Pub Date : 2024-10-01DOI: 10.1007/s42770-024-01528-2
Fabíola Ayres Cacciatore, Louise Thomé Cardoso, Alina Scherer, Vinícius de Oliveira Jaskulski, Patrícia da Silva Malheiros, Adriano Brandelli
Cabbage is susceptible to various microbiological risks, frequently serving as a vehicle for pathogenic bacteria, mainly Salmonella and Escherichia coli. Therefore, ensuring the safety of this vegetable is essential to reduce the risk of foodborne illnesses. Traditional sanitization using chlorinated water, although effective, raises concerns due to the production of potentially carcinogenic compounds, and this method is banned in some countries. In recent years, alternative sanitizing methods have been developed using essential oils (EOs). However, EOs present high volatility, limited solubility in water, and strong odor and taste. This study introduces an innovative approach to overcome these disadvantages by employing carvacrol encapsulated into chia mucilage nanocapsules (CMNC), prepared through high-energy homogenization. Encapsulating carvacrol in chia mucilage nanocapsules helps to mask its strong sensory characteristics, making it more suitable and acceptable for use in food applications. The antimicrobial efficacy of CMNC (1.67 mg/mL), carvacrol emulsion (CE: 10.6 mg/mL), and chlorine solution (CS: 200 ppm) was evaluated against Salmonella, E. coli, and Listeria monocytogenes. CMNC decreased Salmonella to levels below the detection limit of the technique (< 2 log CFU/g), reduced 3.5 log CFU/g of E. coli, and 2.5 log CFU/g of L. monocytogenes. These results are similar to or better than those obtained with CS. In addition, sanitizing cabbage with CMNC preserved the firmness and color of the samples, important aspects for consumer acceptance. This innovative approach is promising for increasing the food safety of cabbage, while mitigating the potential drawbacks associated with traditional sanitization methods.
{"title":"Carvacrol-loaded chia mucilage nanocapsules as sanitizer to control Salmonella, Escherichia coli and Listeria monocytogenes in green cabbage.","authors":"Fabíola Ayres Cacciatore, Louise Thomé Cardoso, Alina Scherer, Vinícius de Oliveira Jaskulski, Patrícia da Silva Malheiros, Adriano Brandelli","doi":"10.1007/s42770-024-01528-2","DOIUrl":"https://doi.org/10.1007/s42770-024-01528-2","url":null,"abstract":"<p><p>Cabbage is susceptible to various microbiological risks, frequently serving as a vehicle for pathogenic bacteria, mainly Salmonella and Escherichia coli. Therefore, ensuring the safety of this vegetable is essential to reduce the risk of foodborne illnesses. Traditional sanitization using chlorinated water, although effective, raises concerns due to the production of potentially carcinogenic compounds, and this method is banned in some countries. In recent years, alternative sanitizing methods have been developed using essential oils (EOs). However, EOs present high volatility, limited solubility in water, and strong odor and taste. This study introduces an innovative approach to overcome these disadvantages by employing carvacrol encapsulated into chia mucilage nanocapsules (CMNC), prepared through high-energy homogenization. Encapsulating carvacrol in chia mucilage nanocapsules helps to mask its strong sensory characteristics, making it more suitable and acceptable for use in food applications. The antimicrobial efficacy of CMNC (1.67 mg/mL), carvacrol emulsion (CE: 10.6 mg/mL), and chlorine solution (CS: 200 ppm) was evaluated against Salmonella, E. coli, and Listeria monocytogenes. CMNC decreased Salmonella to levels below the detection limit of the technique (< 2 log CFU/g), reduced 3.5 log CFU/g of E. coli, and 2.5 log CFU/g of L. monocytogenes. These results are similar to or better than those obtained with CS. In addition, sanitizing cabbage with CMNC preserved the firmness and color of the samples, important aspects for consumer acceptance. This innovative approach is promising for increasing the food safety of cabbage, while mitigating the potential drawbacks associated with traditional sanitization methods.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biodegradation poses a challenge for environmentalists and scientific community, offering a potential solution to the plastic waste problem. This study aims to investigate the biological degradation of low-density polyethylene (LDPE) bags by a fungus in both batch and continuous cultures, with the goal of identifying an eco-friendly and cost-effective waste management strategy. The fungal strain Rhizopus arrhizus SLNEA1, isolated from a landfill located in northeastern Algeria, was tested for its capability to degrade LDPE films and utilize them as a sole carbon source in batch (α-LDPE) and continuous (γ-LDPE) cultures. The results indicated a higher rate of weight loss for γ-LDPE (29.74%) compared to α-LDPE (23.77%). The biodegradation effect was examined using scanning electron microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) to evaluate morphological and chemical changes in LDPE samples, highlighting alterations of LDPE films through cracks, veins and holes under SEM and chemical transformation and appearance of new functional groups in the FTIR data. Rhizopus arrhizus SLNEA1 demonstrated the ability to break down and utilize LDPE films as a carbon source. This isolate shows promise for LDPE biodegradation applications, which may be leveraged for the development of future plastic degradation systems involving fungi.
{"title":"A comparative study on biodegradation of low density polyethylene bags by a Rhizopus arrhizus SLNEA1 strain in batch and continuous cultures.","authors":"Randa Harrat, Ghania Bourzama, Nouari Sadrati, Amina Zerroug, Gaëtan Burgaud, Houria Ouled-Haddar, Boudjema Soumati","doi":"10.1007/s42770-024-01487-8","DOIUrl":"https://doi.org/10.1007/s42770-024-01487-8","url":null,"abstract":"<p><p>Biodegradation poses a challenge for environmentalists and scientific community, offering a potential solution to the plastic waste problem. This study aims to investigate the biological degradation of low-density polyethylene (LDPE) bags by a fungus in both batch and continuous cultures, with the goal of identifying an eco-friendly and cost-effective waste management strategy. The fungal strain Rhizopus arrhizus SLNEA1, isolated from a landfill located in northeastern Algeria, was tested for its capability to degrade LDPE films and utilize them as a sole carbon source in batch (α-LDPE) and continuous (γ-LDPE) cultures. The results indicated a higher rate of weight loss for γ-LDPE (29.74%) compared to α-LDPE (23.77%). The biodegradation effect was examined using scanning electron microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) to evaluate morphological and chemical changes in LDPE samples, highlighting alterations of LDPE films through cracks, veins and holes under SEM and chemical transformation and appearance of new functional groups in the FTIR data. Rhizopus arrhizus SLNEA1 demonstrated the ability to break down and utilize LDPE films as a carbon source. This isolate shows promise for LDPE biodegradation applications, which may be leveraged for the development of future plastic degradation systems involving fungi.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lactational mastitis, a common condition affecting nursing mothers, is characterized by mammary gland inflammation during lactation. This inflammatory response typically occurs due to bacterial infection. The discomfort and pain associated with lactational mastitis can significantly impact a mother's ability to breastfeed comfortably and may lead to the cessation of breastfeeding altogether if left untreated. Antibiotics are commonly prescribed to target the bacteria causing the infection and alleviate symptoms, aiming to treat the infection. Nevertheless, a notable worry linked to antibiotic use is the emergence of antibiotic resistance, compounded by the possible persistence of antibiotics in milk. Additionally, lactational mastitis is characterized by its polymicrobial nature. In this study, bacteria were isolated from infected breast milk samples and whole-genome sequencing was performed on eleven isolates to accurately identify the bacteria and assess their antibiotic resistance profiles. Using Galaxy tools and the ResFinder database, we identified Bacillus paraanthracis, Bacillus altitudinis, Staphylococcus aureus, Bacillus cereus, Escherichia coli, Alcaligenes faecalis, and Bacillus licheniformis, along with antibiotic-resistant genes like fosB1, cat86, erm (D), blaZ, and mdf (A). ABRicate aided in antimicrobial resistance (AMR) gene analysis, and CARD visualized their distribution. Our study demonstrates that the severity of infection is directly proportional to an increase in somatic cell count (SCC). This research sheds light on microbial diversity in lactational mastitis milk and provides crucial insights into antibiotic-resistance genes. Utilizing bioinformatics tools, such as those employed in this study, can inform the design of effective treatment strategies for lactational mastitis infections.
{"title":"Whole-genome sequencing of bacteria accountable for lactational mastitis in humans combined with an examination of their antibiotic resistance profiles.","authors":"Priyanka Dalwadi, Neelam Nathani, Kshipra Chauhan, Jasmine Mansuri, Prakash Koringa, Vaibhav Bhatt, Anju P Kunjadiya","doi":"10.1007/s42770-024-01519-3","DOIUrl":"https://doi.org/10.1007/s42770-024-01519-3","url":null,"abstract":"<p><p>Lactational mastitis, a common condition affecting nursing mothers, is characterized by mammary gland inflammation during lactation. This inflammatory response typically occurs due to bacterial infection. The discomfort and pain associated with lactational mastitis can significantly impact a mother's ability to breastfeed comfortably and may lead to the cessation of breastfeeding altogether if left untreated. Antibiotics are commonly prescribed to target the bacteria causing the infection and alleviate symptoms, aiming to treat the infection. Nevertheless, a notable worry linked to antibiotic use is the emergence of antibiotic resistance, compounded by the possible persistence of antibiotics in milk. Additionally, lactational mastitis is characterized by its polymicrobial nature. In this study, bacteria were isolated from infected breast milk samples and whole-genome sequencing was performed on eleven isolates to accurately identify the bacteria and assess their antibiotic resistance profiles. Using Galaxy tools and the ResFinder database, we identified Bacillus paraanthracis, Bacillus altitudinis, Staphylococcus aureus, Bacillus cereus, Escherichia coli, Alcaligenes faecalis, and Bacillus licheniformis, along with antibiotic-resistant genes like fosB1, cat86, erm (D), blaZ, and mdf (A). ABRicate aided in antimicrobial resistance (AMR) gene analysis, and CARD visualized their distribution. Our study demonstrates that the severity of infection is directly proportional to an increase in somatic cell count (SCC). This research sheds light on microbial diversity in lactational mastitis milk and provides crucial insights into antibiotic-resistance genes. Utilizing bioinformatics tools, such as those employed in this study, can inform the design of effective treatment strategies for lactational mastitis infections.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1007/s42770-024-01525-5
Berna Kavakcıoğlu Yardımcı
Very high gravity (VHG) fermentation is an industrial-scale process utilizing a sugar concentration above 250 g/L to attain a significant ethanol concentration, with the advantages of decreased labor, production costs, water usage, bacterial contamination, and energy consumption. Saccharomyces cerevisiae is one of the most extensively employed organisms in ethanol fermentation through VHG technology. Conversely, high glucose exposure leads to numerous stress factors that negatively impact the ethanol production efficiency of this organism. Here, the impact of various phytochemicals added to the VHG medium on viability, glucose consumption, ethanol production efficiency, total antioxidant-oxidant status (TAS and TOS), and the response of the enzymatic antioxidant system of yeast were investigated. 2.0 mM naringenin and caffeic acid increased ethanol production by 2.453 ± 0.198 and 1.261 ± 0.138-fold, respectively. The glucose consumption rate exhibited a direct relationship with ethanol production in the naringenin-supplemented group. The highest TAS was determined as 0.734 ± 0.044 mmol Trolox Eq./L in the same group. Furthermore, both phytochemical compounds exhibited robust positive correlations with TAS (rnaringenin = 0.9986; rcaffeic acid = 0.9553) and TOS levels (rnaringenin = -0.9824; rcaffeic acid = -0.9791). While naringenin caused statistically significant increases in glutathione reductase (GR) and thioredoxin reductase (TrxR) activities, caffeic acid significantly increased TrxR and superoxide dismutase (SOD). Both phytochemicals seem to impact the ethanol production ability by regulating the redox status of the cells. We believe that the incorporation of particularly cost-effective antioxidants into the fermentation medium may serve as an alternative way to enhance the efficiency of bioethanol production using VHG technology.
{"title":"Naringenin and caffeic acid increase ethanol production in yeast cells by reducing very high gravity fermentation-related oxidative stress.","authors":"Berna Kavakcıoğlu Yardımcı","doi":"10.1007/s42770-024-01525-5","DOIUrl":"https://doi.org/10.1007/s42770-024-01525-5","url":null,"abstract":"<p><p>Very high gravity (VHG) fermentation is an industrial-scale process utilizing a sugar concentration above 250 g/L to attain a significant ethanol concentration, with the advantages of decreased labor, production costs, water usage, bacterial contamination, and energy consumption. Saccharomyces cerevisiae is one of the most extensively employed organisms in ethanol fermentation through VHG technology. Conversely, high glucose exposure leads to numerous stress factors that negatively impact the ethanol production efficiency of this organism. Here, the impact of various phytochemicals added to the VHG medium on viability, glucose consumption, ethanol production efficiency, total antioxidant-oxidant status (TAS and TOS), and the response of the enzymatic antioxidant system of yeast were investigated. 2.0 mM naringenin and caffeic acid increased ethanol production by 2.453 ± 0.198 and 1.261 ± 0.138-fold, respectively. The glucose consumption rate exhibited a direct relationship with ethanol production in the naringenin-supplemented group. The highest TAS was determined as 0.734 ± 0.044 mmol Trolox Eq./L in the same group. Furthermore, both phytochemical compounds exhibited robust positive correlations with TAS (r<sub>naringenin</sub> = 0.9986; r<sub>caffeic acid</sub> = 0.9553) and TOS levels (r<sub>naringenin</sub> = -0.9824; r<sub>caffeic acid</sub> = -0.9791). While naringenin caused statistically significant increases in glutathione reductase (GR) and thioredoxin reductase (TrxR) activities, caffeic acid significantly increased TrxR and superoxide dismutase (SOD). Both phytochemicals seem to impact the ethanol production ability by regulating the redox status of the cells. We believe that the incorporation of particularly cost-effective antioxidants into the fermentation medium may serve as an alternative way to enhance the efficiency of bioethanol production using VHG technology.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1007/s42770-024-01520-w
Paulo Henrique Pereira Costa Muniz, Thiago Alves Santos de Oliveira, Elizabeth Amélia Alves Duarte, Fabrício Rodrigues, Daniel Diego Costa Carvalho
Studies on physiological responses to stimuli from physical factors are essential for understanding the dynamics of the microorganisms and higly important for the management of plant diseases. Besides, the development of an epidemiological model for pathogen populations requires studying their physiological responses to physical stimuli. The objective of this study was to evaluate the germination dynamics of spores from six isolates of Bipolaris bicolor under effects of light at 25 °C. Suspensions of 1.6 × 105 conidia mL- 1 from the B. bicolor isolates were inoculated onto Petri dishes containing agar-water culture medium and incubated in a BOD chamber under two physical conditions: (a) constant darkness and (b) constant light for five hours. The study was conducted in a completely randomized design, with a 6 × 2 factorial arrangement (six B. bicolor isolates and two physical conditions) and five replications. The length of the germ tube was measured hourly. The constant darkness resulted in higher mean germ tube growth for the pathogen; however, differences in the final germination percentage were found among the isolates. The isolate F-24-02 exhibited the highest germination adaptability to constant darkness, presenting the longest germ tube length.
{"title":"Characterization of Bipolaris bicolor germination: effects of a physical factor on fungal adaptability.","authors":"Paulo Henrique Pereira Costa Muniz, Thiago Alves Santos de Oliveira, Elizabeth Amélia Alves Duarte, Fabrício Rodrigues, Daniel Diego Costa Carvalho","doi":"10.1007/s42770-024-01520-w","DOIUrl":"https://doi.org/10.1007/s42770-024-01520-w","url":null,"abstract":"<p><p>Studies on physiological responses to stimuli from physical factors are essential for understanding the dynamics of the microorganisms and higly important for the management of plant diseases. Besides, the development of an epidemiological model for pathogen populations requires studying their physiological responses to physical stimuli. The objective of this study was to evaluate the germination dynamics of spores from six isolates of Bipolaris bicolor under effects of light at 25 °C. Suspensions of 1.6 × 10<sup>5</sup> conidia mL<sup>- 1</sup> from the B. bicolor isolates were inoculated onto Petri dishes containing agar-water culture medium and incubated in a BOD chamber under two physical conditions: (a) constant darkness and (b) constant light for five hours. The study was conducted in a completely randomized design, with a 6 × 2 factorial arrangement (six B. bicolor isolates and two physical conditions) and five replications. The length of the germ tube was measured hourly. The constant darkness resulted in higher mean germ tube growth for the pathogen; however, differences in the final germination percentage were found among the isolates. The isolate F-24-02 exhibited the highest germination adaptability to constant darkness, presenting the longest germ tube length.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1007/s42770-024-01517-5
Jose Alexandre da Rocha Curvelo, Anna Lea Silva Barreto, Brayan Leonardo Bayona-Pacheco, Daniel Clemente de Moraes, Maristela Barbosa Portela, Antônio Ferreira-Pereira, Camila Marques Adade, Thaïs Souto-Padrón, Rosangela Maria de Araújo Soares
Oral candidiasis can be presented in different ways due to the virulence factors of its etiology such as Candida albicans that have developed an effective set of these factors that are able to improve its pathogenesis. The role of salivary immunological components in the development of candidiasis can provide insights for the development of new methodologies aiming to control this disease. The aim of this study was to evaluate the antifungal activity of two salivary components, histatin 5 and lactoferrin on C. albicans viability and virulence using a fluconazole resistant C. albicans clinical strain. Results showed that histatin 5 and lactoferrin decreased cell viability, and the cell surface hydrophobicity was increased by 18% in presence of 151 µg/mL of histatin 5 but was not altered by lactoferrin. It was observed the reduction of 69.3% in the expression of mannoproteins on C. albicans surface in the presence of 151 µg/mL of histatin, but proteolytic activity of serine proteinases was not inhibited by any of the proteins. Histatin 5 altered cell ultrastructure predominantly in the cytoplasmic compartment. However, this peptide does not interfere with mitochondrial function neither in membrane permeability of the yeasts. The association index between C. albicans and epithelial cells was increased by 51% in presence of 151 µg/mL of histatin. Results suggest that histatin 5 and lactoferrin affects viability and virulence of C. albicans at physiological levels, and the maintenance of these levels may be essential in the prevention of oropharyngeal candidiasis. Exogenous administration of these proteins may become a therapeutic alternative for resistant strains of C. albicans, circumventing toxicity issues, considering their constitutive features.
{"title":"Salivary proteins modulate Candida albicans virulence and may prevent oropharingeal candidiasis.","authors":"Jose Alexandre da Rocha Curvelo, Anna Lea Silva Barreto, Brayan Leonardo Bayona-Pacheco, Daniel Clemente de Moraes, Maristela Barbosa Portela, Antônio Ferreira-Pereira, Camila Marques Adade, Thaïs Souto-Padrón, Rosangela Maria de Araújo Soares","doi":"10.1007/s42770-024-01517-5","DOIUrl":"https://doi.org/10.1007/s42770-024-01517-5","url":null,"abstract":"<p><p>Oral candidiasis can be presented in different ways due to the virulence factors of its etiology such as Candida albicans that have developed an effective set of these factors that are able to improve its pathogenesis. The role of salivary immunological components in the development of candidiasis can provide insights for the development of new methodologies aiming to control this disease. The aim of this study was to evaluate the antifungal activity of two salivary components, histatin 5 and lactoferrin on C. albicans viability and virulence using a fluconazole resistant C. albicans clinical strain. Results showed that histatin 5 and lactoferrin decreased cell viability, and the cell surface hydrophobicity was increased by 18% in presence of 151 µg/mL of histatin 5 but was not altered by lactoferrin. It was observed the reduction of 69.3% in the expression of mannoproteins on C. albicans surface in the presence of 151 µg/mL of histatin, but proteolytic activity of serine proteinases was not inhibited by any of the proteins. Histatin 5 altered cell ultrastructure predominantly in the cytoplasmic compartment. However, this peptide does not interfere with mitochondrial function neither in membrane permeability of the yeasts. The association index between C. albicans and epithelial cells was increased by 51% in presence of 151 µg/mL of histatin. Results suggest that histatin 5 and lactoferrin affects viability and virulence of C. albicans at physiological levels, and the maintenance of these levels may be essential in the prevention of oropharyngeal candidiasis. Exogenous administration of these proteins may become a therapeutic alternative for resistant strains of C. albicans, circumventing toxicity issues, considering their constitutive features.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antibiotic resistance is an increasing threat, requiring novel therapeutic solutions. Metal nanoparticles e.g., zinc oxide nanoparticles (ZnO NPs) exhibited the potential against many bacterial pathogens. Strains of Salmonella enterica serovar Typhi resistant to ceftriaxone were reported first from Pakistan in 2016. Since then, S. Typhi is a pathogen of concern globally owing to its rapidly emerging resistance potential against many last resort antibiotics. In the present study, in vitro and in vivo antimicrobial activity of ZnO NPs against multidrug resistant (MDR) and extensively drug resistant (XDR) Salmonella Typhi strains from Pakistan was evaluated. Zinc oxide green nanoparticles (ZnO GNPs), synthesized from Aloe vera, were characterized by SEM, XRD, UV-vis and Raman spectroscopy. In vitro antibacterial activity of two different concentrations of ZnO GNPs (7 and 15%) was checked using agar well diffusion method. Further, broth microdilution and time kill assays were performed using the ZnO GNPs. In vivo assays were conducted in BALB/c mice sepsis models. In all the three methods, agar well diffusion assay broth microdilution and time kill assay, different zinc oxide dihydrate precursor concentrations had shown the antibacterial activity. The minimum inhibitory concentration (MIC) of ZnO GNPs nanoparticles against MDR and XDR S. Typhi strains was found as 16 to 64 µg/ml. In vivo experiment has shown a significant decrease in CFU/ml in the mice treated with ZnO GNPs as compared to the control group. Our findings have revealed that ZnO GNPs have significant antibacterial activity against MDR and XDR S. Typhi, both in vitro and in vivo.
{"title":"In vitro and in vivo efficacy of zinc oxide green nanoparticles against multidrug-resistant Salmonella Typhi.","authors":"Tasbiha Gul, Lubna Tabassam, Abroo Basharat, Afreenish Amir, Zulqarnain Baqar, Muhammad Jawad Khan","doi":"10.1007/s42770-024-01522-8","DOIUrl":"https://doi.org/10.1007/s42770-024-01522-8","url":null,"abstract":"<p><p>Antibiotic resistance is an increasing threat, requiring novel therapeutic solutions. Metal nanoparticles e.g., zinc oxide nanoparticles (ZnO NPs) exhibited the potential against many bacterial pathogens. Strains of Salmonella enterica serovar Typhi resistant to ceftriaxone were reported first from Pakistan in 2016. Since then, S. Typhi is a pathogen of concern globally owing to its rapidly emerging resistance potential against many last resort antibiotics. In the present study, in vitro and in vivo antimicrobial activity of ZnO NPs against multidrug resistant (MDR) and extensively drug resistant (XDR) Salmonella Typhi strains from Pakistan was evaluated. Zinc oxide green nanoparticles (ZnO GNPs), synthesized from Aloe vera, were characterized by SEM, XRD, UV-vis and Raman spectroscopy. In vitro antibacterial activity of two different concentrations of ZnO GNPs (7 and 15%) was checked using agar well diffusion method. Further, broth microdilution and time kill assays were performed using the ZnO GNPs. In vivo assays were conducted in BALB/c mice sepsis models. In all the three methods, agar well diffusion assay broth microdilution and time kill assay, different zinc oxide dihydrate precursor concentrations had shown the antibacterial activity. The minimum inhibitory concentration (MIC) of ZnO GNPs nanoparticles against MDR and XDR S. Typhi strains was found as 16 to 64 µg/ml. In vivo experiment has shown a significant decrease in CFU/ml in the mice treated with ZnO GNPs as compared to the control group. Our findings have revealed that ZnO GNPs have significant antibacterial activity against MDR and XDR S. Typhi, both in vitro and in vivo.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1007/s42770-024-01523-7
Taleessa Vieira Gomes, Mariana Simões de Oliveira, Ana Bárbara Polo, Beatriz Vilela Tomé, Millena Machado Cardoso, Guilherme Diniz Tavares, Ana Carolina Morais Apolônio
Copaifera officinalis Oleoresin (COR) and Chitosan (CH) were combined to test the potential to inhibit oral bacteria. First, COR was analyzed by GC-MS to identify its main constituents and then Minimum Inhibitory Concentration (MIC) assays and Minimum Microbiocidal Concentration (MMC) of the compounds alone against 17 pathogens were performed. Sixteen primary compounds were identified in COR, but the major constituent was β-Caryophyllene (40.5%). COR showed MIC concentrations of 26.04 to 46.87 µg/mL and CH 0.1 mg/mL to 0.8 mg/mL. Second, the combination against oral bacteria strains was tested using a checkerboard test with the determination of Fractional Inhibitory Concentration (FIC) for synergistic effect, followed by the bacterial biofilm aggregation test using monospecies and mixed biofilm. The combination of COR and CH showed a synergistic effect for S. oralis (ATCC 10557) and an additive effect for the other strains tested, promoting bactericidal activity, as well as reducing the concentrations needed to cause bacterial inhibition. In addition, it showed good activity in inhibiting biofilm formation, with inhibition percentages close to Azithromycin. The results of this study highlight the synergistic potential of COR and CH combination as a promising strategy in the search for innovative antimicrobial therapies for infections related to oral bacterial biofilms.
{"title":"Combined potential of copaifera officinalis oleoresin and chitosan against oral pathogens.","authors":"Taleessa Vieira Gomes, Mariana Simões de Oliveira, Ana Bárbara Polo, Beatriz Vilela Tomé, Millena Machado Cardoso, Guilherme Diniz Tavares, Ana Carolina Morais Apolônio","doi":"10.1007/s42770-024-01523-7","DOIUrl":"https://doi.org/10.1007/s42770-024-01523-7","url":null,"abstract":"<p><p>Copaifera officinalis Oleoresin (COR) and Chitosan (CH) were combined to test the potential to inhibit oral bacteria. First, COR was analyzed by GC-MS to identify its main constituents and then Minimum Inhibitory Concentration (MIC) assays and Minimum Microbiocidal Concentration (MMC) of the compounds alone against 17 pathogens were performed. Sixteen primary compounds were identified in COR, but the major constituent was β-Caryophyllene (40.5%). COR showed MIC concentrations of 26.04 to 46.87 µg/mL and CH 0.1 mg/mL to 0.8 mg/mL. Second, the combination against oral bacteria strains was tested using a checkerboard test with the determination of Fractional Inhibitory Concentration (FIC) for synergistic effect, followed by the bacterial biofilm aggregation test using monospecies and mixed biofilm. The combination of COR and CH showed a synergistic effect for S. oralis (ATCC 10557) and an additive effect for the other strains tested, promoting bactericidal activity, as well as reducing the concentrations needed to cause bacterial inhibition. In addition, it showed good activity in inhibiting biofilm formation, with inhibition percentages close to Azithromycin. The results of this study highlight the synergistic potential of COR and CH combination as a promising strategy in the search for innovative antimicrobial therapies for infections related to oral bacterial biofilms.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1007/s42770-024-01521-9
Jacob Oliveira Duarte, Cláudio Gleidiston Lima da Silva, Rossana de Aguiar Cordeiro
Coccidioidomycosis is a systemic fungal infection that primarily affects the lungs in mammals. It is endemic to certain areas of the Americas. In Brazil, the disease occurs exclusively in the Northeast of the country, and the only etiological agent described is Coccidioides posadasii, typically found in the soil of arid regions with low rainfall. Given the scarcity of cases in Brazil, a descriptive study was conducted based on cases diagnosed with coccidioidomycosis between 2012 and 2022 at a tertiary hospital in the northeastern region of Brazil. The study analyzed medical records to identify cases of coccidioidomycosis diagnosed by clinical and/or laboratory data, discussing their clinical-epidemiological aspects. Thirteen patients were identified from seven municipalities in Ceará, all of whom were male, with a mean age of 19 years. The main risk factor was armadillo hunting, and the clinical manifestations included cough, fever, and chest pain. In this study, two patients were diagnosed by serology, one by microscopy, and ten suspected cases were diagnosed based on the clinical and epidemiological picture. Twelve patients were treated with antifungals. Clinical improvement with hospital discharge occurred in twelve patients, while one patient died. The data corroborate information from the scientific literature that the area covered by the referral hospital is endemic for coccidioidomycosis. However, local resources for diagnosing this disease were found to be deficient, with a high rate of presumptive diagnoses. This study highlights the need for actions by health surveillance systems and greater efficiency in diagnosing coccidioidomycosis in endemic areas of Brazil.
{"title":"Occurrence of coccidioidomycosis in a tertiary hospital in the Brazilian semi-arid region: diagnostic challenges.","authors":"Jacob Oliveira Duarte, Cláudio Gleidiston Lima da Silva, Rossana de Aguiar Cordeiro","doi":"10.1007/s42770-024-01521-9","DOIUrl":"https://doi.org/10.1007/s42770-024-01521-9","url":null,"abstract":"<p><p>Coccidioidomycosis is a systemic fungal infection that primarily affects the lungs in mammals. It is endemic to certain areas of the Americas. In Brazil, the disease occurs exclusively in the Northeast of the country, and the only etiological agent described is Coccidioides posadasii, typically found in the soil of arid regions with low rainfall. Given the scarcity of cases in Brazil, a descriptive study was conducted based on cases diagnosed with coccidioidomycosis between 2012 and 2022 at a tertiary hospital in the northeastern region of Brazil. The study analyzed medical records to identify cases of coccidioidomycosis diagnosed by clinical and/or laboratory data, discussing their clinical-epidemiological aspects. Thirteen patients were identified from seven municipalities in Ceará, all of whom were male, with a mean age of 19 years. The main risk factor was armadillo hunting, and the clinical manifestations included cough, fever, and chest pain. In this study, two patients were diagnosed by serology, one by microscopy, and ten suspected cases were diagnosed based on the clinical and epidemiological picture. Twelve patients were treated with antifungals. Clinical improvement with hospital discharge occurred in twelve patients, while one patient died. The data corroborate information from the scientific literature that the area covered by the referral hospital is endemic for coccidioidomycosis. However, local resources for diagnosing this disease were found to be deficient, with a high rate of presumptive diagnoses. This study highlights the need for actions by health surveillance systems and greater efficiency in diagnosing coccidioidomycosis in endemic areas of Brazil.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1007/s42770-024-01518-4
Ana Carolina Aparecida Gonçalves, Marcelo Dos Santos Conzentino, Altina Bruna de Souza Barbosa, Fernando Rodrigo Doline, Mariana Guimarães Nilsson, Aristeu Vieira da Silva, Louise Bach Kmetiuk, Alexander Welker Biondo, Luciano Fernandes Huergo
The fact that SARS-CoV-2 has reportedly infected companion, livestock and wildlife animals may constitute a significant risk for virus reservoirs, ground for emerging variants and potential for novel reverse zoonosis. Hence, SARS-CoV-2 surveillance in animal species is crucial to prevent emerging variants which may spread to humans. The present study aimed to develop a simple, high-throughput and ultrafast magnetic bead immunoassay to detect anti-SARS-CoV-2 nucleocapsid and spike reactive IgG antibodies in dog and cat serum samples. The assays were validated using serum from eleven dogs and cats which had SARS-CoV-2 infections confirmed by real-time RT-PCR. The negative cohort consisted of pre-pandemic dog and cat samples. The assays performed at 73-82% sensitivity and 97.5-98% specificity for dogs and 71% sensitivity and 92-94% specificity for cats. The lower assay specificity for cats is explained by the fact that cat pre-pandemic sera showed high levels of cross-reactive with SARS-CoV-2 Nucleocapsid and Spike, supporting that these animals have been exposed to other coronavirus sharing structural similarities with SARS-CoV-2. These assays described in this work are now being used for SARS-CoV-2 surveillance and research purposes.
{"title":"Ultrafast and high-throughput immunoassay assay to detect anti-SARS-CoV-2 IgG antibodies in dogs and cats.","authors":"Ana Carolina Aparecida Gonçalves, Marcelo Dos Santos Conzentino, Altina Bruna de Souza Barbosa, Fernando Rodrigo Doline, Mariana Guimarães Nilsson, Aristeu Vieira da Silva, Louise Bach Kmetiuk, Alexander Welker Biondo, Luciano Fernandes Huergo","doi":"10.1007/s42770-024-01518-4","DOIUrl":"https://doi.org/10.1007/s42770-024-01518-4","url":null,"abstract":"<p><p>The fact that SARS-CoV-2 has reportedly infected companion, livestock and wildlife animals may constitute a significant risk for virus reservoirs, ground for emerging variants and potential for novel reverse zoonosis. Hence, SARS-CoV-2 surveillance in animal species is crucial to prevent emerging variants which may spread to humans. The present study aimed to develop a simple, high-throughput and ultrafast magnetic bead immunoassay to detect anti-SARS-CoV-2 nucleocapsid and spike reactive IgG antibodies in dog and cat serum samples. The assays were validated using serum from eleven dogs and cats which had SARS-CoV-2 infections confirmed by real-time RT-PCR. The negative cohort consisted of pre-pandemic dog and cat samples. The assays performed at 73-82% sensitivity and 97.5-98% specificity for dogs and 71% sensitivity and 92-94% specificity for cats. The lower assay specificity for cats is explained by the fact that cat pre-pandemic sera showed high levels of cross-reactive with SARS-CoV-2 Nucleocapsid and Spike, supporting that these animals have been exposed to other coronavirus sharing structural similarities with SARS-CoV-2. These assays described in this work are now being used for SARS-CoV-2 surveillance and research purposes.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}