首页 > 最新文献

Biophysical reviews最新文献

英文 中文
Overview of the bacterial/archaeal supermolecular assembly session at the 21st IUPAB and the 62nd Biophysics Society of Japan joint congress. 第21届IUPAB和第62届日本生物物理学会联合大会细菌/古细菌超分子组装会议综述。
IF 4.9 Q1 BIOPHYSICS Pub Date : 2024-08-21 eCollection Date: 2024-10-01 DOI: 10.1007/s12551-024-01220-7
Daisuke Nakane, Isil Tulum

In this session, six invited speakers presented their innovative research to investigate the structure and dynamics of bacterial and archaeal supramolecular assembly systems. They explained their research from the perspective of bacterial genetics, molecular biology, biochemistry, biophysics, structural biology, cell biology, microscopy imaging, and molecular dynamics simulation. The session started with a section on the mechanism of pilus assembly in cyanobacteria. It then moved on to surface architecture of a nano-sized archaeon, bacterial flagellar protein export and assembly, flagella-driven motility in bacteria and other unique assembly systems. The session highlighted significant accomplishments in the field and also presented a variety of outstanding challenges.

在本次会议上,六位受邀演讲者介绍了他们在研究细菌和古细菌超分子组装系统的结构和动力学方面的创新研究。他们从细菌遗传学、分子生物学、生物化学、生物物理学、结构生物学、细胞生物学、显微成像和分子动力学模拟等角度阐述了他们的研究。会议以蓝藻菌菌毛组装机制的部分开始。然后,它转向纳米古菌的表面结构、细菌鞭毛蛋白的输出和组装、细菌中鞭毛驱动的运动和其他独特的组装系统。会议强调了该领域的重大成就,也提出了各种悬而未决的挑战。
{"title":"Overview of the bacterial/archaeal supermolecular assembly session at the 21st IUPAB and the 62nd Biophysics Society of Japan joint congress.","authors":"Daisuke Nakane, Isil Tulum","doi":"10.1007/s12551-024-01220-7","DOIUrl":"https://doi.org/10.1007/s12551-024-01220-7","url":null,"abstract":"<p><p>In this session, six invited speakers presented their innovative research to investigate the structure and dynamics of bacterial and archaeal supramolecular assembly systems. They explained their research from the perspective of bacterial genetics, molecular biology, biochemistry, biophysics, structural biology, cell biology, microscopy imaging, and molecular dynamics simulation. The session started with a section on the mechanism of pilus assembly in cyanobacteria. It then moved on to surface architecture of a nano-sized archaeon, bacterial flagellar protein export and assembly, flagella-driven motility in bacteria and other unique assembly systems. The session highlighted significant accomplishments in the field and also presented a variety of outstanding challenges.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"16 5","pages":"533-536"},"PeriodicalIF":4.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604868/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Session commentaries: synthetic and constructive biology. 会议评论:合成和构造生物学。
IF 4.9 Q1 BIOPHYSICS Pub Date : 2024-08-20 eCollection Date: 2024-10-01 DOI: 10.1007/s12551-024-01219-0
Tomoaki Matsuura, Sheref S Mansy

Synthetic biology is a broad field with a unifying theme of learning through building. At IUPAB2024 in Kyoto, Japan, five researchers gave lectures focusing on in vitro synthetic biology, where the built objects were not living cells but in vitro systems composed of biomolecules. The talks sparked lively discussions on the knowledge gained about living cells from in vitro reconstructions.

合成生物学是一个广泛的领域,其统一的主题是通过构建来学习。在日本京都举行的IUPAB2024上,5名研究人员发表了关于体外合成生物学的演讲,其中建造的物体不是活细胞,而是由生物分子组成的体外系统。会谈引发了热烈的讨论,讨论了从体外重建中获得的关于活细胞的知识。
{"title":"Session commentaries: synthetic and constructive biology.","authors":"Tomoaki Matsuura, Sheref S Mansy","doi":"10.1007/s12551-024-01219-0","DOIUrl":"https://doi.org/10.1007/s12551-024-01219-0","url":null,"abstract":"<p><p>Synthetic biology is a broad field with a unifying theme of learning through building. At IUPAB2024 in Kyoto, Japan, five researchers gave lectures focusing on in vitro synthetic biology, where the built objects were not living cells but in vitro systems composed of biomolecules. The talks sparked lively discussions on the knowledge gained about living cells from in vitro reconstructions.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"16 5","pages":"525-527"},"PeriodicalIF":4.9,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604855/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biophysical Reviews' "Meet the IUPAB councillor series": a brief profile of Tjaart P. J. Krüger. 生物物理评论“会见IUPAB委员系列”:Tjaart P. J. kr<s:1>格的简介。
IF 4.9 Q1 BIOPHYSICS Pub Date : 2024-08-17 eCollection Date: 2024-10-01 DOI: 10.1007/s12551-024-01217-2
Tjaart P J Krüger

It is a great privilege for me to have been elected to the IUPAB Council earlier this year and to represent the African continent on the Council. In this short commentary, I am giving a very brief account of my academic training, biophysics research activities, and biophysics educational and outreach activities in Africa.

今年早些时候,我非常荣幸地当选为IUPAB理事会成员,并在理事会中代表非洲大陆。在这篇简短的评论中,我将非常简要地介绍我在非洲的学术训练、生物物理学研究活动以及生物物理学教育和推广活动。
{"title":"<i>Biophysical Reviews'</i> \"Meet the IUPAB councillor series\": a brief profile of Tjaart P. J. Krüger.","authors":"Tjaart P J Krüger","doi":"10.1007/s12551-024-01217-2","DOIUrl":"https://doi.org/10.1007/s12551-024-01217-2","url":null,"abstract":"<p><p>It is a great privilege for me to have been elected to the IUPAB Council earlier this year and to represent the African continent on the Council. In this short commentary, I am giving a very brief account of my academic training, biophysics research activities, and biophysics educational and outreach activities in Africa.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"16 5","pages":"519-520"},"PeriodicalIF":4.9,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604883/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Albany Conversations Are Now the Next Generation Conversations: Albany @ Ruston. 奥尔巴尼对话现在是下一代对话:奥尔巴尼 @ 拉斯顿。
IF 4.9 Q1 BIOPHYSICS Pub Date : 2024-08-12 eCollection Date: 2024-08-01 DOI: 10.1007/s12551-024-01215-4
Thomas C Bishop, Kelly M Thayer, Robert T Young

This commentary is a report on the 1st Next Gen. Conversation: Albany @ Ruston 2024 held on the campus of Louisiana Tech University June 11-15, 2024. The 2nd Next Gen. Conversation will be held at Louisiana Tech University June 9-13, 2026. A planning meeting will be held in June 2025 at Louisiana Tech.

本评论是关于第一届 "下一代对话 "的报告:2024 年奥尔巴尼@拉斯顿对话》的报告,该对话于 2024 年 6 月 11-15 日在路易斯安那理工大学校园内举行。第二次下一代对话将于 2026 年 6 月 9-13 日在路易斯安那理工大学举行。规划会议将于 2025 年 6 月在路易斯安那理工大学举行。
{"title":"The Albany Conversations Are Now the Next Generation Conversations: Albany @ Ruston.","authors":"Thomas C Bishop, Kelly M Thayer, Robert T Young","doi":"10.1007/s12551-024-01215-4","DOIUrl":"https://doi.org/10.1007/s12551-024-01215-4","url":null,"abstract":"<p><p>This commentary is a report on the 1st Next Gen. Conversation: Albany @ Ruston 2024 held on the campus of Louisiana Tech University June 11-15, 2024. The 2nd Next Gen. Conversation will be held at Louisiana Tech University June 9-13, 2026. A planning meeting will be held in June 2025 at Louisiana Tech.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"16 4","pages":"399-400"},"PeriodicalIF":4.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special issue: Multiscale simulations of DNA from electrons to nucleosomes. 特刊:从电子到核小体的 DNA 多尺度模拟。
IF 4.9 Q1 BIOPHYSICS Pub Date : 2024-07-03 eCollection Date: 2024-06-01 DOI: 10.1007/s12551-024-01204-7
John H Maddocks, Pablo D Dans, Thomas H Cheatham, Sarah Harris, Charles Laughton, Modesto Orozco, Lois Pollack, Wilma K Olson

This editorial for Volume 16, Issue 3 of Biophysical Reviews highlights the three-dimensional structural and dynamic information encoded in DNA sequences and introduces the topics covered in this special issue of the journal on Multiscale Simulations of DNA from Electrons to Nucleosomes. Biophysical Reviews is the official journal of the International Union for Pure and Applied Biophysics (IUPAB 2024). The international scope of the articles in the issue exemplifies the goals of IUPAB to organize worldwide advancements, co-operation, communication, and education in biophysics.

生物物理评论》(Biophysical Reviews)第 16 卷第 3 期的这篇社论强调了 DNA 序列中编码的三维结构和动态信息,并介绍了本期特刊 "从电子到核小体的 DNA 多尺度模拟 "所涵盖的主题。生物物理评论》是国际纯粹与应用生物物理学联合会(IUPAB 2024)的官方期刊。本期文章的国际性体现了国际纯粹与应用生物物理学联合会组织全球生物物理学进步、合作、交流和教育的目标。
{"title":"Special issue: Multiscale simulations of DNA from electrons to nucleosomes.","authors":"John H Maddocks, Pablo D Dans, Thomas H Cheatham, Sarah Harris, Charles Laughton, Modesto Orozco, Lois Pollack, Wilma K Olson","doi":"10.1007/s12551-024-01204-7","DOIUrl":"10.1007/s12551-024-01204-7","url":null,"abstract":"<p><p>This editorial for Volume 16, Issue 3 of <i>Biophysical Reviews</i> highlights the three-dimensional structural and dynamic information encoded in DNA sequences and introduces the topics covered in this special issue of the journal on Multiscale Simulations of DNA from Electrons to Nucleosomes. <i>Biophysical Reviews</i> is the official journal of the International Union for Pure and Applied Biophysics (IUPAB 2024). The international scope of the articles in the issue exemplifies the goals of IUPAB to organize worldwide advancements, co-operation, communication, and education in biophysics.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"16 3","pages":"259-262"},"PeriodicalIF":4.9,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure-based prediction of protein-nucleic acid binding using graph neural networks. 利用图神经网络进行基于结构的蛋白质-核酸结合预测。
IF 4.9 Q1 BIOPHYSICS Pub Date : 2024-06-26 eCollection Date: 2024-06-01 DOI: 10.1007/s12551-024-01201-w
Jared M Sagendorf, Raktim Mitra, Jiawei Huang, Xiaojiang S Chen, Remo Rohs

Protein-nucleic acid (PNA) binding plays critical roles in the transcription, translation, regulation, and three-dimensional organization of the genome. Structural models of proteins bound to nucleic acids (NA) provide insights into the chemical, electrostatic, and geometric properties of the protein structure that give rise to NA binding but are scarce relative to models of unbound proteins. We developed a deep learning approach for predicting PNA binding given the unbound structure of a protein that we call PNAbind. Our method utilizes graph neural networks to encode the spatial distribution of physicochemical and geometric properties of protein structures that are predictive of NA binding. Using global physicochemical encodings, our models predict the overall binding function of a protein, and using local encodings, they predict the location of individual NA binding residues. Our models can discriminate between specificity for DNA or RNA binding, and we show that predictions made on computationally derived protein structures can be used to gain mechanistic understanding of chemical and structural features that determine NA recognition. Binding site predictions were validated against benchmark datasets, achieving AUROC scores in the range of 0.92-0.95. We applied our models to the HIV-1 restriction factor APOBEC3G and showed that our model predictions are consistent with and help explain experimental RNA binding data.

Supplementary information: The online version contains supplementary material available at 10.1007/s12551-024-01201-w.

蛋白质与核酸(PNA)的结合在基因组的转录、翻译、调控和三维组织中起着至关重要的作用。与核酸(NA)结合的蛋白质结构模型能让人深入了解导致核酸结合的蛋白质结构的化学、静电和几何特性,但相对于未结合的蛋白质模型来说,这种模型还很缺乏。我们开发了一种深度学习方法,用于根据蛋白质的非结合结构预测 PNA 结合,我们称之为 PNAbind。我们的方法利用图神经网络对蛋白质结构的物理化学和几何特性的空间分布进行编码,从而预测 NA 的结合。利用全局理化编码,我们的模型可以预测蛋白质的整体结合功能;利用局部编码,我们的模型可以预测单个 NA 结合残基的位置。我们的模型可以区分 DNA 或 RNA 结合的特异性,我们还展示了通过计算得出的蛋白质结构预测结果可用于从机理上理解决定 NA 识别的化学和结构特征。根据基准数据集对结合位点预测进行了验证,AUROC 得分在 0.92-0.95 之间。我们将模型应用于 HIV-1 限制因子 APOBEC3G,结果表明我们的模型预测与实验 RNA 结合数据一致,并有助于解释这些数据:在线版本包含补充材料,可查阅 10.1007/s12551-024-01201-w。
{"title":"Structure-based prediction of protein-nucleic acid binding using graph neural networks.","authors":"Jared M Sagendorf, Raktim Mitra, Jiawei Huang, Xiaojiang S Chen, Remo Rohs","doi":"10.1007/s12551-024-01201-w","DOIUrl":"10.1007/s12551-024-01201-w","url":null,"abstract":"<p><p>Protein-nucleic acid (PNA) binding plays critical roles in the transcription, translation, regulation, and three-dimensional organization of the genome. Structural models of proteins bound to nucleic acids (NA) provide insights into the chemical, electrostatic, and geometric properties of the protein structure that give rise to NA binding but are scarce relative to models of unbound proteins. We developed a deep learning approach for predicting PNA binding given the unbound structure of a protein that we call PNAbind. Our method utilizes graph neural networks to encode the spatial distribution of physicochemical and geometric properties of protein structures that are predictive of NA binding. Using global physicochemical encodings, our models predict the overall binding function of a protein, and using local encodings, they predict the location of individual NA binding residues. Our models can discriminate between specificity for DNA or RNA binding, and we show that predictions made on computationally derived protein structures can be used to gain mechanistic understanding of chemical and structural features that determine NA recognition. Binding site predictions were validated against benchmark datasets, achieving AUROC scores in the range of 0.92-0.95. We applied our models to the HIV-1 restriction factor APOBEC3G and showed that our model predictions are consistent with and help explain experimental RNA binding data.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12551-024-01201-w.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"16 3","pages":"297-314"},"PeriodicalIF":4.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427629/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA simulation benchmarks revealed with the accumulation of high-resolution structures. 随着高分辨率结构的积累而揭示的 DNA 模拟基准。
IF 4.9 Q1 BIOPHYSICS Pub Date : 2024-06-18 eCollection Date: 2024-06-01 DOI: 10.1007/s12551-024-01198-2
Wilma K Olson, Robert T Young, Luke Czapla

DNA carries more than the list of biochemical instructions that drive the basic functions of living systems. The sequence of base pairs includes a multitude of structural and energetic signals that determine the degree to which the long, threadlike molecule moves and how it responds to proteins and other molecules involved in its processing and packaging. The arrangements of successive base pairs in high-resolution protein-DNA crystal structures provide useful benchmarks for atomic-level simulations of double-helical DNA as well as information potentially useful in interpreting the properties of specific DNA sequences. The set of currently available structures has enough examples to characterize the conformational preferences of the DNA base-pair steps within the context of their immediate neighbors, i.e., in the context of tetramers, and reveals surprising effects of certain neighbors on local chain properties. The proteins in contact with DNA present various microenvironments that sense and/or induce the observed spatial forms. The cumulative buildup of amino-acid atoms in different protein-DNA complexes produces a binding cloud around the double helix with subtle sequence-dependent features. While the microenvironment presented by each protein to DNA is highly unique, the overall composition of amino-acid atoms within close range of DNA in a broad collection of structures is fairly uniform. The buildup of protein atoms of different types around the DNA provides new information for the improvement of nucleic acid force fields and fresh ideas for the exploration of the properties of DNA in solution.

DNA 所承载的不仅仅是驱动生命系统基本功能的一系列生化指令。碱基对序列包含了大量的结构和能量信号,这些信号决定了线状长分子的运动程度,以及它如何对参与其加工和包装的蛋白质和其他分子做出反应。高分辨率蛋白质-DNA 晶体结构中连续碱基对的排列为双螺旋 DNA 的原子级模拟提供了有用的基准,也为解释特定 DNA 序列的特性提供了潜在的有用信息。目前可用的一组结构有足够多的实例来描述 DNA 碱基对步骤在其近邻(即四聚体)范围内的构象偏好,并揭示了某些近邻对局部链特性的惊人影响。与 DNA 接触的蛋白质呈现出各种微环境,这些微环境能够感知和/或诱导观察到的空间形式。不同蛋白质-DNA 复合物中氨基酸原子的累积形成了双螺旋周围的结合云,这种结合云具有微妙的序列依赖性特征。虽然每种蛋白质与 DNA 之间的微环境都非常独特,但在广泛的结构集合中,DNA 近距离内氨基酸原子的整体组成却相当一致。DNA 周围不同类型蛋白质原子的堆积为改进核酸力场提供了新的信息,也为探索 DNA 在溶液中的特性提供了新的思路。
{"title":"DNA simulation benchmarks revealed with the accumulation of high-resolution structures.","authors":"Wilma K Olson, Robert T Young, Luke Czapla","doi":"10.1007/s12551-024-01198-2","DOIUrl":"10.1007/s12551-024-01198-2","url":null,"abstract":"<p><p>DNA carries more than the list of biochemical instructions that drive the basic functions of living systems. The sequence of base pairs includes a multitude of structural and energetic signals that determine the degree to which the long, threadlike molecule moves and how it responds to proteins and other molecules involved in its processing and packaging. The arrangements of successive base pairs in high-resolution protein-DNA crystal structures provide useful benchmarks for atomic-level simulations of double-helical DNA as well as information potentially useful in interpreting the properties of specific DNA sequences. The set of currently available structures has enough examples to characterize the conformational preferences of the DNA base-pair steps within the context of their immediate neighbors, i.e., in the context of tetramers, and reveals surprising effects of certain neighbors on local chain properties. The proteins in contact with DNA present various microenvironments that sense and/or induce the observed spatial forms. The cumulative buildup of amino-acid atoms in different protein-DNA complexes produces a binding cloud around the double helix with subtle sequence-dependent features. While the microenvironment presented by each protein to DNA is highly unique, the overall composition of amino-acid atoms within close range of DNA in a broad collection of structures is fairly uniform. The buildup of protein atoms of different types around the DNA provides new information for the improvement of nucleic acid force fields and fresh ideas for the exploration of the properties of DNA in solution.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"16 3","pages":"275-284"},"PeriodicalIF":4.9,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297015/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing RNA atomistic force fields via energy landscape explorations in implicit solvent. 通过隐含溶剂中的能量景观探索评估 RNA 原子力场
IF 4.9 Q1 BIOPHYSICS Pub Date : 2024-06-17 eCollection Date: 2024-06-01 DOI: 10.1007/s12551-024-01202-9
Konstantin Röder, Samuela Pasquali

Predicting the structure and dynamics of RNA molecules still proves challenging because of the relative scarcity of experimental RNA structures on which to train models and the very sensitive nature of RNA towards its environment. In the last decade, several atomistic force fields specifically designed for RNA have been proposed and are commonly used for simulations. However, it is not necessarily clear which force field is the most suitable for a given RNA molecule. In this contribution, we propose the use of the computational energy landscape framework to explore the energy landscape of RNA systems as it can bring complementary information to the more standard approaches of enhanced sampling simulations based on molecular dynamics. We apply the EL framework to the study of a small RNA pseudoknot, the Aquifex aeolicus tmRNA pseudoknot PK1, and we compare the results of five different RNA force fields currently available in the AMBER simulation software, in implicit solvent. With this computational approach, we can not only compare the predicted 'native' states for the different force fields, but the method enables us to study metastable states as well. As a result, our comparison not only looks at structural features of low energy folded structures, but provides insight into folding pathways and higher energy excited states, opening to the possibility of assessing the validity of force fields also based on kinetics and experiments providing information on metastable and unfolded states.

Supplementary information: The online version contains supplementary material available at 10.1007/s12551-024-01202-9.

由于可用于训练模型的实验 RNA 结构相对稀缺,而且 RNA 对其环境非常敏感,因此预测 RNA 分子的结构和动力学仍然具有挑战性。在过去十年中,已经提出了几种专门为 RNA 设计的原子力场,并普遍用于模拟。然而,对于特定的 RNA 分子,哪种力场最合适并不一定明确。在这篇论文中,我们建议使用计算能谱框架来探索 RNA 系统的能谱,因为它可以为基于分子动力学的增强采样模拟这种更标准的方法提供补充信息。我们将 EL 框架应用于研究一种小 RNA 伪结节--Aquifex aeolicus tmRNA 伪结节 PK1,并比较了 AMBER 模拟软件中目前可用的五种不同 RNA 力场在隐式溶剂中的结果。通过这种计算方法,我们不仅可以比较不同力场预测的 "原生 "状态,而且还能研究可迁移状态。因此,我们的比较不仅考察了低能折叠结构的特征,还深入了解了折叠途径和高能激发态,为评估力场的有效性提供了可能,同时也为动力学和实验提供了有关蜕变态和展开态的信息:在线版本包含补充材料,可查阅 10.1007/s12551-024-01202-9。
{"title":"Assessing RNA atomistic force fields via energy landscape explorations in implicit solvent.","authors":"Konstantin Röder, Samuela Pasquali","doi":"10.1007/s12551-024-01202-9","DOIUrl":"10.1007/s12551-024-01202-9","url":null,"abstract":"<p><p>Predicting the structure and dynamics of RNA molecules still proves challenging because of the relative scarcity of experimental RNA structures on which to train models and the very sensitive nature of RNA towards its environment. In the last decade, several atomistic force fields specifically designed for RNA have been proposed and are commonly used for simulations. However, it is not necessarily clear which force field is the most suitable for a given RNA molecule. In this contribution, we propose the use of the computational energy landscape framework to explore the energy landscape of RNA systems as it can bring complementary information to the more standard approaches of enhanced sampling simulations based on molecular dynamics. We apply the EL framework to the study of a small RNA pseudoknot, the <i>Aquifex aeolicus</i> tmRNA pseudoknot PK1, and we compare the results of five different RNA force fields currently available in the AMBER simulation software, in implicit solvent. With this computational approach, we can not only compare the predicted 'native' states for the different force fields, but the method enables us to study metastable states as well. As a result, our comparison not only looks at structural features of low energy folded structures, but provides insight into folding pathways and higher energy excited states, opening to the possibility of assessing the validity of force fields also based on kinetics and experiments providing information on metastable and unfolded states.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12551-024-01202-9.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"16 3","pages":"285-295"},"PeriodicalIF":4.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297004/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biophysical Reviews: a transition in the journal. 生物物理评论》:杂志的转型。
IF 4.9 Q1 BIOPHYSICS Pub Date : 2024-05-02 eCollection Date: 2024-04-01 DOI: 10.1007/s12551-024-01191-9
Damien Hall, Wilma K Olson

This Editorial for Volume 16 Issue 2 first describes the issue contents before describing some upcoming events within Biophysical Reviews and concludies with an announcement on the transition of Chief Editors thanks to the outgoing Chief Editor.

第 16 卷第 2 期的这篇社论首先介绍了本期的内容,然后介绍了《生物物理评论》即将开展的一些活动,最后宣布了主编交接的消息,并对即将离任的主编表示感谢。
{"title":"<i>Biophysical Reviews</i>: a transition in the journal.","authors":"Damien Hall, Wilma K Olson","doi":"10.1007/s12551-024-01191-9","DOIUrl":"10.1007/s12551-024-01191-9","url":null,"abstract":"<p><p>This Editorial for Volume 16 Issue 2 first describes the issue contents before describing some upcoming events within <i>Biophysical Reviews</i> and concludies with an announcement on the transition of Chief Editors thanks to the outgoing Chief Editor.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"16 2","pages":"141-143"},"PeriodicalIF":4.9,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11078897/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current analysis of cations substitution in the oxygen-evolving complex of photosystem II. 光系统 II 氧发生复合体中阳离子置换的电流分析。
Q1 BIOPHYSICS Pub Date : 2024-04-30 eCollection Date: 2024-04-01 DOI: 10.1007/s12551-024-01186-6
Boris Semin, Aleksey Loktyushkin, Elena Lovyagina

Water oxidation in photosystem II (PSII) is performed by the oxygen-evolving complex Mn4CaO5 which can be extracted from PSII and then reconstructed using exogenous cations Mn(II) and Ca2+. The binding efficiency of other cations to the Mn-binding sites in Mn-depleted PSII was investigated without any positive results. At the same time, a study of the Fe cations interaction with Mn-binding sites showed that it binds at a level comparable with the binding of Mn cations. Binding of Fe(II) cations first requires its light-dependent oxidation. In general, the interaction of Fe(II) with Mn-depleted PSII has a number of features similar to the two-quantum model of photoactivation of the complex with the release of oxygen. Interestingly, incubation of Ca-depleted PSII with Fe(II) cations under certain conditions is accompanied by the formation of a chimeric cluster Mn/Fe in the oxygen-evolving complex. PSII with the cluster 2Mn2Fe was found to be capable of water oxidation, but only to the H2O2 intermediate. However, the cluster 3Mn1Fe can oxidize water to O2 with an efficiency about 25% of the original in the absence of extrinsic proteins PsbQ and PsbP. In the presence of these proteins, the efficiency of O2 evolution can reach 80% of the original when adding exogenous Ca2+. In this review, we summarized information on the formation of chimeric Mn-Fe clusters in the oxygen-evolving complex. The data cited may be useful for detailing the mechanism of water oxidation.

光系统 II(PSII)中的水氧化作用是由氧发生复合物 Mn4CaO5 完成的,该复合物可以从 PSII 中提取,然后利用外源阳离子 Mn(II)和 Ca2+ 进行重建。对其他阳离子与缺锰的 PSII 中的锰结合位点的结合效率进行了研究,但没有得出任何积极的结果。同时,对铁阳离子与锰结合位点相互作用的研究表明,其结合水平与锰阳离子的结合水平相当。铁(II)阳离子的结合首先需要光的氧化作用。总的来说,Fe(II)与去锰的 PSII 的相互作用具有一些与复合物光激活释放氧的双量子模型相似的特征。有趣的是,在某些条件下,用 Fe(II)阳离子培养贫钙 PSII 会在氧发生复合物中形成 Mn/Fe 嵌合簇。研究发现,带有 2Mn2Fe 簇的 PSII 能够进行水氧化,但只能氧化成 H2O2 中间产物。然而,在没有外在蛋白 PsbQ 和 PsbP 的情况下,簇 3Mn1Fe 能将水氧化成 O2,效率约为原来的 25%。在有这些蛋白存在的情况下,加入外源 Ca2+ 时,O2 的进化效率可达到原来的 80%。在本综述中,我们总结了氧进化复合体中嵌合锰-铁簇形成的相关信息。所引用的数据可能有助于详细说明水氧化的机理。
{"title":"Current analysis of cations substitution in the oxygen-evolving complex of photosystem II.","authors":"Boris Semin, Aleksey Loktyushkin, Elena Lovyagina","doi":"10.1007/s12551-024-01186-6","DOIUrl":"10.1007/s12551-024-01186-6","url":null,"abstract":"<p><p>Water oxidation in photosystem II (PSII) is performed by the oxygen-evolving complex Mn<sub>4</sub>CaO<sub>5</sub> which can be extracted from PSII and then reconstructed using exogenous cations Mn(II) and Ca<sup>2+</sup>. The binding efficiency of other cations to the Mn-binding sites in Mn-depleted PSII was investigated without any positive results. At the same time, a study of the Fe cations interaction with Mn-binding sites showed that it binds at a level comparable with the binding of Mn cations. Binding of Fe(II) cations first requires its light-dependent oxidation. In general, the interaction of Fe(II) with Mn-depleted PSII has a number of features similar to the two-quantum model of photoactivation of the complex with the release of oxygen. Interestingly, incubation of Ca-depleted PSII with Fe(II) cations under certain conditions is accompanied by the formation of a chimeric cluster Mn/Fe in the oxygen-evolving complex. PSII with the cluster 2Mn2Fe was found to be capable of water oxidation, but only to the H<sub>2</sub>O<sub>2</sub> intermediate. However, the cluster 3Mn1Fe can oxidize water to O<sub>2</sub> with an efficiency about 25% of the original in the absence of extrinsic proteins PsbQ and PsbP. In the presence of these proteins, the efficiency of O<sub>2</sub> evolution can reach 80% of the original when adding exogenous Ca<sup>2+</sup>. In this review, we summarized information on the formation of chimeric Mn-Fe clusters in the oxygen-evolving complex. The data cited may be useful for detailing the mechanism of water oxidation.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"16 2","pages":"237-247"},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11078907/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biophysical reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1