 were revealed by protein-protein interaction network analysis. By analyzing gene-transcription factors and gene-miRNAs interactions, significant transcription factors (POU2F2, POU2F1, GATA6, and HIVEP1) and posttranscriptional regulator microRNAs (hsa-miR-7-5p) were also identified. Three potential therapeutic compounds namely INCB3284, CCX915, and MLN-1202 were found to interact with up-regulated protein C-C chemokine receptor type 2 (CCR2) in protein-drug interaction analysis. The proposed biomarkers and therapeutic potential molecules could be investigated for potential pharmacological targets and activity in the fight against in patients with gonorrhea, chlamydia, and prostate cancer.
{"title":"A Systems Biology Approach for Investigating Significant Biomarkers and Drug Targets Common Among Patients with Gonorrhea, Chlamydia, and Prostate Cancer: A Pilot Study.","authors":"Abdulla Al Noman, Md Kobirul Islam, Tasmiah Feroz, Md Monir Hossain, Md Shahariar Kabir Shakil","doi":"10.1177/11779322231214445","DOIUrl":"10.1177/11779322231214445","url":null,"abstract":"<p><p>Having a previous history of sexually transmitted diseases (STDs) such as gonorrhea and chlamydia increases the chance of developing prostate cancer, the second most frequent malignant cancer among men. However, the molecular functions that cause the development of prostate cancer in persons with gonorrhea and chlamydia are yet unknown. In this study, we studied RNA-seq gene expression profiles using computational biology methods to find out potential biomarkers that could help us in understanding the patho-biological mechanisms of gonorrhea, chlamydia, and prostate cancer. Using statistical methods on the Gene Expression Omnibus (GEO) data sets, it was found that a total of 22 distinct differentially expressed genes were shared among these 3 diseases of which 14 were up-regulated (PGRMC1, TSC22D1, SH3BGRL, NNT, CTSC, FRMD3, CCR2, FAM210B, VCL, PTGS1, SLFN11, SLC40A1, PROS1, and DSE) and the remaining 8 genes were down-regulated (PRNP, HINT3, MARCKSL1, TMED10, SH3KBP1, ENSA, DERL1, and KMT2B). Investigation on these 22 unique dysregulated genes using Gene Ontology, BioCarta, KEGG, and Reactome revealed multiple altered molecular pathways, including regulation of amyloid precursor protein catabolic process, ferroptosis, effects on gene expression of <i>Homo sapiens</i> PPAR pathway, and innate immune system R-HSA-168249. Four significant hub proteins namely VCL, SH3KBP1, PRNP, and PGRMC1 were revealed by protein-protein interaction network analysis. By analyzing gene-transcription factors and gene-miRNAs interactions, significant transcription factors (POU2F2, POU2F1, GATA6, and HIVEP1) and posttranscriptional regulator microRNAs (hsa-miR-7-5p) were also identified. Three potential therapeutic compounds namely INCB3284, CCX915, and MLN-1202 were found to interact with up-regulated protein C-C chemokine receptor type 2 (CCR2) in protein-drug interaction analysis. The proposed biomarkers and therapeutic potential molecules could be investigated for potential pharmacological targets and activity in the fight against in patients with gonorrhea, chlamydia, and prostate cancer.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138457724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-20eCollection Date: 2023-01-01DOI: 10.1177/11779322231212755
Meryam Magri, El Mehdi Bouricha, Mohammed Hakmi, Rachid El Jaoudi, Lahcen Belyamani, Azeddine Ibrahimi
Pseudomonas aeruginosa is a major cause of nosocomial infections and is often associated with biofilm-mediated antibiotic resistance. The LasR protein is a key component of the quorum system in P. aeruginosa, allowing it to regulate its biofilm-induced pathogenicity. When the bacterial population reaches a sufficient density, the accumulation of N-(3-oxododecanoyl) acyl homoserine lactone (3O-C12-HSL) leads to the activation of the LasR receptor, which then acts as a transcriptional activator of target genes involved in biofilm formation and virulence, thereby increasing the bacteria's antibiotic resistance and enhancing its virulence. In this study, we performed a structure-based virtual screening of a natural food database of 10 997 compounds against the crystal structure of the ligand-binding domain of the LasR receptor (PDB ID: 3IX4). This allowed us to identify four molecules, namely ZINC000001580795, ZINC000014819517, ZINC000014708292, and ZINC000004098719, that exhibited a favorable binding mode and docking scores greater than -13 kcal/mol. Furthermore, the molecular dynamics simulation showed that these four molecules formed stable complexes with LasR during the 150-ns molecular dynamics (MD) simulation, indicating their potential for use as inhibitors of the LasR receptor in P. aeruginosa. However, further experimental validation is needed to confirm their activity.
{"title":"<i>In Silico</i> Identification of Natural Food Compounds as Potential Quorum-Sensing Inhibitors Targeting the LasR Receptor of <i>Pseudomonas aeruginosa</i>.","authors":"Meryam Magri, El Mehdi Bouricha, Mohammed Hakmi, Rachid El Jaoudi, Lahcen Belyamani, Azeddine Ibrahimi","doi":"10.1177/11779322231212755","DOIUrl":"https://doi.org/10.1177/11779322231212755","url":null,"abstract":"<p><p><i>Pseudomonas aeruginosa</i> is a major cause of nosocomial infections and is often associated with biofilm-mediated antibiotic resistance. The LasR protein is a key component of the quorum system in <i>P. aeruginosa</i>, allowing it to regulate its biofilm-induced pathogenicity. When the bacterial population reaches a sufficient density, the accumulation of N-(3-oxododecanoyl) acyl homoserine lactone (3O-C12-HSL) leads to the activation of the LasR receptor, which then acts as a transcriptional activator of target genes involved in biofilm formation and virulence, thereby increasing the bacteria's antibiotic resistance and enhancing its virulence. In this study, we performed a structure-based virtual screening of a natural food database of 10 997 compounds against the crystal structure of the ligand-binding domain of the LasR receptor (PDB ID: 3IX4). This allowed us to identify four molecules, namely ZINC000001580795, ZINC000014819517, ZINC000014708292, and ZINC000004098719, that exhibited a favorable binding mode and docking scores greater than -13 kcal/mol. Furthermore, the molecular dynamics simulation showed that these four molecules formed stable complexes with LasR during the 150-ns molecular dynamics (MD) simulation, indicating their potential for use as inhibitors of the LasR receptor in <i>P. aeruginosa</i>. However, further experimental validation is needed to confirm their activity.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138457722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coronaviral disease 2019 (COVID-19) is a recent pandemic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, there are still cases of COVID-19 around the world that can develop into persistent symptoms after discharge. The constellation of symptoms, termed long COVID, persists for months and can lead to various diseases such as lung inflammation and cardiovascular disease, which may lead to considerable financial burden and possible risk to human health. Moreover, the molecular mechanisms underlying the post-pandemic syndrome of COVID-19 remain unclear. In this study, we aimed to explore the molecular mechanism, disease association, and possible health risks in convalescent COVID-19 patients. Gene expression data from a human convalescent COVID-19 data set was compared with a data set from healthy normal individuals in order to identify differentially expressed genes (DEGs). To determine biological function and potential pathway alterations, the GO and KEGG databases were used to analyze the DEGs. Disease association, tissue, and organ-specific analyses were used to identify possible health effects. A total of 250 DEGs were identified between healthy and convalescent COVID-19 subjects. The biological function alterations identified revealed cytokine interactions and increased inflammation through NF-κB1, RELA, JUN, STAT3, and SP1. Interestingly, the most significant pathways were cytokine-cytokine receptor interaction, altered lipid metabolism, and atherosclerosis that play a crucial role in convalescent COVID-19. In addition, we also found pneumonitis, dermatitis, and autoimmune diseases. Based on our study, convalescent COVID-19 is associated with inflammation in a variety of organs that could lead to autoimmune and inflammatory diseases, as well as atherosclerosis. These findings are a first step toward fully exploring the disease mechanisms in depth to understand the relationship between post-COVID-19 infection and potential health risks. This is necessary for the development of appropriate strategies for the prevention and treatment of long COVID.
{"title":"Integrated Transcriptomics and Network Analysis of Potential Mechanisms and Health Effects of Convalescent COVID-19 Patients.","authors":"Suthipong Chujan, Watanyoo Nakareangrit, Tawit Suriyo, Jutamaad Satayavivad","doi":"10.1177/11779322231206684","DOIUrl":"10.1177/11779322231206684","url":null,"abstract":"<p><p>Coronaviral disease 2019 (COVID-19) is a recent pandemic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, there are still cases of COVID-19 around the world that can develop into persistent symptoms after discharge. The constellation of symptoms, termed long COVID, persists for months and can lead to various diseases such as lung inflammation and cardiovascular disease, which may lead to considerable financial burden and possible risk to human health. Moreover, the molecular mechanisms underlying the post-pandemic syndrome of COVID-19 remain unclear. In this study, we aimed to explore the molecular mechanism, disease association, and possible health risks in convalescent COVID-19 patients. Gene expression data from a human convalescent COVID-19 data set was compared with a data set from healthy normal individuals in order to identify differentially expressed genes (DEGs). To determine biological function and potential pathway alterations, the GO and KEGG databases were used to analyze the DEGs. Disease association, tissue, and organ-specific analyses were used to identify possible health effects. A total of 250 DEGs were identified between healthy and convalescent COVID-19 subjects. The biological function alterations identified revealed cytokine interactions and increased inflammation through NF-κB1, RELA, JUN, STAT3, and SP1. Interestingly, the most significant pathways were cytokine-cytokine receptor interaction, altered lipid metabolism, and atherosclerosis that play a crucial role in convalescent COVID-19. In addition, we also found pneumonitis, dermatitis, and autoimmune diseases. Based on our study, convalescent COVID-19 is associated with inflammation in a variety of organs that could lead to autoimmune and inflammatory diseases, as well as atherosclerosis. These findings are a first step toward fully exploring the disease mechanisms in depth to understand the relationship between post-COVID-19 infection and potential health risks. This is necessary for the development of appropriate strategies for the prevention and treatment of long COVID.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1f/11/10.1177_11779322231206684.PMC10594973.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50160614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}