首页 > 最新文献

BMC Medical Research Methodology最新文献

英文 中文
Privacy-preserving federated prediction of health outcomes using multi-center survey data. 使用多中心调查数据对健康结果进行隐私保护联合预测。
IF 3.4 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2026-02-04 DOI: 10.1186/s12874-026-02785-5
Supratim Das, Mahdie Rafiei, Paula T Kammer, Søren T Skou, Dorte T Grønne, Ewa M Roos, André Hajek, Hans-Helmut König, Md Shihab Ullah, Niklas Probul, Jan Baumbach, Linda Baumbach
{"title":"Privacy-preserving federated prediction of health outcomes using multi-center survey data.","authors":"Supratim Das, Mahdie Rafiei, Paula T Kammer, Søren T Skou, Dorte T Grønne, Ewa M Roos, André Hajek, Hans-Helmut König, Md Shihab Ullah, Niklas Probul, Jan Baumbach, Linda Baumbach","doi":"10.1186/s12874-026-02785-5","DOIUrl":"https://doi.org/10.1186/s12874-026-02785-5","url":null,"abstract":"","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146117877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning performance for a small dataset: random oversampling improves data imbalances and fairness. 小数据集的机器学习性能:随机过采样改善数据不平衡和公平性。
IF 3.4 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2026-02-04 DOI: 10.1186/s12874-026-02779-3
Lin Wang, Elliott Shi, Brett Meyers, Pavlos Vlachos, James Tcheng, Scott Denardo
{"title":"Machine learning performance for a small dataset: random oversampling improves data imbalances and fairness.","authors":"Lin Wang, Elliott Shi, Brett Meyers, Pavlos Vlachos, James Tcheng, Scott Denardo","doi":"10.1186/s12874-026-02779-3","DOIUrl":"https://doi.org/10.1186/s12874-026-02779-3","url":null,"abstract":"","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146117901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ensuring participant safety in research studies evaluating digital mental health interventions delivered remotely - insights from the PIPA trial of an online parenting intervention to prevent affective disorders in high-risk adolescents. 在评估远程提供的数字心理健康干预措施的研究中确保参与者的安全——PIPA试验对预防高危青少年情感障碍的在线育儿干预的见解。
IF 3.4 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2026-02-03 DOI: 10.1186/s12874-026-02764-w
Jason Madan, Nicole De Valliere, Marie B H Yap, Max Birchwood, George Bouliotis, Mairead Cardamone-Breen, Kamran Khan, Glenn Melvin, Felix Michelet, Patrick Olivier, Paul Patterson, Stavros Petrou, Kerry Raynes, Sarah Stewart-Brown, Rowena Williams, Andrew Thompson
{"title":"Ensuring participant safety in research studies evaluating digital mental health interventions delivered remotely - insights from the PIPA trial of an online parenting intervention to prevent affective disorders in high-risk adolescents.","authors":"Jason Madan, Nicole De Valliere, Marie B H Yap, Max Birchwood, George Bouliotis, Mairead Cardamone-Breen, Kamran Khan, Glenn Melvin, Felix Michelet, Patrick Olivier, Paul Patterson, Stavros Petrou, Kerry Raynes, Sarah Stewart-Brown, Rowena Williams, Andrew Thompson","doi":"10.1186/s12874-026-02764-w","DOIUrl":"https://doi.org/10.1186/s12874-026-02764-w","url":null,"abstract":"","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146112502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of recurrent ischemic stroke using machine learning from real-world data. 利用现实世界数据的机器学习预测复发性缺血性中风。
IF 3.4 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2026-02-03 DOI: 10.1186/s12874-026-02778-4
Noor Haidar Kadum Alsalman, Amani Al-Ghraibah, Siti Maisharah Sheikh Ghadzi, Irene Looi, Norsima Nazifah Sidek, Zariah Abdul Aziz, Sabariah Noor Harun

Background: Recurrent ischemic stroke (RIS) is a significant challenge in Malaysia, affecting approximately 33% of patients. However, studies using artificial intelligence (AI) to predict this event using real-world data remain very limited. This study aimed to develop and evaluate Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and RUSBoost models for predicting recurrent ischemic stroke using real-world data from the Malaysian National Neurology Registry.

Methods: We established a retrospective study of 7,697 enrolled patients registered in the National Neurology Registry in Malaysia (2009-2016). We developed and evaluated several machine learning models, including SVM, KNN, and RUSBoost, to predict recurrent RIS. The Synthetic Minority Over-Sampling Technique (SMOTE) was applied to the training data to handle the imbalanced data. Ten-fold cross-validation was applied to assess the robustness and accuracy of the models, and performance was evaluated using criteria of accuracy, sensitivity, specificity, PPV, and area under the ROC curve (AUC).

Results: Among the evaluated machine learning models, RUSBoost demonstrated the strongest and most clinically relevant performance when assessed on validation (test) folds under stratified ten-fold cross-validation, achieving an AUROC of 0.943, sensitivity of 86.5%, and a favourable balance between sensitivity and PPV of 40.2% on the original imbalanced dataset. Although the application of SMOTE during training improved model discrimination for RUSBoost (training-fold AUROC = 0.986). The SHAP analysis showed that age, race, glucose level, hypertension, hyperlipidemia, and duration of diabetes were the most significant factors linked to an increased risk of recurrent ischemic stroke.

Conclusion: This study demonstrates that applying machine learning models on real-world clinical data is a promising tool for predicting the risk of ischemic stroke recurrence. RUSBoost emerged as the most reliable and generalisable model for clinical risk prediction, proved effective in improving prediction accuracy and identifying patients at highest risk. While SMOTE enhanced model learning during training. The findings highlight the importance of integrating AI technologies into clinical practice to support early treatment decisions and enhance preventive interventions, opening new pathways for better patient care and reducing the health burden from recurrent stroke.

背景:复发性缺血性卒中(RIS)在马来西亚是一个重大挑战,影响了大约33%的患者。然而,使用人工智能(AI)利用真实世界的数据预测这一事件的研究仍然非常有限。本研究旨在开发和评估支持向量机(SVM)、k近邻(KNN)和RUSBoost模型,利用马来西亚国家神经病学登记处的真实数据预测复发性缺血性卒中。方法:我们建立了一项回顾性研究,纳入了在马来西亚国家神经病学登记处登记的7,697例患者(2009-2016)。我们开发并评估了几种机器学习模型,包括SVM、KNN和RUSBoost,以预测复发性RIS。对训练数据采用了合成少数派过采样技术(SMOTE)来处理不平衡数据。采用十倍交叉验证来评估模型的稳健性和准确性,并以准确性、敏感性、特异性、PPV和ROC曲线下面积(AUC)为标准评估模型的性能。结果:在评估的机器学习模型中,RUSBoost在分层十倍交叉验证的验证(测试)层面上表现出最强和最具临床相关性的性能,AUROC为0.943,灵敏度为86.5%,在原始不平衡数据集上灵敏度和PPV之间的良好平衡为40.2%。尽管在训练过程中使用SMOTE改进了RUSBoost的模型判别(训练褶AUROC = 0.986)。SHAP分析显示,年龄、种族、血糖水平、高血压、高脂血症和糖尿病病程是与缺血性卒中复发风险增加相关的最重要因素。结论:本研究表明,将机器学习模型应用于现实世界的临床数据是预测缺血性卒中复发风险的一种很有前途的工具。RUSBoost是临床风险预测最可靠、最普遍的模型,在提高预测准确性和识别高风险患者方面被证明是有效的。而SMOTE在训练过程中加强了模型学习。研究结果强调了将人工智能技术整合到临床实践中的重要性,以支持早期治疗决策和加强预防性干预,为更好的患者护理开辟新的途径,并减少复发性卒中带来的健康负担。
{"title":"Prediction of recurrent ischemic stroke using machine learning from real-world data.","authors":"Noor Haidar Kadum Alsalman, Amani Al-Ghraibah, Siti Maisharah Sheikh Ghadzi, Irene Looi, Norsima Nazifah Sidek, Zariah Abdul Aziz, Sabariah Noor Harun","doi":"10.1186/s12874-026-02778-4","DOIUrl":"https://doi.org/10.1186/s12874-026-02778-4","url":null,"abstract":"<p><strong>Background: </strong>Recurrent ischemic stroke (RIS) is a significant challenge in Malaysia, affecting approximately 33% of patients. However, studies using artificial intelligence (AI) to predict this event using real-world data remain very limited. This study aimed to develop and evaluate Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and RUSBoost models for predicting recurrent ischemic stroke using real-world data from the Malaysian National Neurology Registry.</p><p><strong>Methods: </strong>We established a retrospective study of 7,697 enrolled patients registered in the National Neurology Registry in Malaysia (2009-2016). We developed and evaluated several machine learning models, including SVM, KNN, and RUSBoost, to predict recurrent RIS. The Synthetic Minority Over-Sampling Technique (SMOTE) was applied to the training data to handle the imbalanced data. Ten-fold cross-validation was applied to assess the robustness and accuracy of the models, and performance was evaluated using criteria of accuracy, sensitivity, specificity, PPV, and area under the ROC curve (AUC).</p><p><strong>Results: </strong>Among the evaluated machine learning models, RUSBoost demonstrated the strongest and most clinically relevant performance when assessed on validation (test) folds under stratified ten-fold cross-validation, achieving an AUROC of 0.943, sensitivity of 86.5%, and a favourable balance between sensitivity and PPV of 40.2% on the original imbalanced dataset. Although the application of SMOTE during training improved model discrimination for RUSBoost (training-fold AUROC = 0.986). The SHAP analysis showed that age, race, glucose level, hypertension, hyperlipidemia, and duration of diabetes were the most significant factors linked to an increased risk of recurrent ischemic stroke.</p><p><strong>Conclusion: </strong>This study demonstrates that applying machine learning models on real-world clinical data is a promising tool for predicting the risk of ischemic stroke recurrence. RUSBoost emerged as the most reliable and generalisable model for clinical risk prediction, proved effective in improving prediction accuracy and identifying patients at highest risk. While SMOTE enhanced model learning during training. The findings highlight the importance of integrating AI technologies into clinical practice to support early treatment decisions and enhance preventive interventions, opening new pathways for better patient care and reducing the health burden from recurrent stroke.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146112441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-level non-regular fractional factorial designs for public health studies. 公共卫生研究的双水平非规则分数因子设计。
IF 3.4 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2026-02-02 DOI: 10.1186/s12874-026-02784-6
Ming-Chung Chang, Weng Kee Wong

This paper demonstrates the advantages of two-level non-regular fractional factorial designs for efficiently identifying influential factors in public health studies. We show how to construct smaller non-regular designs that can reliably estimate main effects and two-factor interactions in multi-factor studies, which are common in public health research. After some background information on non-regular designs and orthogonal arrays, we use real applications to support our claim. The applications include a behavioral intervention study (location/dates unreported), a drug combination trial (UCLA Micro Systems Laboratories, dates unreported), and a non-pharmaceutical Intervention study for influenza (agent-based simulation, dates unreported). We also provide resources on how to construct an appropriate non-regular design for a given problem. Our results from the three case studies show that smaller non-regular designs can identify key factors as reliably as the larger regular designs and they can require as much as 25% fewer runs, thereby reducing the study costs without sacrificing statistical precision in the inference The conclusion is that two-level regular designs are commonly used in public health studies but two-level non-regular designs can improve efficiency in screening multiple environmental, social, and behavioral factors, conserve resources and expedite discovery of evidence-based intervention effects. More specifically, two-level non-regular fractional factorial designs are more practical as they can be more flexible, cost efficient and provide just as reliable estimates as regular full or fractional factorial designs for a public health study with many interacting factors.

本文论证了两水平非规则分数因子设计在公共卫生研究中有效识别影响因素的优势。我们展示了如何构建较小的非规则设计,可以可靠地估计多因素研究中的主效应和双因素相互作用,这在公共卫生研究中很常见。在了解了不规则设计和正交阵列的一些背景信息后,我们使用实际应用来支持我们的主张。这些申请包括一项行为干预研究(地点/日期未报告)、一项药物联合试验(加州大学洛杉矶分校微系统实验室,日期未报告)和一项流感非药物干预研究(基于药物的模拟,日期未报告)。我们还提供了有关如何为给定问题构建适当的非规则设计的资源。我们从三个案例研究中得出的结果表明,较小的非规则设计可以像较大的规则设计一样可靠地识别关键因素,并且它们可以减少多达25%的运行,从而在不牺牲推断统计精度的情况下降低研究成本。结论是,双水平规则设计通常用于公共卫生研究,但双水平非规则设计可以提高筛选多种环境,社会,行为因素,节约资源,加快循证干预效果的发现。更具体地说,两级非规则分数因子设计更实用,因为它们更灵活,成本效益更高,并且为具有许多相互作用因素的公共卫生研究提供与常规全因子或分数因子设计一样可靠的估计。
{"title":"Two-level non-regular fractional factorial designs for public health studies.","authors":"Ming-Chung Chang, Weng Kee Wong","doi":"10.1186/s12874-026-02784-6","DOIUrl":"https://doi.org/10.1186/s12874-026-02784-6","url":null,"abstract":"<p><p>This paper demonstrates the advantages of two-level non-regular fractional factorial designs for efficiently identifying influential factors in public health studies. We show how to construct smaller non-regular designs that can reliably estimate main effects and two-factor interactions in multi-factor studies, which are common in public health research. After some background information on non-regular designs and orthogonal arrays, we use real applications to support our claim. The applications include a behavioral intervention study (location/dates unreported), a drug combination trial (UCLA Micro Systems Laboratories, dates unreported), and a non-pharmaceutical Intervention study for influenza (agent-based simulation, dates unreported). We also provide resources on how to construct an appropriate non-regular design for a given problem. Our results from the three case studies show that smaller non-regular designs can identify key factors as reliably as the larger regular designs and they can require as much as 25% fewer runs, thereby reducing the study costs without sacrificing statistical precision in the inference The conclusion is that two-level regular designs are commonly used in public health studies but two-level non-regular designs can improve efficiency in screening multiple environmental, social, and behavioral factors, conserve resources and expedite discovery of evidence-based intervention effects. More specifically, two-level non-regular fractional factorial designs are more practical as they can be more flexible, cost efficient and provide just as reliable estimates as regular full or fractional factorial designs for a public health study with many interacting factors.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146104099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Where did I leave my systematic review protocol, and what should it contain regarding Trial Sequential Analysis? 我的系统评价方案写在哪里了?关于试验序列分析,它应该包含什么内容?
IF 3.4 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2026-01-29 DOI: 10.1186/s12874-026-02775-7
Mark Aninakwah Asante, Vibeke Wagner, Sigurlaug Hanna Hafliðadóttir, Buddheera Wmb Kumburegama, Elisabeth Buck Pedersen, Johanne Pereira Ribeiro, Julie Perrine Schaug, Joachim Birch Milan, Markus Harboe Olsen, Christina Madsen, Christian Gunge Riberholt, Christian Gluud
{"title":"Where did I leave my systematic review protocol, and what should it contain regarding Trial Sequential Analysis?","authors":"Mark Aninakwah Asante, Vibeke Wagner, Sigurlaug Hanna Hafliðadóttir, Buddheera Wmb Kumburegama, Elisabeth Buck Pedersen, Johanne Pereira Ribeiro, Julie Perrine Schaug, Joachim Birch Milan, Markus Harboe Olsen, Christina Madsen, Christian Gunge Riberholt, Christian Gluud","doi":"10.1186/s12874-026-02775-7","DOIUrl":"https://doi.org/10.1186/s12874-026-02775-7","url":null,"abstract":"","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2026-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146083991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mediation analysis to identify causes of racial disparity in health outcomes: a comparison of model-based and outcome-based approaches. 确定健康结果中种族差异原因的中介分析:基于模型和基于结果的方法的比较。
IF 3.4 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2026-01-29 DOI: 10.1186/s12874-026-02776-6
James A Thompson
{"title":"Mediation analysis to identify causes of racial disparity in health outcomes: a comparison of model-based and outcome-based approaches.","authors":"James A Thompson","doi":"10.1186/s12874-026-02776-6","DOIUrl":"https://doi.org/10.1186/s12874-026-02776-6","url":null,"abstract":"","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2026-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146084016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction models for caesarean section following induction of labour: a systematic review of methodology and reporting quality. 引产后剖宫产的预测模型:方法和报告质量的系统回顾。
IF 3.4 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2026-01-27 DOI: 10.1186/s12874-026-02767-7
Yanan Hu, Xin Zhang, Swapna Gokhale, Valerie Slavin, Joanne Enticott, Emily Callander
{"title":"Prediction models for caesarean section following induction of labour: a systematic review of methodology and reporting quality.","authors":"Yanan Hu, Xin Zhang, Swapna Gokhale, Valerie Slavin, Joanne Enticott, Emily Callander","doi":"10.1186/s12874-026-02767-7","DOIUrl":"https://doi.org/10.1186/s12874-026-02767-7","url":null,"abstract":"","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146060045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence contributions in component network meta-analysis from the shortest-path approach. 从最短路径方法对组件网络元分析的证据贡献。
IF 3.4 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2026-01-26 DOI: 10.1186/s12874-026-02766-8
Qinbo Yang, Yiwen Shen, Yunhe Mao, Sheyu Li
{"title":"Evidence contributions in component network meta-analysis from the shortest-path approach.","authors":"Qinbo Yang, Yiwen Shen, Yunhe Mao, Sheyu Li","doi":"10.1186/s12874-026-02766-8","DOIUrl":"https://doi.org/10.1186/s12874-026-02766-8","url":null,"abstract":"","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146050311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond scalar metrics: functional data analysis of postprandial continuous glucose monitoring in the AEGIS study. 超越标量指标:AEGIS研究中餐后连续血糖监测的功能数据分析。
IF 3.4 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2026-01-24 DOI: 10.1186/s12874-025-02748-2
Marcos Matabuena, Joseph Sartini, Francisco Gude
{"title":"Beyond scalar metrics: functional data analysis of postprandial continuous glucose monitoring in the AEGIS study.","authors":"Marcos Matabuena, Joseph Sartini, Francisco Gude","doi":"10.1186/s12874-025-02748-2","DOIUrl":"10.1186/s12874-025-02748-2","url":null,"abstract":"","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2026-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146043752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
BMC Medical Research Methodology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1