Background: Tissue regeneration mediated by mesenchymal stem cells (MSCs) is deemed a desirable way to repair teeth and craniomaxillofacial tissue defects. Nevertheless, the molecular mechanisms about cell proliferation and committed differentiation of MSCs remain obscure. Previous researches have proved that lysine demethylase 2A (KDM2A) performed significant function in the regulation of MSC proliferation and differentiation. SNRNP200, as a co-binding factor of KDM2A, its potential effect in regulating MSCs' function is still unclear. Therefore, stem cells from the apical papilla (SCAPs) were used to investigate the function of SNRNP200 in this research.
Methods: The alkaline phosphatase (ALP) activity assay, Alizarin Red staining, and osteogenesis-related gene expressions were used to examine osteo-/dentinogenic differentiation potential. Carboxyfluorescein diacetate, succinimidyl ester (CFSE) and cell cycle analysis were applied to detect the cell proliferation. Western blot analysis was used to evaluate the expressions of cell cycle-related proteins.
Results: Depletion of SNRNP200 caused an obvious decrease of ALP activity, mineralization formation and the expressions of osteo-/dentinogenic genes including RUNX2, DSPP, DMP1 and BSP. Meanwhile, CFSE and cell cycle assays revealed that knock-down of SNRNP200 inhibited the cell proliferation and blocked cell cycle at the G2/M and S phase in SCAPs. In addition, it was found that depletion of SNRNP200 up-regulated p21 and p53, and down-regulated the CDK1, CyclinB, CyclinE and CDK2.
Conclusions: Depletion of SNRNP200 repressed osteo-/dentinogenic differentiation potentials and restrained cell proliferation through blocking cell cycle progression at the G2/M and S phase, further revealing that SNRNP200 has crucial effects on preserving the proliferation and differentiation potentials of dental tissue-derived MSCs.
{"title":"Depletion of SNRNP200 inhibits the osteo-/dentinogenic differentiation and cell proliferation potential of stem cells from the apical papilla.","authors":"Xiaomin Su, Haoqing Yang, Ruitang Shi, Chen Zhang, Huina Liu, Zhipeng Fan, Jianpeng Zhang","doi":"10.1186/s12861-020-00228-y","DOIUrl":"10.1186/s12861-020-00228-y","url":null,"abstract":"<p><strong>Background: </strong>Tissue regeneration mediated by mesenchymal stem cells (MSCs) is deemed a desirable way to repair teeth and craniomaxillofacial tissue defects. Nevertheless, the molecular mechanisms about cell proliferation and committed differentiation of MSCs remain obscure. Previous researches have proved that lysine demethylase 2A (KDM2A) performed significant function in the regulation of MSC proliferation and differentiation. SNRNP200, as a co-binding factor of KDM2A, its potential effect in regulating MSCs' function is still unclear. Therefore, stem cells from the apical papilla (SCAPs) were used to investigate the function of SNRNP200 in this research.</p><p><strong>Methods: </strong>The alkaline phosphatase (ALP) activity assay, Alizarin Red staining, and osteogenesis-related gene expressions were used to examine osteo-/dentinogenic differentiation potential. Carboxyfluorescein diacetate, succinimidyl ester (CFSE) and cell cycle analysis were applied to detect the cell proliferation. Western blot analysis was used to evaluate the expressions of cell cycle-related proteins.</p><p><strong>Results: </strong>Depletion of SNRNP200 caused an obvious decrease of ALP activity, mineralization formation and the expressions of osteo-/dentinogenic genes including RUNX2, DSPP, DMP1 and BSP. Meanwhile, CFSE and cell cycle assays revealed that knock-down of SNRNP200 inhibited the cell proliferation and blocked cell cycle at the G2/M and S phase in SCAPs. In addition, it was found that depletion of SNRNP200 up-regulated p21 and p53, and down-regulated the CDK1, CyclinB, CyclinE and CDK2.</p><p><strong>Conclusions: </strong>Depletion of SNRNP200 repressed osteo-/dentinogenic differentiation potentials and restrained cell proliferation through blocking cell cycle progression at the G2/M and S phase, further revealing that SNRNP200 has crucial effects on preserving the proliferation and differentiation potentials of dental tissue-derived MSCs.</p>","PeriodicalId":9130,"journal":{"name":"BMC Developmental Biology","volume":"20 1","pages":"22"},"PeriodicalIF":0.0,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672972/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38622546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-26DOI: 10.1186/s12861-020-00226-0
Samantha V Beck, Katja Räsänen, Camille A Leblanc, Skúli Skúlason, Zophonías O Jónsson, Bjarni K Kristjánsson
Background: Organismal fitness can be determined at early life-stages, but phenotypic variation at early life-stages is rarely considered in studies on evolutionary diversification. The trophic apparatus has been shown to contribute to sympatric resource-mediated divergence in several taxa. However, processes underlying diversification in trophic traits are poorly understood. Using phenotypically variable Icelandic Arctic charr (Salvelinus alpinus), we reared offspring from multiple families under standardized laboratory conditions and tested to what extent family (i.e. direct genetic and maternal effects) contributes to offspring morphology at hatching (H) and first feeding (FF). To understand the underlying mechanisms behind early life-stage variation in morphology, we examined how craniofacial shape varied according to family, offspring size, egg size and candidate gene expression.
Results: Craniofacial shape (i.e. the Meckel's cartilage and hyoid arch) was more variable between families than within families both across and within developmental stages. Differences in craniofacial morphology between developmental stages correlated with offspring size, whilst within developmental stages only shape at FF correlated with offspring size, as well as female mean egg size. Larger offspring and offspring from females with larger eggs consistently had a wider hyoid arch and contracted Meckel's cartilage in comparison to smaller offspring.
Conclusions: This study provides evidence for family-level variation in early life-stage trophic morphology, indicating the potential for parental effects to facilitate resource polymorphism.
{"title":"Differences among families in craniofacial shape at early life-stages of Arctic charr (Salvelinus alpinus).","authors":"Samantha V Beck, Katja Räsänen, Camille A Leblanc, Skúli Skúlason, Zophonías O Jónsson, Bjarni K Kristjánsson","doi":"10.1186/s12861-020-00226-0","DOIUrl":"https://doi.org/10.1186/s12861-020-00226-0","url":null,"abstract":"<p><strong>Background: </strong>Organismal fitness can be determined at early life-stages, but phenotypic variation at early life-stages is rarely considered in studies on evolutionary diversification. The trophic apparatus has been shown to contribute to sympatric resource-mediated divergence in several taxa. However, processes underlying diversification in trophic traits are poorly understood. Using phenotypically variable Icelandic Arctic charr (Salvelinus alpinus), we reared offspring from multiple families under standardized laboratory conditions and tested to what extent family (i.e. direct genetic and maternal effects) contributes to offspring morphology at hatching (H) and first feeding (FF). To understand the underlying mechanisms behind early life-stage variation in morphology, we examined how craniofacial shape varied according to family, offspring size, egg size and candidate gene expression.</p><p><strong>Results: </strong>Craniofacial shape (i.e. the Meckel's cartilage and hyoid arch) was more variable between families than within families both across and within developmental stages. Differences in craniofacial morphology between developmental stages correlated with offspring size, whilst within developmental stages only shape at FF correlated with offspring size, as well as female mean egg size. Larger offspring and offspring from females with larger eggs consistently had a wider hyoid arch and contracted Meckel's cartilage in comparison to smaller offspring.</p><p><strong>Conclusions: </strong>This study provides evidence for family-level variation in early life-stage trophic morphology, indicating the potential for parental effects to facilitate resource polymorphism.</p>","PeriodicalId":9130,"journal":{"name":"BMC Developmental Biology","volume":" ","pages":"21"},"PeriodicalIF":0.0,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12861-020-00226-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40455477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-06DOI: 10.1186/s12861-020-00225-1
Xiangcheng Zhan, Jingwei Zhang, Saiyang Li, Xiaolu Zhang, Linchao Li, Tiantian Song, Qunlong Liu, Jun Lu, Yunfei Xu, Ren-Shan Ge
Background: Monocyte chemoattractant protein-1(MCP-1) is a chemokine secreted by Leydig cells and peritubular myoid cells in the rat testis. Its role in regulating the development of Leydig cells via autocrine and paracrine is still unclear. The objective of the current study was to investigate the effects of MCP-1 on Leydig cell regeneration from stem cells in vivo and on Leydig cell development in vitro.
Results: Intratesticular injection of MCP-1(10 ng/testis) into Leydig cell-depleted rat testis from post-EDS day 14 to 28 significantly increased serum testosterone and luteinizing hormone levels, up-regulated the expression of Leydig cell proteins, LHCGR, SCARB1, CYP11A1, HSD3B1, CYP17A1, and HSD17B3 without affecting progenitor Leydig cell proliferation, as well as increased ERK1/2 phosphorylation. MCP-1 (100 ng/ml) significantly increased medium testosterone levels and up-regulated LHCGR, CYP11A1, and HSD3B1 expression without affecting EdU incorporation into stem cells after in vitro culture for 7 days. RS102895, a CCR2 inhibitor, reversed MCP-1-mediated increase of testosterone level after culture in combination with MCP-1.
Conclusion: MCP-1 stimulates the differentiation of stem and progenitor Leydig cells without affecting their proliferation.
{"title":"Monocyte Chemoattractant Protein-1 stimulates the differentiation of rat stem and progenitor Leydig cells during regeneration.","authors":"Xiangcheng Zhan, Jingwei Zhang, Saiyang Li, Xiaolu Zhang, Linchao Li, Tiantian Song, Qunlong Liu, Jun Lu, Yunfei Xu, Ren-Shan Ge","doi":"10.1186/s12861-020-00225-1","DOIUrl":"https://doi.org/10.1186/s12861-020-00225-1","url":null,"abstract":"<p><strong>Background: </strong>Monocyte chemoattractant protein-1(MCP-1) is a chemokine secreted by Leydig cells and peritubular myoid cells in the rat testis. Its role in regulating the development of Leydig cells via autocrine and paracrine is still unclear. The objective of the current study was to investigate the effects of MCP-1 on Leydig cell regeneration from stem cells in vivo and on Leydig cell development in vitro.</p><p><strong>Results: </strong>Intratesticular injection of MCP-1(10 ng/testis) into Leydig cell-depleted rat testis from post-EDS day 14 to 28 significantly increased serum testosterone and luteinizing hormone levels, up-regulated the expression of Leydig cell proteins, LHCGR, SCARB1, CYP11A1, HSD3B1, CYP17A1, and HSD17B3 without affecting progenitor Leydig cell proliferation, as well as increased ERK1/2 phosphorylation. MCP-1 (100 ng/ml) significantly increased medium testosterone levels and up-regulated LHCGR, CYP11A1, and HSD3B1 expression without affecting EdU incorporation into stem cells after in vitro culture for 7 days. RS102895, a CCR2 inhibitor, reversed MCP-1-mediated increase of testosterone level after culture in combination with MCP-1.</p><p><strong>Conclusion: </strong>MCP-1 stimulates the differentiation of stem and progenitor Leydig cells without affecting their proliferation.</p>","PeriodicalId":9130,"journal":{"name":"BMC Developmental Biology","volume":"20 1","pages":"20"},"PeriodicalIF":0.0,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12861-020-00225-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38459784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Masculinizer (Masc) plays a pivotal role in male sex determination in the silkworm, Bombyx mori. Masc is required for male-specific splicing of B. mori doublesex (Bmdsx) transcripts. The male isoform of Bmdsx (BmdsxM) induces male differentiation in somatic cells, while females express the female isoform of Bmdsx (BmdsxF), which promotes female differentiation in somatic cells. Our previous findings suggest that Masc could direct the differentiation of genetically female (ZW) germ cells into sperms. However, it remains unclear whether Masc directly induces spermatogenesis or if it promotes male differentiation in germ cells indirectly by inducing the expression of BmdsxM.
Results: In this study, we performed genetic analyses using the transgenic line that expressed Masc, as well as various Bmdsx knockout lines. We found that Masc-expressing females with a homozygous mutation in BmdsxM showed normal development in ovaries. The formation of testis-like tissues was abolished in these females. On the other hand, Masc-expressing females carrying a homozygous mutation in BmdsxF exhibited almost complete male-specific development in gonads and germ cells. These results suggest that BmdsxM has an ability to induce male development in germ cells as well as internal genital organs, while BmdsxF inhibits BmdsxM activity and represses male differentiation. To investigate whether MASC directly controls male-specific splicing of Bmdsx and identify RNAs that form complexes with MASC in testes, we performed RNA immunoprecipitation (RIP) using an anti-MASC antibody. We found that MASC formed a complex with AS1 lncRNA, which is a testis-specific factor involved in the male-specific splicing of Bmdsx pre-mRNA.
Conclusions: Taken together, our findings suggest that Masc induces male differentiation in germ cells by enhancing the production of BmdsxM. Physical interaction between MASC and AS1 lncRNA may be important for the BmdsxM expression in the testis. Unlike in the Drosophila dsx, BmdsxM was able to induce spermatogenesis in genetically female (ZW) germ cells. To the best of our knowledge, this is the first report that the role of dsx in germ cell sexual development is different between insect species.
{"title":"Transgenic and knockout analyses of Masculinizer and doublesex illuminated the unique functions of doublesex in germ cell sexual development of the silkworm, Bombyx mori.","authors":"Tomohisa Yuzawa, Misato Matsuoka, Megumi Sumitani, Fugaku Aoki, Hideki Sezutsu, Masataka G Suzuki","doi":"10.1186/s12861-020-00224-2","DOIUrl":"https://doi.org/10.1186/s12861-020-00224-2","url":null,"abstract":"<p><strong>Background: </strong>Masculinizer (Masc) plays a pivotal role in male sex determination in the silkworm, Bombyx mori. Masc is required for male-specific splicing of B. mori doublesex (Bmdsx) transcripts. The male isoform of Bmdsx (BmdsxM) induces male differentiation in somatic cells, while females express the female isoform of Bmdsx (BmdsxF), which promotes female differentiation in somatic cells. Our previous findings suggest that Masc could direct the differentiation of genetically female (ZW) germ cells into sperms. However, it remains unclear whether Masc directly induces spermatogenesis or if it promotes male differentiation in germ cells indirectly by inducing the expression of BmdsxM.</p><p><strong>Results: </strong>In this study, we performed genetic analyses using the transgenic line that expressed Masc, as well as various Bmdsx knockout lines. We found that Masc-expressing females with a homozygous mutation in BmdsxM showed normal development in ovaries. The formation of testis-like tissues was abolished in these females. On the other hand, Masc-expressing females carrying a homozygous mutation in BmdsxF exhibited almost complete male-specific development in gonads and germ cells. These results suggest that BmdsxM has an ability to induce male development in germ cells as well as internal genital organs, while BmdsxF inhibits BmdsxM activity and represses male differentiation. To investigate whether MASC directly controls male-specific splicing of Bmdsx and identify RNAs that form complexes with MASC in testes, we performed RNA immunoprecipitation (RIP) using an anti-MASC antibody. We found that MASC formed a complex with AS1 lncRNA, which is a testis-specific factor involved in the male-specific splicing of Bmdsx pre-mRNA.</p><p><strong>Conclusions: </strong>Taken together, our findings suggest that Masc induces male differentiation in germ cells by enhancing the production of BmdsxM. Physical interaction between MASC and AS1 lncRNA may be important for the BmdsxM expression in the testis. Unlike in the Drosophila dsx, BmdsxM was able to induce spermatogenesis in genetically female (ZW) germ cells. To the best of our knowledge, this is the first report that the role of dsx in germ cell sexual development is different between insect species.</p>","PeriodicalId":9130,"journal":{"name":"BMC Developmental Biology","volume":"20 1","pages":"19"},"PeriodicalIF":0.0,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12861-020-00224-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38404893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-27DOI: 10.21203/rs.3.rs-48020/v1
S. Vogeler, S. Carboni, Xiaoxu Li, N. Nevejan, S. Monaghan, J. Ireland, A. Joyce
Background Nitric oxide (NO) is presumed to be a regulator of metamorphosis in many invertebrate species, and although NO pathways have been comparatively well-investigated in gastropods, annelids and crustaceans, there has been very limited research on the effects of NO on metamorphosis in bivalve shellfish. Results In this paper, we investigate the effects of NO pathway inhibitors and NO donors on metamorphosis induction in larvae of the Pacific oyster, Crassostrea gigas. The nitric oxides synthase (NOS) inhibitors s-methylisothiourea hemisulfate salt (SMIS), aminoguanidine hemisulfate salt (AGH) and 7-nitroindazole (7-NI) induced metamorphosis at 75, 76 and 83% respectively, and operating in a concentration-dependent manner. Additional induction of up to 54% resulted from exposures to 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase, with which NO interacts to catalyse the synthesis of cyclic guanosine monophosphate (cGMP). Conversely, high concentrations of the NO donor sodium nitroprusside dihydrate in combination with metamorphosis inducers epinephrine, MK-801 or SMIS, significantly decreased metamorphosis, although a potential harmful effect of excessive NO unrelated to metamorphosis pathway cannot be excluded. Expression of CgNOS also decreased in larvae after metamorphosis regardless of the inducers used, but intensified again post-metamorphosis in spat. Fluorescent detection of NO in competent larvae with DAF-FM diacetate and localisation of the oyster nitric oxide synthase CgNOS expression by in-situ hybridisation showed that NO occurs primarily in two key larval structures, the velum and foot. cGMP was also detected in the foot using immunofluorescent assays, and is potentially involved in the foot’s smooth muscle relaxation. Conclusion Together, these results suggest that the NO pathway acts as a negative regulator of metamorphosis in Pacific oyster larvae, and that NO reduction induces metamorphosis by inhibiting swimming or crawling behaviour, in conjunction with a cascade of additional neuroendocrine downstream responses.
{"title":"Bivalves are NO different: nitric oxide as negative regulator of metamorphosis in the Pacific oyster, Crassostrea gigas","authors":"S. Vogeler, S. Carboni, Xiaoxu Li, N. Nevejan, S. Monaghan, J. Ireland, A. Joyce","doi":"10.21203/rs.3.rs-48020/v1","DOIUrl":"https://doi.org/10.21203/rs.3.rs-48020/v1","url":null,"abstract":"Background Nitric oxide (NO) is presumed to be a regulator of metamorphosis in many invertebrate species, and although NO pathways have been comparatively well-investigated in gastropods, annelids and crustaceans, there has been very limited research on the effects of NO on metamorphosis in bivalve shellfish. Results In this paper, we investigate the effects of NO pathway inhibitors and NO donors on metamorphosis induction in larvae of the Pacific oyster, Crassostrea gigas. The nitric oxides synthase (NOS) inhibitors s-methylisothiourea hemisulfate salt (SMIS), aminoguanidine hemisulfate salt (AGH) and 7-nitroindazole (7-NI) induced metamorphosis at 75, 76 and 83% respectively, and operating in a concentration-dependent manner. Additional induction of up to 54% resulted from exposures to 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase, with which NO interacts to catalyse the synthesis of cyclic guanosine monophosphate (cGMP). Conversely, high concentrations of the NO donor sodium nitroprusside dihydrate in combination with metamorphosis inducers epinephrine, MK-801 or SMIS, significantly decreased metamorphosis, although a potential harmful effect of excessive NO unrelated to metamorphosis pathway cannot be excluded. Expression of CgNOS also decreased in larvae after metamorphosis regardless of the inducers used, but intensified again post-metamorphosis in spat. Fluorescent detection of NO in competent larvae with DAF-FM diacetate and localisation of the oyster nitric oxide synthase CgNOS expression by in-situ hybridisation showed that NO occurs primarily in two key larval structures, the velum and foot. cGMP was also detected in the foot using immunofluorescent assays, and is potentially involved in the foot’s smooth muscle relaxation. Conclusion Together, these results suggest that the NO pathway acts as a negative regulator of metamorphosis in Pacific oyster larvae, and that NO reduction induces metamorphosis by inhibiting swimming or crawling behaviour, in conjunction with a cascade of additional neuroendocrine downstream responses.","PeriodicalId":9130,"journal":{"name":"BMC Developmental Biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42621207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-19DOI: 10.1186/s12861-020-00223-3
Weihong Yang, Pin Huan, Baozhong Liu
Background: The morphogenesis of the shell field is an essential step of molluscan shell formation, which exhibits both conserved features and interlineage variations. As one major gastropod lineage, the patellogastropods show different characters in its shell field morphogenesis compared to other gastropods (e.g., the pulmonate gastropod Lymnaea stagnalis), likely related to its epibolic gastrulation. The investigation on the shell field morphogenesis of patellogastropods would be useful to reveal the lineage-specific characters in the process and explore the deep conservation among different molluscan lineages.
Results: We investigated the early shell field morphogenesis in the patellogastropod Lottia goshimai using multiple techniques. Electron microscopy revealed distinct morphological characters for the central and peripheral cells of the characteristic rosette-like shell field. Gene expression analysis and F-actin staining suggested that the shell field morphogenesis in this species predominantly relied on cell movement and F-actin dynamics, while BrdU assay revealed that cell proliferation contributed little to the process. We found constant contacts between ectodermal and meso/endodermal tissues during the early stages of shell field morphogenesis, which did not support the induction of shell field by endodermal tissues in general, but a potential stage-specific induction was indicated.
Conclusions: Our results emphasize the roles of cell movement and F-actin dynamics during the morphogenesis of the shell field in Lo. goshimai, and suggest potential regulators such as diffusible factors and F-actin modulators. These findings reflect the differences in shell field morphogenesis of different gastropods, and add to the knowledge of molluscan larval shell formation.
{"title":"Early shell field morphogenesis of a patellogastropod mollusk predominantly relies on cell movement and F-actin dynamics.","authors":"Weihong Yang, Pin Huan, Baozhong Liu","doi":"10.1186/s12861-020-00223-3","DOIUrl":"https://doi.org/10.1186/s12861-020-00223-3","url":null,"abstract":"<p><strong>Background: </strong>The morphogenesis of the shell field is an essential step of molluscan shell formation, which exhibits both conserved features and interlineage variations. As one major gastropod lineage, the patellogastropods show different characters in its shell field morphogenesis compared to other gastropods (e.g., the pulmonate gastropod Lymnaea stagnalis), likely related to its epibolic gastrulation. The investigation on the shell field morphogenesis of patellogastropods would be useful to reveal the lineage-specific characters in the process and explore the deep conservation among different molluscan lineages.</p><p><strong>Results: </strong>We investigated the early shell field morphogenesis in the patellogastropod Lottia goshimai using multiple techniques. Electron microscopy revealed distinct morphological characters for the central and peripheral cells of the characteristic rosette-like shell field. Gene expression analysis and F-actin staining suggested that the shell field morphogenesis in this species predominantly relied on cell movement and F-actin dynamics, while BrdU assay revealed that cell proliferation contributed little to the process. We found constant contacts between ectodermal and meso/endodermal tissues during the early stages of shell field morphogenesis, which did not support the induction of shell field by endodermal tissues in general, but a potential stage-specific induction was indicated.</p><p><strong>Conclusions: </strong>Our results emphasize the roles of cell movement and F-actin dynamics during the morphogenesis of the shell field in Lo. goshimai, and suggest potential regulators such as diffusible factors and F-actin modulators. These findings reflect the differences in shell field morphogenesis of different gastropods, and add to the knowledge of molluscan larval shell formation.</p>","PeriodicalId":9130,"journal":{"name":"BMC Developmental Biology","volume":"20 1","pages":"18"},"PeriodicalIF":0.0,"publicationDate":"2020-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12861-020-00223-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38289314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-03DOI: 10.1186/s12861-020-00222-4
Tim Pieters, Ellen Sanders, Huiyu Tian, Jolanda van Hengel, Frans van Roy
Background: p120 catenin (p120ctn) is an important component in the cadherin-catenin cell adhesion complex because it stabilizes cadherin-mediated intercellular junctions. Outside these junctions, p120ctn is actively involved in the regulation of small GTPases of the Rho family, in actomyosin dynamics and in transcription regulation. We and others reported that loss of p120ctn in mouse embryos results in an embryonic lethal phenotype, but the exact developmental role of p120ctn during brain formation has not been reported.
Results: We combined floxed p120ctn mice with Del-Cre or Wnt1-Cre mice to deplete p120ctn from either all cells or specific brain and neural crest cells. Complete loss of p120ctn in mid-gestation embryos resulted in an aberrant morphology, including growth retardation, failure to switch from lordotic to fetal posture, and defective neural tube formation and neurogenesis. By expressing a wild-type p120ctn from the ROSA26 locus in p120ctn-null mouse embryonic stem cells, we could partially rescue neurogenesis. To further investigate the developmental role of p120ctn in neural tube formation, we generated conditional p120ctnfl/fl;Wnt1Cre knockout mice. p120ctn deletion in Wnt1-expressing cells resulted in neural tube closure defects (NTDs) and craniofacial abnormalities. These defects could not be correlated with misregulation of brain marker genes or cell proliferation. In contrast, we found that p120ctn is required for proper expression of the cell adhesion components N-cadherin, E-cadherin and β-catenin, and of actin-binding proteins cortactin and Shroom3 at the apical side of neural folds. This region is of critical importance for closure of neural folds. Surprisingly, the lateral side of mutant neural folds showed loss of p120ctn, but not of N-cadherin, β-catenin or cortactin.
Conclusions: These results indicate that p120ctn is required for neurogenesis and neurulation. Elimination of p120ctn in cells expressing Wnt1 affects neural tube closure by hampering correct formation of specific adhesion and actomyosin complexes at the apical side of neural folds. Collectively, our results demonstrate the crucial role of p120ctn during brain morphogenesis.
{"title":"Neural defects caused by total and Wnt1-Cre mediated ablation of p120ctn in mice.","authors":"Tim Pieters, Ellen Sanders, Huiyu Tian, Jolanda van Hengel, Frans van Roy","doi":"10.1186/s12861-020-00222-4","DOIUrl":"https://doi.org/10.1186/s12861-020-00222-4","url":null,"abstract":"<p><strong>Background: </strong>p120 catenin (p120ctn) is an important component in the cadherin-catenin cell adhesion complex because it stabilizes cadherin-mediated intercellular junctions. Outside these junctions, p120ctn is actively involved in the regulation of small GTPases of the Rho family, in actomyosin dynamics and in transcription regulation. We and others reported that loss of p120ctn in mouse embryos results in an embryonic lethal phenotype, but the exact developmental role of p120ctn during brain formation has not been reported.</p><p><strong>Results: </strong>We combined floxed p120ctn mice with Del-Cre or Wnt1-Cre mice to deplete p120ctn from either all cells or specific brain and neural crest cells. Complete loss of p120ctn in mid-gestation embryos resulted in an aberrant morphology, including growth retardation, failure to switch from lordotic to fetal posture, and defective neural tube formation and neurogenesis. By expressing a wild-type p120ctn from the ROSA26 locus in p120ctn-null mouse embryonic stem cells, we could partially rescue neurogenesis. To further investigate the developmental role of p120ctn in neural tube formation, we generated conditional p120ctn<sup>fl/fl</sup>;Wnt1Cre knockout mice. p120ctn deletion in Wnt1-expressing cells resulted in neural tube closure defects (NTDs) and craniofacial abnormalities. These defects could not be correlated with misregulation of brain marker genes or cell proliferation. In contrast, we found that p120ctn is required for proper expression of the cell adhesion components N-cadherin, E-cadherin and β-catenin, and of actin-binding proteins cortactin and Shroom3 at the apical side of neural folds. This region is of critical importance for closure of neural folds. Surprisingly, the lateral side of mutant neural folds showed loss of p120ctn, but not of N-cadherin, β-catenin or cortactin.</p><p><strong>Conclusions: </strong>These results indicate that p120ctn is required for neurogenesis and neurulation. Elimination of p120ctn in cells expressing Wnt1 affects neural tube closure by hampering correct formation of specific adhesion and actomyosin complexes at the apical side of neural folds. Collectively, our results demonstrate the crucial role of p120ctn during brain morphogenesis.</p>","PeriodicalId":9130,"journal":{"name":"BMC Developmental Biology","volume":"20 1","pages":"17"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12861-020-00222-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38226664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-29DOI: 10.1186/s12861-020-00221-5
Marissa Fabrezi, Julio César Cruz
Background: Before metamorphosis, almost all anuran tadpoles are omnivores. Larval carnivory occurs in some species and, it is associated with distinctive morphotypes. Obligatory carnivorous tadpoles exhibit structural changes in the gastrointestinal tract compared to larvae that are predominately omnivores. The most distinctive feature of the anuran family Ceratophyridae (three genera) overall is the enormous gape of adults. This feature increases their ability to capture extremely large and active prey. The larvae of Ceratophyrid genera are remarkably distinct from each other and carnivory has diversified in a manner unseen in other anurans. The larvae of one genus, Lepidobatrachus, has a massive gape like the adult. Herein, we report on larval developmental variation, diet, gross morphology of the gastrointestinal tract, and histology of the cranial segment of the gut before, during and after metamorphosis in larval series for the following ceratophryid species: Chacophrys pierottii, Ceratophrys cranwelli, Lepidobatrachus laevis and Lepidobatrachus llanensis.
Results: We described patterns of larval development with variation in growth with consequence to the final size at the end of metamorphosis. These patterns seem to be influenced by food quantity/quality, and most predominant by animal protein. Prey items found in pre and post-metamorphic Lepidobatrachus spp. are similar. Tadpoles of Ceratophrys and Chacophrys (and other anurans) share a short cranial segment of the gut with an internal glandular, mucous secreting epithelium, a double coiled intestine and the sequence of metamorphic changes (tract is empty, the stomach differentiates and the intestine shortens abruptly). In contrast, Lepidobatrachus tadpoles have a true stomach that acquires thickness and increased glandular complexity through development. As larvae they have a short intestine without double coils, and the absence of intestine shortening during metamorphosis.
Conclusions: The larval development of the gastrointestinal tract of Lepidobatrachus is unique compared with that of other free-living anuran larvae. An abrupt metamorphic transformation is missing and most of the adult structural features start to differentiate gradually at the beginning of larval stages.
{"title":"Evolutionary and developmental considerations of the diet and gut morphology in ceratophryid tadpoles (Anura).","authors":"Marissa Fabrezi, Julio César Cruz","doi":"10.1186/s12861-020-00221-5","DOIUrl":"10.1186/s12861-020-00221-5","url":null,"abstract":"<p><strong>Background: </strong>Before metamorphosis, almost all anuran tadpoles are omnivores. Larval carnivory occurs in some species and, it is associated with distinctive morphotypes. Obligatory carnivorous tadpoles exhibit structural changes in the gastrointestinal tract compared to larvae that are predominately omnivores. The most distinctive feature of the anuran family Ceratophyridae (three genera) overall is the enormous gape of adults. This feature increases their ability to capture extremely large and active prey. The larvae of Ceratophyrid genera are remarkably distinct from each other and carnivory has diversified in a manner unseen in other anurans. The larvae of one genus, Lepidobatrachus, has a massive gape like the adult. Herein, we report on larval developmental variation, diet, gross morphology of the gastrointestinal tract, and histology of the cranial segment of the gut before, during and after metamorphosis in larval series for the following ceratophryid species: Chacophrys pierottii, Ceratophrys cranwelli, Lepidobatrachus laevis and Lepidobatrachus llanensis.</p><p><strong>Results: </strong>We described patterns of larval development with variation in growth with consequence to the final size at the end of metamorphosis. These patterns seem to be influenced by food quantity/quality, and most predominant by animal protein. Prey items found in pre and post-metamorphic Lepidobatrachus spp. are similar. Tadpoles of Ceratophrys and Chacophrys (and other anurans) share a short cranial segment of the gut with an internal glandular, mucous secreting epithelium, a double coiled intestine and the sequence of metamorphic changes (tract is empty, the stomach differentiates and the intestine shortens abruptly). In contrast, Lepidobatrachus tadpoles have a true stomach that acquires thickness and increased glandular complexity through development. As larvae they have a short intestine without double coils, and the absence of intestine shortening during metamorphosis.</p><p><strong>Conclusions: </strong>The larval development of the gastrointestinal tract of Lepidobatrachus is unique compared with that of other free-living anuran larvae. An abrupt metamorphic transformation is missing and most of the adult structural features start to differentiate gradually at the beginning of larval stages.</p>","PeriodicalId":9130,"journal":{"name":"BMC Developmental Biology","volume":"20 1","pages":"16"},"PeriodicalIF":0.0,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7388516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38202341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-08DOI: 10.1186/s12861-020-00220-6
Susanne Katharina Schotthöfer, Johannes Bohrmann
Background: Changes in transcellular bioelectrical patterns are known to play important roles during developmental and regenerative processes. The Drosophila follicular epithelium has proven to be an appropriate model system for studying the mechanisms by which bioelectrical signals emerge and act. Fluorescent indicator dyes in combination with various inhibitors of ion-transport mechanisms have been used to investigate the generation of membrane potentials (Vmem) and intracellular pH (pHi). Both parameters as well as their anteroposterior and dorsoventral gradients were affected by the inhibitors which, in addition, led to alterations of microfilament and microtubule patterns equivalent to those observed during follicle-cell differentiation.
Results: We expressed two genetically-encoded fluorescent sensors for Vmem and pHi, ArcLight and pHluorin-Moesin, in the follicular epithelium of Drosophila. By means of the respective inhibitors, we obtained comparable effects on Vmem and/or pHi as previously described for Vmem- and pHi-sensitive fluorescent dyes. In a RNAi-knockdown screen, five genes of ion-transport mechanisms and gap-junction subunits were identified exerting influence on ovary development and/or oogenesis. Loss of ovaries or small ovaries were the results of soma knockdowns of the innexins inx1 and inx3, and of the DEG/ENaC family member ripped pocket (rpk). Germline knockdown of rpk also resulted in smaller ovaries. Soma knockdown of the V-ATPase-subunit vha55 caused size-reduced ovaries with degenerating follicles from stage 10A onward. In addition, soma knockdown of the open rectifier K+channel 1 (ork1) resulted in a characteristic round-egg phenotype with altered microfilament and microtubule organisation in the follicular epithelium.
Conclusions: The genetic tool box of Drosophila provides means for a refined and extended analysis of bioelectrical phenomena. Tissue-specifically expressed Vmem- and pHi-sensors exhibit some practical advantages compared to fluorescent indicator dyes. Their use confirms that the ion-transport mechanisms targeted by inhibitors play important roles in the generation of bioelectrical signals. Moreover, modulation of bioelectrical signals via RNAi-knockdown of genes coding for ion-transport mechanisms and gap-junction subunits exerts influence on crucial processes during ovary development and results in cytoskeletal changes and altered follicle shape. Thus, further evidence amounts for bioelectrical regulation of developmental processes via the control of both signalling pathways and cytoskeletal organisation.
{"title":"Analysing bioelectrical phenomena in the Drosophila ovary with genetic tools: tissue-specific expression of sensors for membrane potential and intracellular pH, and RNAi-knockdown of mechanisms involved in ion exchange.","authors":"Susanne Katharina Schotthöfer, Johannes Bohrmann","doi":"10.1186/s12861-020-00220-6","DOIUrl":"https://doi.org/10.1186/s12861-020-00220-6","url":null,"abstract":"<p><strong>Background: </strong>Changes in transcellular bioelectrical patterns are known to play important roles during developmental and regenerative processes. The Drosophila follicular epithelium has proven to be an appropriate model system for studying the mechanisms by which bioelectrical signals emerge and act. Fluorescent indicator dyes in combination with various inhibitors of ion-transport mechanisms have been used to investigate the generation of membrane potentials (V<sub>mem</sub>) and intracellular pH (pH<sub>i</sub>). Both parameters as well as their anteroposterior and dorsoventral gradients were affected by the inhibitors which, in addition, led to alterations of microfilament and microtubule patterns equivalent to those observed during follicle-cell differentiation.</p><p><strong>Results: </strong>We expressed two genetically-encoded fluorescent sensors for V<sub>mem</sub> and pH<sub>i</sub>, ArcLight and pHluorin-Moesin, in the follicular epithelium of Drosophila. By means of the respective inhibitors, we obtained comparable effects on V<sub>mem</sub> and/or pH<sub>i</sub> as previously described for V<sub>mem</sub>- and pH<sub>i</sub>-sensitive fluorescent dyes. In a RNAi-knockdown screen, five genes of ion-transport mechanisms and gap-junction subunits were identified exerting influence on ovary development and/or oogenesis. Loss of ovaries or small ovaries were the results of soma knockdowns of the innexins inx1 and inx3, and of the DEG/ENaC family member ripped pocket (rpk). Germline knockdown of rpk also resulted in smaller ovaries. Soma knockdown of the V-ATPase-subunit vha55 caused size-reduced ovaries with degenerating follicles from stage 10A onward. In addition, soma knockdown of the open rectifier K<sup>+</sup>channel 1 (ork1) resulted in a characteristic round-egg phenotype with altered microfilament and microtubule organisation in the follicular epithelium.</p><p><strong>Conclusions: </strong>The genetic tool box of Drosophila provides means for a refined and extended analysis of bioelectrical phenomena. Tissue-specifically expressed V<sub>mem</sub>- and pH<sub>i</sub>-sensors exhibit some practical advantages compared to fluorescent indicator dyes. Their use confirms that the ion-transport mechanisms targeted by inhibitors play important roles in the generation of bioelectrical signals. Moreover, modulation of bioelectrical signals via RNAi-knockdown of genes coding for ion-transport mechanisms and gap-junction subunits exerts influence on crucial processes during ovary development and results in cytoskeletal changes and altered follicle shape. Thus, further evidence amounts for bioelectrical regulation of developmental processes via the control of both signalling pathways and cytoskeletal organisation.</p>","PeriodicalId":9130,"journal":{"name":"BMC Developmental Biology","volume":"20 1","pages":"15"},"PeriodicalIF":0.0,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12861-020-00220-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38127749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Hazels (Corylus spp.) are economically important nut-producing species in which ovule development determines seed plumpness, one of the key parameters reflecting nut quality. microRNAs (miRNAs) play important roles in RNA silencing and the post-transcriptional regulation of gene expression. However, very little is currently known regarding the miRNAs involved in regulating ovule growth and development.
Results: In this study, we accordingly sought to determine the important miRNAs involved in ovule development and growth in hazel. We examined ovules at four developmental stages, namely, ovule formation (Ov1), early ovule growth (Ov2), rapid ovule growth (Ov3), and ovule maturity (Ov4). On the basis of small RNA and mRNA sequencing using the Illumina sequencing platform, we identified 970 miRNAs in hazel, of which 766 and 204 were known and novel miRNAs, respectively. In Ov1-vs-Ov2, Ov1-vs-Ov3, Ov1-vs-Ov4, Ov2-vs-Ov3, Ov2-vs-Ov4, and Ov3-vs-Ov4 paired comparisons, 471 differentially expressed microRNAs (DEmiRNAs) and their 3117 target differentially expressed messenger RNAs (DEmRNAs) formed 11,199 DEmiRNA/DEmRNA pairs, with each DEmiRNA changing the expression of an average of 6.62 target mRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of all DEmRNAs revealed 29 significantly enriched KEGG pathways in the six paired comparisons, including protein export (ko03060), fatty acid elongation (ko00062), starch and sucrose metabolism (ko00500), fatty acid biosynthesis (ko00061), and amino sugar and nucleotide sugar metabolism (ko00520). Our results indicate that DEmiRNA/DEmRNA pairs showing opposite change trends were related to stress tolerance, embryo and seed development, cell proliferation, auxin transduction, and the biosynthesis of proteins, starch, and fats may participate in ovule growth and development.
Conclusions: These findings contribute to a better understanding of ovule development at the level of post-transcriptional regulation, and lay the foundation for further functional analyses of hazelnut ovule growth and development.
{"title":"Identification of vital candidate microRNA/mRNA pairs regulating ovule development using high-throughput sequencing in hazel.","authors":"Jianfeng Liu, Qizheng Luo, Xingzheng Zhang, Qiang Zhang, Yunqing Cheng","doi":"10.1186/s12861-020-00219-z","DOIUrl":"10.1186/s12861-020-00219-z","url":null,"abstract":"<p><strong>Background: </strong>Hazels (Corylus spp.) are economically important nut-producing species in which ovule development determines seed plumpness, one of the key parameters reflecting nut quality. microRNAs (miRNAs) play important roles in RNA silencing and the post-transcriptional regulation of gene expression. However, very little is currently known regarding the miRNAs involved in regulating ovule growth and development.</p><p><strong>Results: </strong>In this study, we accordingly sought to determine the important miRNAs involved in ovule development and growth in hazel. We examined ovules at four developmental stages, namely, ovule formation (Ov1), early ovule growth (Ov2), rapid ovule growth (Ov3), and ovule maturity (Ov4). On the basis of small RNA and mRNA sequencing using the Illumina sequencing platform, we identified 970 miRNAs in hazel, of which 766 and 204 were known and novel miRNAs, respectively. In Ov1-vs-Ov2, Ov1-vs-Ov3, Ov1-vs-Ov4, Ov2-vs-Ov3, Ov2-vs-Ov4, and Ov3-vs-Ov4 paired comparisons, 471 differentially expressed microRNAs (DEmiRNAs) and their 3117 target differentially expressed messenger RNAs (DEmRNAs) formed 11,199 DEmiRNA/DEmRNA pairs, with each DEmiRNA changing the expression of an average of 6.62 target mRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of all DEmRNAs revealed 29 significantly enriched KEGG pathways in the six paired comparisons, including protein export (ko03060), fatty acid elongation (ko00062), starch and sucrose metabolism (ko00500), fatty acid biosynthesis (ko00061), and amino sugar and nucleotide sugar metabolism (ko00520). Our results indicate that DEmiRNA/DEmRNA pairs showing opposite change trends were related to stress tolerance, embryo and seed development, cell proliferation, auxin transduction, and the biosynthesis of proteins, starch, and fats may participate in ovule growth and development.</p><p><strong>Conclusions: </strong>These findings contribute to a better understanding of ovule development at the level of post-transcriptional regulation, and lay the foundation for further functional analyses of hazelnut ovule growth and development.</p>","PeriodicalId":9130,"journal":{"name":"BMC Developmental Biology","volume":"20 1","pages":"13"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38101866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}