Pub Date : 2023-06-27DOI: 10.1186/s12862-023-02132-y
Dan Sun, Gajaba Ellepola, Jayampathi Herath, Madhava Meegaskumbura
Background: Climate affects the thermal adaptation and distribution of hosts, and drives the spread of Chytridiomycosis-a keratin-associated infectious disease of amphibians caused by the sister pathogens Batrachochytrium dendrobatidi (Bd) and B. salamandrivorans (Bsal). We focus on their climate-pathogen relationships in Eurasia, the only region where their geographical distributions overlap. Eurasia harbours invaded and native areas of both pathogens and the natural habitats where they co-exist, making it an ideal region to examine their environmental niche correlations. Our understanding of how climate change will affect their distribution is broadened by the differences in climate correlates and niche characteristics between Bd and Bsal in Asia and Europe. This knowledge has potential conservation implications, informing future spread of the disease in different regions.
Results: We quantified the environmental niche overlap between Bd and Bsal in Eurasia using niche analyses. Results revealed partial overlap in the niche with a unique 4% of non-overlapping values for Bsal, suggesting segregation along certain climate axes. Bd tolerates higher temperature fluctuations, while Bsal requires more stable, lower temperature and wetter conditions. Projections of their Realized Climatic Niches (RCNs) to future conditions show a larger expansion of suitable ranges (SRs) for Bd compared to Bsal in both Asia and Europe, with their centroids shifting in different directions. Notably, both pathogens' highly suitable areas in Asia are expected to shrink significantly, especially under the extreme climate scenarios. In Europe, they are expected to expand significantly.
Conclusions: Climate change will impact or increase disease risk to amphibian hosts, particularly in Europe. Given the shared niche space of the two pathogens across available climate gradients, as has already been witnessed in Eurasia with an increased range expansion and niche overlap due to climate change, we expect that regions where Bsal is currently absent but salamanders are present, and where Bd is already prevalent, may be conducive for the spread of Bsal.
{"title":"The two chytrid pathogens of amphibians in Eurasia-climatic niches and future expansion.","authors":"Dan Sun, Gajaba Ellepola, Jayampathi Herath, Madhava Meegaskumbura","doi":"10.1186/s12862-023-02132-y","DOIUrl":"https://doi.org/10.1186/s12862-023-02132-y","url":null,"abstract":"<p><strong>Background: </strong>Climate affects the thermal adaptation and distribution of hosts, and drives the spread of Chytridiomycosis-a keratin-associated infectious disease of amphibians caused by the sister pathogens Batrachochytrium dendrobatidi (Bd) and B. salamandrivorans (Bsal). We focus on their climate-pathogen relationships in Eurasia, the only region where their geographical distributions overlap. Eurasia harbours invaded and native areas of both pathogens and the natural habitats where they co-exist, making it an ideal region to examine their environmental niche correlations. Our understanding of how climate change will affect their distribution is broadened by the differences in climate correlates and niche characteristics between Bd and Bsal in Asia and Europe. This knowledge has potential conservation implications, informing future spread of the disease in different regions.</p><p><strong>Results: </strong>We quantified the environmental niche overlap between Bd and Bsal in Eurasia using niche analyses. Results revealed partial overlap in the niche with a unique 4% of non-overlapping values for Bsal, suggesting segregation along certain climate axes. Bd tolerates higher temperature fluctuations, while Bsal requires more stable, lower temperature and wetter conditions. Projections of their Realized Climatic Niches (RCNs) to future conditions show a larger expansion of suitable ranges (SRs) for Bd compared to Bsal in both Asia and Europe, with their centroids shifting in different directions. Notably, both pathogens' highly suitable areas in Asia are expected to shrink significantly, especially under the extreme climate scenarios. In Europe, they are expected to expand significantly.</p><p><strong>Conclusions: </strong>Climate change will impact or increase disease risk to amphibian hosts, particularly in Europe. Given the shared niche space of the two pathogens across available climate gradients, as has already been witnessed in Eurasia with an increased range expansion and niche overlap due to climate change, we expect that regions where Bsal is currently absent but salamanders are present, and where Bd is already prevalent, may be conducive for the spread of Bsal.</p>","PeriodicalId":9127,"journal":{"name":"BMC Ecology and Evolution","volume":"23 1","pages":"26"},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10102997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-24DOI: 10.1186/s12862-023-02135-9
Jamie Winternitz, Nayden Chakarov, Tony Rinaud, Meinolf Ottensmann, Oliver Krüger
Background: The major histocompatibility complex (MHC), which encodes molecules that recognize various pathogens and parasites and initiates the adaptive immune response in vertebrates, is renowned for its exceptional polymorphism and is a model of adaptive gene evolution. In birds, the number of MHC genes and sequence diversity varies greatly among taxa, believed due to evolutionary history and differential selection pressures. Earlier characterization studies and recent comparative studies suggest that non-passerine species have relatively few MHC gene copies compared to passerines. Additionally, comparative studies that have looked at partial MHC sequences have speculated that non-passerines have opposite patterns of selection on MHC class I (MHC-I) and class II (MHC-II) loci than passerines: namely, greater sequence diversity and signals of selection on MHC-II than MHC-I. However, new sequencing technology is revealing much greater MHC variation than previously expected while also facilitating full sequence variant detection directly from genomic data. Our study aims to take advantage of high-throughput sequencing methods to fully characterize both classes and domains of MHC of a non-passerine bird of prey, the common buzzard (Buteo buteo), to test predictions of MHC variation and differential selection on MHC classes.
Results: Using genetic, genomic, and transcriptomic high-throughput sequencing data, we established common buzzards have at least three loci that produce functional alleles at both MHC classes. In total, we characterize 91 alleles from 113 common buzzard chicks for MHC-I exon 3 and 41 alleles from 125 chicks for MHC-IIB exon 2. Among these alleles, we found greater sequence polymorphism and stronger diversifying selection at MHC-IIB exon 2 than MHC-I exon 3, suggesting differential selection pressures on MHC classes. However, upon further investigation of the entire peptide-binding groove by including genomic data from MHC-I exon 2 and MHC-IIA exon 2, this turned out to be false. MHC-I exon 2 was as polymorphic as MHC-IIB exon 2 and MHC-IIA exon 2 was essentially invariant. Thus, comparisons between MHC-I and MHC-II that included both domains of the peptide-binding groove showed no differences in polymorphism nor diversifying selection between the classes. Nevertheless, selection analysis indicates balancing selection has been acting on common buzzard MHC and phylogenetic inference revealed that trans-species polymorphism is present between common buzzards and species separated for over 33 million years for class I and class II.
Conclusions: We characterize and confirm the functionality of unexpectedly high copy number and allelic diversity in both MHC classes of a bird of prey. While balancing selection is acting on both classes, there is no evidence of differential selection pressure on MHC classes in common buzzards and this result may hold more generally once
{"title":"High functional allelic diversity and copy number in both MHC classes in the common buzzard.","authors":"Jamie Winternitz, Nayden Chakarov, Tony Rinaud, Meinolf Ottensmann, Oliver Krüger","doi":"10.1186/s12862-023-02135-9","DOIUrl":"10.1186/s12862-023-02135-9","url":null,"abstract":"<p><strong>Background: </strong>The major histocompatibility complex (MHC), which encodes molecules that recognize various pathogens and parasites and initiates the adaptive immune response in vertebrates, is renowned for its exceptional polymorphism and is a model of adaptive gene evolution. In birds, the number of MHC genes and sequence diversity varies greatly among taxa, believed due to evolutionary history and differential selection pressures. Earlier characterization studies and recent comparative studies suggest that non-passerine species have relatively few MHC gene copies compared to passerines. Additionally, comparative studies that have looked at partial MHC sequences have speculated that non-passerines have opposite patterns of selection on MHC class I (MHC-I) and class II (MHC-II) loci than passerines: namely, greater sequence diversity and signals of selection on MHC-II than MHC-I. However, new sequencing technology is revealing much greater MHC variation than previously expected while also facilitating full sequence variant detection directly from genomic data. Our study aims to take advantage of high-throughput sequencing methods to fully characterize both classes and domains of MHC of a non-passerine bird of prey, the common buzzard (Buteo buteo), to test predictions of MHC variation and differential selection on MHC classes.</p><p><strong>Results: </strong>Using genetic, genomic, and transcriptomic high-throughput sequencing data, we established common buzzards have at least three loci that produce functional alleles at both MHC classes. In total, we characterize 91 alleles from 113 common buzzard chicks for MHC-I exon 3 and 41 alleles from 125 chicks for MHC-IIB exon 2. Among these alleles, we found greater sequence polymorphism and stronger diversifying selection at MHC-IIB exon 2 than MHC-I exon 3, suggesting differential selection pressures on MHC classes. However, upon further investigation of the entire peptide-binding groove by including genomic data from MHC-I exon 2 and MHC-IIA exon 2, this turned out to be false. MHC-I exon 2 was as polymorphic as MHC-IIB exon 2 and MHC-IIA exon 2 was essentially invariant. Thus, comparisons between MHC-I and MHC-II that included both domains of the peptide-binding groove showed no differences in polymorphism nor diversifying selection between the classes. Nevertheless, selection analysis indicates balancing selection has been acting on common buzzard MHC and phylogenetic inference revealed that trans-species polymorphism is present between common buzzards and species separated for over 33 million years for class I and class II.</p><p><strong>Conclusions: </strong>We characterize and confirm the functionality of unexpectedly high copy number and allelic diversity in both MHC classes of a bird of prey. While balancing selection is acting on both classes, there is no evidence of differential selection pressure on MHC classes in common buzzards and this result may hold more generally once","PeriodicalId":9127,"journal":{"name":"BMC Ecology and Evolution","volume":"23 1","pages":"24"},"PeriodicalIF":0.0,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290333/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9767778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1186/s12862-023-02128-8
Olaf R P Bininda-Emonds
{"title":"Correction: 18S rRNA variability maps reveal three highly divergent, conserved motifs within Rotifera.","authors":"Olaf R P Bininda-Emonds","doi":"10.1186/s12862-023-02128-8","DOIUrl":"https://doi.org/10.1186/s12862-023-02128-8","url":null,"abstract":"","PeriodicalId":9127,"journal":{"name":"BMC Ecology and Evolution","volume":"23 1","pages":"23"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9923187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1186/s12862-023-02114-0
Vaughn Holmes, Jacob Aman, Geneva York, Michael T Kinnison
{"title":"Correction: Environmental DNA detects Spawning Habitat of an ephemeral migrant fish (Anadromous Rainbow Smelt: Osmerus mordax).","authors":"Vaughn Holmes, Jacob Aman, Geneva York, Michael T Kinnison","doi":"10.1186/s12862-023-02114-0","DOIUrl":"https://doi.org/10.1186/s12862-023-02114-0","url":null,"abstract":"","PeriodicalId":9127,"journal":{"name":"BMC Ecology and Evolution","volume":"23 1","pages":"22"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233883/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9923188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-25DOI: 10.1186/s12862-023-02122-0
Mridula Nandakumar, Max Lundberg, Fredric Carlsson, Lars Råberg
Background: Selection pressure exerted by pathogens can influence patterns of genetic diversity in the host. In the immune system especially, numerous genes encode proteins involved in antagonistic interactions with pathogens, paving the way for coevolution that results in increased genetic diversity as a consequence of balancing selection. The complement system is a key component of innate immunity. Many complement proteins interact directly with pathogens, either by recognising pathogen molecules for complement activation, or by serving as targets of pathogen immune evasion mechanisms. Complement genes can therefore be expected to be important targets of pathogen-mediated balancing selection, but analyses of such selection on this part of the immune system have been limited.
Results: Using a population sample of whole-genome resequencing data from wild bank voles (n = 31), we estimated the extent of genetic diversity and tested for signatures of balancing selection in multiple complement genes (n = 44). Complement genes showed higher values of standardised β (a statistic expected to be high under balancing selection) than the genome-wide average of protein coding genes. One complement gene, FCNA, a pattern recognition molecule that interacts directly with pathogens, was found to have a signature of balancing selection, as indicated by the Hudson-Kreitman-Aguadé test (HKA) test. Scans for localised signatures of balancing selection in this gene indicated that the target of balancing selection was found in exonic regions involved in ligand binding.
Conclusion: The present study adds to the growing evidence that balancing selection may be an important evolutionary force on components of the innate immune system. The identified target in the complement system typifies the expectation that balancing selection acts on genes encoding proteins involved in direct interactions with pathogens.
{"title":"Balancing selection on the complement system of a wild rodent.","authors":"Mridula Nandakumar, Max Lundberg, Fredric Carlsson, Lars Råberg","doi":"10.1186/s12862-023-02122-0","DOIUrl":"https://doi.org/10.1186/s12862-023-02122-0","url":null,"abstract":"<p><strong>Background: </strong>Selection pressure exerted by pathogens can influence patterns of genetic diversity in the host. In the immune system especially, numerous genes encode proteins involved in antagonistic interactions with pathogens, paving the way for coevolution that results in increased genetic diversity as a consequence of balancing selection. The complement system is a key component of innate immunity. Many complement proteins interact directly with pathogens, either by recognising pathogen molecules for complement activation, or by serving as targets of pathogen immune evasion mechanisms. Complement genes can therefore be expected to be important targets of pathogen-mediated balancing selection, but analyses of such selection on this part of the immune system have been limited.</p><p><strong>Results: </strong>Using a population sample of whole-genome resequencing data from wild bank voles (n = 31), we estimated the extent of genetic diversity and tested for signatures of balancing selection in multiple complement genes (n = 44). Complement genes showed higher values of standardised β (a statistic expected to be high under balancing selection) than the genome-wide average of protein coding genes. One complement gene, FCNA, a pattern recognition molecule that interacts directly with pathogens, was found to have a signature of balancing selection, as indicated by the Hudson-Kreitman-Aguadé test (HKA) test. Scans for localised signatures of balancing selection in this gene indicated that the target of balancing selection was found in exonic regions involved in ligand binding.</p><p><strong>Conclusion: </strong>The present study adds to the growing evidence that balancing selection may be an important evolutionary force on components of the innate immune system. The identified target in the complement system typifies the expectation that balancing selection acts on genes encoding proteins involved in direct interactions with pathogens.</p>","PeriodicalId":9127,"journal":{"name":"BMC Ecology and Evolution","volume":"23 1","pages":"21"},"PeriodicalIF":0.0,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214634/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9550422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-24DOI: 10.1186/s12862-023-02129-7
Caroline S Carneiro, Jorian D Hapeman, Aurora M Nedelcu
Background: Despite intensive research, cancer remains a major health problem. The difficulties in treating cancer reflect the complex nature of this disease, including high levels of heterogeneity within tumours. Intra-tumour heterogeneity creates the conditions for inter-clonal competition and selection, which could result in selective sweeps and a reduction in levels of heterogeneity. However, in addition to competing, cancer clones can also cooperate with each other, and the positive effects of these interactions on the fitness of clones could actually contribute to maintaining the heterogeneity of tumours. Consequently, understanding the evolutionary mechanisms and pathways involved in such activities is of great significance for cancer treatment. This is particularly relevant for metastasis (i.e., tumor cell migration, invasion, dispersal and dissemination), which is the most lethal phase during cancer progression. To explore if and how genetically distant clones can cooperate during migration and invasion, this study used three distinct cancer cell lines with different metastatic potentials.
Results: We found that (i) the conditioned media from two invasive lines (breast and lung) increased the migration and invasion potential of a poorly metastatic line (breast), and (ii) this inter-clonal cooperative interaction involved the TGF-β1 signalling pathway. Furthermore, when the less aggressive line was co-cultured with the highly metastatic breast line, the invasive potential of both lines was enhanced, and this outcome was dependent on the co-option (through TGF-β1 autocrine-paracrine signalling) of the weakly metastatic clone into expressing an enhanced malignant phenotype that benefited both clones (i.e., a "help me help you" strategy).
Conclusions: Based on our findings, we propose a model in which crosstalk, co-option, and co-dependency can facilitate the evolution of synergistic cooperative interactions between genetically distant clones. Specifically, we suggest that synergistic cooperative interactions can easily emerge, regardless of the degree of overall genetic/genealogical relatedness, via crosstalk involving metastatic clones able to constitutively secrete molecules that induce and maintain their own malignant state (producer-responder clones) and clones that have the ability to respond to those signals (responder clones) and express a synergistic metastatic behaviour. Taking into account the lack of therapies that directly affect the metastatic process, interfering with such cooperative interactions during the early steps in the metastatic cascade could provide additional strategies to increase patient survival.
{"title":"Synergistic inter-clonal cooperation involving crosstalk, co-option and co-dependency can enhance the invasiveness of genetically distant cancer clones.","authors":"Caroline S Carneiro, Jorian D Hapeman, Aurora M Nedelcu","doi":"10.1186/s12862-023-02129-7","DOIUrl":"https://doi.org/10.1186/s12862-023-02129-7","url":null,"abstract":"<p><strong>Background: </strong>Despite intensive research, cancer remains a major health problem. The difficulties in treating cancer reflect the complex nature of this disease, including high levels of heterogeneity within tumours. Intra-tumour heterogeneity creates the conditions for inter-clonal competition and selection, which could result in selective sweeps and a reduction in levels of heterogeneity. However, in addition to competing, cancer clones can also cooperate with each other, and the positive effects of these interactions on the fitness of clones could actually contribute to maintaining the heterogeneity of tumours. Consequently, understanding the evolutionary mechanisms and pathways involved in such activities is of great significance for cancer treatment. This is particularly relevant for metastasis (i.e., tumor cell migration, invasion, dispersal and dissemination), which is the most lethal phase during cancer progression. To explore if and how genetically distant clones can cooperate during migration and invasion, this study used three distinct cancer cell lines with different metastatic potentials.</p><p><strong>Results: </strong>We found that (i) the conditioned media from two invasive lines (breast and lung) increased the migration and invasion potential of a poorly metastatic line (breast), and (ii) this inter-clonal cooperative interaction involved the TGF-β1 signalling pathway. Furthermore, when the less aggressive line was co-cultured with the highly metastatic breast line, the invasive potential of both lines was enhanced, and this outcome was dependent on the co-option (through TGF-β1 autocrine-paracrine signalling) of the weakly metastatic clone into expressing an enhanced malignant phenotype that benefited both clones (i.e., a \"help me help you\" strategy).</p><p><strong>Conclusions: </strong>Based on our findings, we propose a model in which crosstalk, co-option, and co-dependency can facilitate the evolution of synergistic cooperative interactions between genetically distant clones. Specifically, we suggest that synergistic cooperative interactions can easily emerge, regardless of the degree of overall genetic/genealogical relatedness, via crosstalk involving metastatic clones able to constitutively secrete molecules that induce and maintain their own malignant state (producer-responder clones) and clones that have the ability to respond to those signals (responder clones) and express a synergistic metastatic behaviour. Taking into account the lack of therapies that directly affect the metastatic process, interfering with such cooperative interactions during the early steps in the metastatic cascade could provide additional strategies to increase patient survival.</p>","PeriodicalId":9127,"journal":{"name":"BMC Ecology and Evolution","volume":"23 1","pages":"20"},"PeriodicalIF":0.0,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207807/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9907485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-17DOI: 10.1186/s12862-023-02118-w
Jennifer Erin Gleason, Robert H Hanner, Karl Cottenie
Background: Freshwater ecosystems, such as streams, are facing increasing pressures from agricultural land use and recent literature stresses the importance of robust biomonitoring to detect trends in insect decline globally. Aquatic insects and other macroinvertebrates are often used as indicators of ecological condition in freshwater biomonitoring programs; however, these diverse groups can present challenges to morphological identification and coarse-level taxonomic resolution can mask patterns in community composition. Here, we incorporate molecular identification (DNA metabarcoding) into a stream biomonitoring sampling design to explore the diversity and variability of aquatic macroinvertebrate communities at small spatial scales. While individual stream reaches can be very heterogenous, most community ecology studies focus on larger, landscape-level patterns of community composition. A high degree of community variability at the local scale has important implications for both biomonitoring and ecological research, and the incorporation of DNA metabarcoding into local biodiversity assessments will inform future sampling protocols.
Results: We sampled twenty streams in southern Ontario, Canada, for aquatic macroinvertebrates across multiple time points and assessed local community variability by comparing field replicates taken ten meters apart within the same stream. Using bulk-tissue DNA metabarcoding, we revealed that aquatic macroinvertebrate communities are highly diverse at small spatial scales with unprecedented levels of local taxonomic turnover. We detected over 1600 Operational Taxonomic Units (OTUs) from 149 families, and a single insect family, the Chironomidae, contained over one third of the total number of OTUs detected in our study. Benthic communities were largely comprised of rare taxa detected only once per stream despite multiple biological replicates (24-94% rare taxa per site). In addition to numerous rare taxa, our species pool estimates indicated that there was a large proportion of taxa that remained undetected by our sampling regime (14-94% per site). Our sites were located across a gradient of agricultural activity, and while we predicted that increased land use would homogenize benthic communities, this was not supported as within-stream dissimilarity was unrelated to land use. Within-stream dissimilarity estimates were consistently high for all levels of taxonomic resolution (invertebrate families, invertebrate OTUs, chironomid OTUs), indicating stream communities are very dissimilar at small spatial scales.
{"title":"Hidden diversity: DNA metabarcoding reveals hyper-diverse benthic invertebrate communities.","authors":"Jennifer Erin Gleason, Robert H Hanner, Karl Cottenie","doi":"10.1186/s12862-023-02118-w","DOIUrl":"https://doi.org/10.1186/s12862-023-02118-w","url":null,"abstract":"<p><strong>Background: </strong>Freshwater ecosystems, such as streams, are facing increasing pressures from agricultural land use and recent literature stresses the importance of robust biomonitoring to detect trends in insect decline globally. Aquatic insects and other macroinvertebrates are often used as indicators of ecological condition in freshwater biomonitoring programs; however, these diverse groups can present challenges to morphological identification and coarse-level taxonomic resolution can mask patterns in community composition. Here, we incorporate molecular identification (DNA metabarcoding) into a stream biomonitoring sampling design to explore the diversity and variability of aquatic macroinvertebrate communities at small spatial scales. While individual stream reaches can be very heterogenous, most community ecology studies focus on larger, landscape-level patterns of community composition. A high degree of community variability at the local scale has important implications for both biomonitoring and ecological research, and the incorporation of DNA metabarcoding into local biodiversity assessments will inform future sampling protocols.</p><p><strong>Results: </strong>We sampled twenty streams in southern Ontario, Canada, for aquatic macroinvertebrates across multiple time points and assessed local community variability by comparing field replicates taken ten meters apart within the same stream. Using bulk-tissue DNA metabarcoding, we revealed that aquatic macroinvertebrate communities are highly diverse at small spatial scales with unprecedented levels of local taxonomic turnover. We detected over 1600 Operational Taxonomic Units (OTUs) from 149 families, and a single insect family, the Chironomidae, contained over one third of the total number of OTUs detected in our study. Benthic communities were largely comprised of rare taxa detected only once per stream despite multiple biological replicates (24-94% rare taxa per site). In addition to numerous rare taxa, our species pool estimates indicated that there was a large proportion of taxa that remained undetected by our sampling regime (14-94% per site). Our sites were located across a gradient of agricultural activity, and while we predicted that increased land use would homogenize benthic communities, this was not supported as within-stream dissimilarity was unrelated to land use. Within-stream dissimilarity estimates were consistently high for all levels of taxonomic resolution (invertebrate families, invertebrate OTUs, chironomid OTUs), indicating stream communities are very dissimilar at small spatial scales.</p>","PeriodicalId":9127,"journal":{"name":"BMC Ecology and Evolution","volume":"23 1","pages":"19"},"PeriodicalIF":0.0,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189981/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9604831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-16DOI: 10.1186/s12862-023-02117-x
Shaolin Han, Ben L Phillips, Mark A Elgar
Background: Theory predicts that the level of escalation in animal contests is associated with the value of the contested resource. This fundamental prediction has been empirically confirmed by studies of dyadic contests but has not been tested experimentally in the collective context of group-living animals. Here, we used the Australian meat ant Iridomyrmex purpureus as a model and employed a novel field experimental manipulation of the value of food that removes the potentially confounding effects of nutritional status of the competing individual workers. We draw on insights from the Geometric Framework for nutrition to investigate whether group contests between neighbouring colonies escalate according to the value to the colony of a contested food resource.
Results: First, we show that colonies of I. purpureus value protein according to their past nutritional intake, deploying more foragers to collect protein if their previous diet had been supplemented with carbohydrate rather than with protein. Using this insight, we show that colonies contesting more highly valued food escalated the contest, by deploying more workers and engaging in lethal 'grappling' behaviour.
Conclusion: Our data confirm that a key prediction of contest theory, initially intended for dyadic contests, is similarly applicable to group contests. Specifically, we demonstrate, through a novel experimental procedure, that the contest behaviour of individual workers reflects the nutritional requirements of the colony, rather than that of individual workers.
{"title":"Colony-level aggression escalates with the value of food resources.","authors":"Shaolin Han, Ben L Phillips, Mark A Elgar","doi":"10.1186/s12862-023-02117-x","DOIUrl":"https://doi.org/10.1186/s12862-023-02117-x","url":null,"abstract":"<p><strong>Background: </strong>Theory predicts that the level of escalation in animal contests is associated with the value of the contested resource. This fundamental prediction has been empirically confirmed by studies of dyadic contests but has not been tested experimentally in the collective context of group-living animals. Here, we used the Australian meat ant Iridomyrmex purpureus as a model and employed a novel field experimental manipulation of the value of food that removes the potentially confounding effects of nutritional status of the competing individual workers. We draw on insights from the Geometric Framework for nutrition to investigate whether group contests between neighbouring colonies escalate according to the value to the colony of a contested food resource.</p><p><strong>Results: </strong>First, we show that colonies of I. purpureus value protein according to their past nutritional intake, deploying more foragers to collect protein if their previous diet had been supplemented with carbohydrate rather than with protein. Using this insight, we show that colonies contesting more highly valued food escalated the contest, by deploying more workers and engaging in lethal 'grappling' behaviour.</p><p><strong>Conclusion: </strong>Our data confirm that a key prediction of contest theory, initially intended for dyadic contests, is similarly applicable to group contests. Specifically, we demonstrate, through a novel experimental procedure, that the contest behaviour of individual workers reflects the nutritional requirements of the colony, rather than that of individual workers.</p>","PeriodicalId":9127,"journal":{"name":"BMC Ecology and Evolution","volume":"23 1","pages":"18"},"PeriodicalIF":0.0,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9604828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-09DOI: 10.1186/s12862-023-02119-9
Thies H Büscher, Sarah Bank, Royce T Cumming, Stanislav N Gorb, Sven Bradler
Phylliidae are herbivorous insects exhibiting impressive cryptic masquerade and are colloquially called "walking leaves". They imitate angiosperm leaves and their eggs often resemble plant seeds structurally and in some cases functionally. Despite overall morphological similarity of adult Phylliidae, their eggs reveal a significant diversity in overall shape and exochorionic surface features. Previous studies have shown that the eggs of most Phylliidae possess a specialised attachment mechanism with hierarchical exochorionic fan-like structures (pinnae), which are mantled by a film of an adhesive secretion (glue). The folded pinnae and glue respond to water contact, with the fibrous pinnae expanding and the glue being capable of reversible liquefaction. In general, the eggs of phylliids appear to exhibit varying structures that were suggested to represent specific adaptations to the different environments the eggs are deposited in. Here, we investigated the diversity of phylliid eggs and the functional morphology of their exochorionic structure. Based on the examination of all phylliid taxa for which the eggs are known, we were able to characterise eleven different morphological types. We explored the adhesiveness of these different egg morphotypes and experimentally compared the attachment performance on a broad range of substrates with different surface roughness, surface chemistry and tested whether the adhesion is replicable after detachment in multiple cycles. Furthermore, we used molecular phylogenetic methods to reconstruct the evolutionary history of different egg types and their adhesive systems within this lineage, based on 53 phylliid taxa. Our results suggest that the egg morphology is congruent with the phylogenetic relationships within Phylliidae. The morphological differences are likely caused by adaptations to the specific environmental requirements for the particular clades, as the egg morphology has an influence on the performance regarding the surface roughness. Furthermore, we show that different pinnae and the adhesive glue evolved convergently in different species. While the evolution of the Phylliidae in general appears to be non-adaptive judging on the strong similarity of the adults and nymphs of most species, the eggs represent a stage with complex and rather diverse functional adaptations including mechanisms for both fixation and dispersal of the eggs.
{"title":"Leaves that walk and eggs that stick: comparative functional morphology and evolution of the adhesive system of leaf insect eggs (Phasmatodea: Phylliidae).","authors":"Thies H Büscher, Sarah Bank, Royce T Cumming, Stanislav N Gorb, Sven Bradler","doi":"10.1186/s12862-023-02119-9","DOIUrl":"https://doi.org/10.1186/s12862-023-02119-9","url":null,"abstract":"<p><p>Phylliidae are herbivorous insects exhibiting impressive cryptic masquerade and are colloquially called \"walking leaves\". They imitate angiosperm leaves and their eggs often resemble plant seeds structurally and in some cases functionally. Despite overall morphological similarity of adult Phylliidae, their eggs reveal a significant diversity in overall shape and exochorionic surface features. Previous studies have shown that the eggs of most Phylliidae possess a specialised attachment mechanism with hierarchical exochorionic fan-like structures (pinnae), which are mantled by a film of an adhesive secretion (glue). The folded pinnae and glue respond to water contact, with the fibrous pinnae expanding and the glue being capable of reversible liquefaction. In general, the eggs of phylliids appear to exhibit varying structures that were suggested to represent specific adaptations to the different environments the eggs are deposited in. Here, we investigated the diversity of phylliid eggs and the functional morphology of their exochorionic structure. Based on the examination of all phylliid taxa for which the eggs are known, we were able to characterise eleven different morphological types. We explored the adhesiveness of these different egg morphotypes and experimentally compared the attachment performance on a broad range of substrates with different surface roughness, surface chemistry and tested whether the adhesion is replicable after detachment in multiple cycles. Furthermore, we used molecular phylogenetic methods to reconstruct the evolutionary history of different egg types and their adhesive systems within this lineage, based on 53 phylliid taxa. Our results suggest that the egg morphology is congruent with the phylogenetic relationships within Phylliidae. The morphological differences are likely caused by adaptations to the specific environmental requirements for the particular clades, as the egg morphology has an influence on the performance regarding the surface roughness. Furthermore, we show that different pinnae and the adhesive glue evolved convergently in different species. While the evolution of the Phylliidae in general appears to be non-adaptive judging on the strong similarity of the adults and nymphs of most species, the eggs represent a stage with complex and rather diverse functional adaptations including mechanisms for both fixation and dispersal of the eggs.</p>","PeriodicalId":9127,"journal":{"name":"BMC Ecology and Evolution","volume":"23 1","pages":"17"},"PeriodicalIF":0.0,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10170840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9474791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Artificial habitats can allow many fish to flock together and interact and have been widely used to restore and protect fishery resources. The piece of research intends to elucidate the relationship of microbial communities between tilapia (Oreochromis mossambicus) intestines and artificial fishery habitats (water and sediments). Hence, 16 S rDNA sequencing technology was used to study the bacterial communities from intestines, water, and sediments.
Results: The results showed that the tilapia intestines had the lowest richness of Operational Taxonomic Units (OTUs) and the lowest diversity of the bacterial community compared to water and sediments. The intestine, water, and sediment microbial communities shared many OTUs. Overall, 663 shared OTUs were identified from the tilapia intestines (76.20%), the surrounding water (71.14%), and sediment (56.86%) in artificial habitats. However, there were unique OTUs that were detected in different sample types. There were 81, 77 and 112 unique OTUs observed in tilapia intestines, the surrounding water and sediment, respectively. Proteobacteria, Cyanobacteria, Actinobacteria, Firmicutes, Fusobacteria, and Bacteroidetes were the most common and dominant bacterial phyla between the tilapia intestines and habitats. In the two groups, the microbial communities were similar in the taxonomic composition but different in the abundance of bacterial phyla. Interestingly, Firmicutes increased, while Fusobacteria decreased in artificial habitats. These findings indicated that the artificial habitats had fewer effects on the water environment and indicated that the mode of artificial habitats could have an effect on the enriched bacteria in the tilapia intestines.
Conclusions: This study analysed the bacterial communities of artificial habitats from the intestines, water, and sediments, which can explain the relationship between the tilapia intestines and habitats and strengthen the value of ecological services provided by artificial habitats.
{"title":"The characteristics of the intestinal bacterial community from Oreochromis mossambicus and its interaction with microbiota from artificial fishery habitats.","authors":"Sheng Bi, Han Lai, Dingli Guo, Huadong Yi, Haiyang Li, Xuange Liu, Qiuxian Chen, Jiahui Chen, Zhilun Zhang, Xuchong Wei, Guifeng Li, Guorong Xin","doi":"10.1186/s12862-023-02120-2","DOIUrl":"https://doi.org/10.1186/s12862-023-02120-2","url":null,"abstract":"<p><strong>Background: </strong>Artificial habitats can allow many fish to flock together and interact and have been widely used to restore and protect fishery resources. The piece of research intends to elucidate the relationship of microbial communities between tilapia (Oreochromis mossambicus) intestines and artificial fishery habitats (water and sediments). Hence, 16 S rDNA sequencing technology was used to study the bacterial communities from intestines, water, and sediments.</p><p><strong>Results: </strong>The results showed that the tilapia intestines had the lowest richness of Operational Taxonomic Units (OTUs) and the lowest diversity of the bacterial community compared to water and sediments. The intestine, water, and sediment microbial communities shared many OTUs. Overall, 663 shared OTUs were identified from the tilapia intestines (76.20%), the surrounding water (71.14%), and sediment (56.86%) in artificial habitats. However, there were unique OTUs that were detected in different sample types. There were 81, 77 and 112 unique OTUs observed in tilapia intestines, the surrounding water and sediment, respectively. Proteobacteria, Cyanobacteria, Actinobacteria, Firmicutes, Fusobacteria, and Bacteroidetes were the most common and dominant bacterial phyla between the tilapia intestines and habitats. In the two groups, the microbial communities were similar in the taxonomic composition but different in the abundance of bacterial phyla. Interestingly, Firmicutes increased, while Fusobacteria decreased in artificial habitats. These findings indicated that the artificial habitats had fewer effects on the water environment and indicated that the mode of artificial habitats could have an effect on the enriched bacteria in the tilapia intestines.</p><p><strong>Conclusions: </strong>This study analysed the bacterial communities of artificial habitats from the intestines, water, and sediments, which can explain the relationship between the tilapia intestines and habitats and strengthen the value of ecological services provided by artificial habitats.</p>","PeriodicalId":9127,"journal":{"name":"BMC Ecology and Evolution","volume":"23 1","pages":"16"},"PeriodicalIF":0.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165841/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9473428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}