Pub Date : 2024-09-26DOI: 10.1038/s41413-024-00358-0
Manyu Zhu, Ji-Hye Yea, Zhao Li, Qizhi Qin, Mingxin Xu, Xin Xing, Stefano Negri, Mary Archer, Monisha Mittal, Benjamin Levi, Aaron W. James
Heterotopic ossification (HO) is a pathological process that commonly arises following severe polytrauma, characterized by the anomalous differentiation of mesenchymal progenitor cells and resulting in the formation of ectopic bone in non-skeletal tissues. This abnormal bone growth contributes to pain and reduced mobility, especially when adjacent to a joint. Our prior observations suggested an essential role of NGF (Nerve Growth Factor)-responsive TrkA (Tropomyosin Receptor Kinase A)-expressing peripheral nerves in regulating abnormal osteochondral differentiation following tendon injury. Here, we utilized a recently developed mouse model of hip arthroplasty-induced HO to further validate the role of peripheral nerve regulation of traumatic HO. Nerve ingrowth was either modulated using a knockin transgenic animals with point mutation in TrkA, or local treatment with an FDA-approved formulation of long acting Bupivacaine which prevents peripheral nerve growth. Results demonstrate exuberant sensory and sympathetic nerve growth within the peri-articular HO site, and that both methods to reduce local innervation significantly reduced heterotopic bone formation. TrkA inhibition led to a 34% reduction in bone volume, while bupivacaine treatment resulted in a 50% decrease. Mechanistically, alterations in TGFβ and FGF signaling activation accompanied both methods of local denervation, and a shift in macrophages from M1 to M2 phenotypes was observed. In sum, these studies reinforce the observations that peripheral nerves play a role in the etiopathogenesis of HO, and that targeting local nerves represents a potential therapeutic approach for disease prevention.
异位骨化(HO)是一种常见于严重多发性创伤后的病理过程,其特点是间充质祖细胞异常分化,导致在非骨骼组织中形成异位骨。这种异常骨质增生会导致疼痛和活动能力下降,尤其是在关节附近。我们之前的观察表明,表达神经生长因子(NGF)的外周神经对肌腱损伤后异常骨软骨分化的调节起着至关重要的作用。在这里,我们利用最近开发的髋关节置换术诱发HO的小鼠模型来进一步验证外周神经在创伤性HO中的调控作用。神经生长可通过TrkA点突变的基因敲除转基因动物进行调节,或使用美国食品及药物管理局批准的长效布比卡因制剂进行局部治疗,从而阻止外周神经生长。结果表明,HO 关节周围部位的感觉神经和交感神经生长旺盛,这两种减少局部神经支配的方法都能显著减少异位骨的形成。TrkA抑制导致骨量减少34%,而布比卡因治疗导致骨量减少50%。从机理上讲,TGFβ和FGF信号激活的改变伴随着这两种局部神经支配方法,并且观察到巨噬细胞从M1表型转变为M2表型。总之,这些研究进一步证实了外周神经在 HO 的发病机制中扮演着重要角色,针对局部神经的治疗是一种潜在的疾病预防方法。
{"title":"Pharmacologic or genetic targeting of peripheral nerves prevents peri-articular traumatic heterotopic ossification","authors":"Manyu Zhu, Ji-Hye Yea, Zhao Li, Qizhi Qin, Mingxin Xu, Xin Xing, Stefano Negri, Mary Archer, Monisha Mittal, Benjamin Levi, Aaron W. James","doi":"10.1038/s41413-024-00358-0","DOIUrl":"https://doi.org/10.1038/s41413-024-00358-0","url":null,"abstract":"<p>Heterotopic ossification (HO) is a pathological process that commonly arises following severe polytrauma, characterized by the anomalous differentiation of mesenchymal progenitor cells and resulting in the formation of ectopic bone in non-skeletal tissues. This abnormal bone growth contributes to pain and reduced mobility, especially when adjacent to a joint. Our prior observations suggested an essential role of NGF (Nerve Growth Factor)-responsive TrkA (Tropomyosin Receptor Kinase A)-expressing peripheral nerves in regulating abnormal osteochondral differentiation following tendon injury. Here, we utilized a recently developed mouse model of hip arthroplasty-induced HO to further validate the role of peripheral nerve regulation of traumatic HO. Nerve ingrowth was either modulated using a knockin transgenic animals with point mutation in TrkA, or local treatment with an FDA-approved formulation of long acting Bupivacaine which prevents peripheral nerve growth. Results demonstrate exuberant sensory and sympathetic nerve growth within the peri-articular HO site, and that both methods to reduce local innervation significantly reduced heterotopic bone formation. TrkA inhibition led to a 34% reduction in bone volume, while bupivacaine treatment resulted in a 50% decrease. Mechanistically, alterations in TGFβ and FGF signaling activation accompanied both methods of local denervation, and a shift in macrophages from M1 to M2 phenotypes was observed. In sum, these studies reinforce the observations that peripheral nerves play a role in the etiopathogenesis of HO, and that targeting local nerves represents a potential therapeutic approach for disease prevention.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"77 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Intervertebral disc degeneration (IDD) is a major cause of discogenic pain, and is attributed to the dysfunction of nucleus pulposus, annulus fibrosus, and cartilaginous endplate (CEP). Osteopontin (OPN), a glycoprotein, is highly expressed in the CEP. However, little is known on how OPN regulates CEP homeostasis and degeneration, contributing to the pathogenesis of IDD. Here, we investigate the roles of OPN in CEP degeneration in a mouse IDD model induced by lumbar spine instability and its impact on the degeneration of endplate chondrocytes (EPCs) under pathological conditions. OPN is mainly expressed in the CEP and decreases with degeneration in mice and human patients with severe IDD. Conditional Spp1 knockout in EPCs of adult mice enhances age-related CEP degeneration and accelerates CEP remodeling during IDD. Mechanistically, OPN deficiency increases CCL2 and CCL5 production in EPCs to recruit macrophages and enhances the activation of NLRP3 inflammasome and NF-κB signaling by facilitating assembly of IRAK1-TRAF6 complex, deteriorating CEP degeneration in a spatiotemporal pattern. More importantly, pharmacological inhibition of the NF-κB/NLRP3 axis attenuates CEP degeneration in OPN-deficient IDD mice. Overall, this study highlights the importance of OPN in maintaining CEP and disc homeostasis, and proposes a promising therapeutic strategy for IDD by targeting the NF-κB/NLRP3 axis.
{"title":"Osteopontin deficiency promotes cartilaginous endplate degeneration by enhancing the NF-κB signaling to recruit macrophages and activate the NLRP3 inflammasome","authors":"Yanqiu Wang, Wanqian Zhang, Yi Yang, Jinghao Qin, Ruoyu Wang, Shuai Wang, Wenjuan Fu, Qin Niu, Yanxia Wang, Changqing Li, Hongli Li, Yue Zhou, Minghan Liu","doi":"10.1038/s41413-024-00355-3","DOIUrl":"https://doi.org/10.1038/s41413-024-00355-3","url":null,"abstract":"<p>Intervertebral disc degeneration (IDD) is a major cause of discogenic pain, and is attributed to the dysfunction of nucleus pulposus, annulus fibrosus, and cartilaginous endplate (CEP). Osteopontin (OPN), a glycoprotein, is highly expressed in the CEP. However, little is known on how OPN regulates CEP homeostasis and degeneration, contributing to the pathogenesis of IDD. Here, we investigate the roles of OPN in CEP degeneration in a mouse IDD model induced by lumbar spine instability and its impact on the degeneration of endplate chondrocytes (EPCs) under pathological conditions. OPN is mainly expressed in the CEP and decreases with degeneration in mice and human patients with severe IDD. Conditional <i>Spp1</i> knockout in EPCs of adult mice enhances age-related CEP degeneration and accelerates CEP remodeling during IDD. Mechanistically, OPN deficiency increases CCL2 and CCL5 production in EPCs to recruit macrophages and enhances the activation of NLRP3 inflammasome and NF-κB signaling by facilitating assembly of IRAK1-TRAF6 complex, deteriorating CEP degeneration in a spatiotemporal pattern. More importantly, pharmacological inhibition of the NF-κB/NLRP3 axis attenuates CEP degeneration in OPN-deficient IDD mice. Overall, this study highlights the importance of OPN in maintaining CEP and disc homeostasis, and proposes a promising therapeutic strategy for IDD by targeting the NF-κB/NLRP3 axis.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"147 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1038/s41413-024-00352-6
Zhenqiang Yao, Akram Ayoub, Venkatesan Srinivasan, Jun Wu, Churou Tang, Rong Duan, Aleksa Milosavljevic, Lianping Xing, Frank H Ebetino, Alison J Frontier, Brendan F Boyce
Osteoporosis remains incurable. The most widely used antiresorptive agents, bisphosphonates (BPs), also inhibit bone formation, while the anabolic agent, teriparatide, does not inhibit bone resorption, and thus they have limited efficacy in preventing osteoporotic fractures and cause some side effects. Thus, there is an unmet need to develop dual antiresorptive and anabolic agents to prevent and treat osteoporosis. Hydroxychloroquine (HCQ), which is used to treat rheumatoid arthritis, prevents the lysosomal degradation of TNF receptor-associated factor 3 (TRAF3), an NF-κB adaptor protein that limits bone resorption and maintains bone formation. We attempted to covalently link HCQ to a hydroxyalklyl BP (HABP) with anticipated low antiresorptive activity, to target delivery of HCQ to bone to test if this targeting increases its efficacy to prevent TRAF3 degradation in the bone microenvironment and thus reduce bone resorption and increase bone formation, while reducing its systemic side effects. Unexpectedly, HABP-HCQ was found to exist as a salt in aqueous solution, composed of a protonated HCQ cation and a deprotonated HABP anion. Nevertheless, it inhibited osteoclastogenesis, stimulated osteoblast differentiation, and increased TRAF3 protein levels in vitro. HABP-HCQ significantly inhibited both osteoclast formation and bone marrow fibrosis in mice given multiple daily PTH injections. In contrast, HCQ inhibited marrow fibrosis, but not osteoclast formation, while the HABP alone inhibited osteoclast formation, but not fibrosis, in the mice. HABP-HCQ, but not HCQ, prevented trabecular bone loss following ovariectomy in mice and, importantly, increased bone volume in ovariectomized mice with established bone loss because HABP-HCQ increased bone formation and decreased bone resorption parameters simultaneously. In contrast, HCQ increased bone formation, but did not decrease bone resorption parameters, while HABP also restored the bone lost in ovariectomized mice, but it inhibited parameters of both bone resorption and formation. Our findings suggest that the combination of HABP and HCQ could have dual antiresorptive and anabolic effects to prevent and treat osteoporosis.
{"title":"Hydroxychloroquine and a low antiresorptive activity bisphosphonate conjugate prevent and reverse ovariectomy-induced bone loss in mice through dual antiresorptive and anabolic effects.","authors":"Zhenqiang Yao, Akram Ayoub, Venkatesan Srinivasan, Jun Wu, Churou Tang, Rong Duan, Aleksa Milosavljevic, Lianping Xing, Frank H Ebetino, Alison J Frontier, Brendan F Boyce","doi":"10.1038/s41413-024-00352-6","DOIUrl":"10.1038/s41413-024-00352-6","url":null,"abstract":"<p><p>Osteoporosis remains incurable. The most widely used antiresorptive agents, bisphosphonates (BPs), also inhibit bone formation, while the anabolic agent, teriparatide, does not inhibit bone resorption, and thus they have limited efficacy in preventing osteoporotic fractures and cause some side effects. Thus, there is an unmet need to develop dual antiresorptive and anabolic agents to prevent and treat osteoporosis. Hydroxychloroquine (HCQ), which is used to treat rheumatoid arthritis, prevents the lysosomal degradation of TNF receptor-associated factor 3 (TRAF3), an NF-κB adaptor protein that limits bone resorption and maintains bone formation. We attempted to covalently link HCQ to a hydroxyalklyl BP (HABP) with anticipated low antiresorptive activity, to target delivery of HCQ to bone to test if this targeting increases its efficacy to prevent TRAF3 degradation in the bone microenvironment and thus reduce bone resorption and increase bone formation, while reducing its systemic side effects. Unexpectedly, HABP-HCQ was found to exist as a salt in aqueous solution, composed of a protonated HCQ cation and a deprotonated HABP anion. Nevertheless, it inhibited osteoclastogenesis, stimulated osteoblast differentiation, and increased TRAF3 protein levels in vitro. HABP-HCQ significantly inhibited both osteoclast formation and bone marrow fibrosis in mice given multiple daily PTH injections. In contrast, HCQ inhibited marrow fibrosis, but not osteoclast formation, while the HABP alone inhibited osteoclast formation, but not fibrosis, in the mice. HABP-HCQ, but not HCQ, prevented trabecular bone loss following ovariectomy in mice and, importantly, increased bone volume in ovariectomized mice with established bone loss because HABP-HCQ increased bone formation and decreased bone resorption parameters simultaneously. In contrast, HCQ increased bone formation, but did not decrease bone resorption parameters, while HABP also restored the bone lost in ovariectomized mice, but it inhibited parameters of both bone resorption and formation. Our findings suggest that the combination of HABP and HCQ could have dual antiresorptive and anabolic effects to prevent and treat osteoporosis.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"12 1","pages":"52"},"PeriodicalIF":14.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1038/s41413-024-00356-2
Yilun Wu, Bing Sun, Ying Tang, Aining Shen, Yanlin Lin, Xiaohui Zhao, Jingui Li, Michael J. Monteiro, Wenyi Gu
There are currently no targeted delivery systems to satisfactorily treat bone-related disorders. Many clinical drugs consisting of small organic molecules have a short circulation half-life and do not effectively reach the diseased tissue site. This coupled with repeatedly high dose usage that leads to severe side effects. With the advance in nanotechnology, drugs contained within a nano-delivery device or drugs aggregated into nanoparticles (nano-drugs) have shown promises in targeted drug delivery. The ability to design nanoparticles to target bone has attracted many researchers to develop new systems for treating bone related diseases and even repurposing current drug therapies. In this review, we shall summarise the latest progress in this area and present a perspective for future development in the field. We will focus on calcium-based nanoparticle systems that modulate calcium metabolism and consequently, the bone microenvironment to inhibit disease progression (including cancer). We shall also review the bone affinity drug family, bisphosphonates, as both a nano-drug and nano-delivery system for bone targeted therapy. The ability to target and release the drug in a controlled manner at the disease site represents a promising safe therapy to treat bone diseases in the future.
{"title":"Bone targeted nano-drug and nano-delivery","authors":"Yilun Wu, Bing Sun, Ying Tang, Aining Shen, Yanlin Lin, Xiaohui Zhao, Jingui Li, Michael J. Monteiro, Wenyi Gu","doi":"10.1038/s41413-024-00356-2","DOIUrl":"https://doi.org/10.1038/s41413-024-00356-2","url":null,"abstract":"<p>There are currently no targeted delivery systems to satisfactorily treat bone-related disorders. Many clinical drugs consisting of small organic molecules have a short circulation half-life and do not effectively reach the diseased tissue site. This coupled with repeatedly high dose usage that leads to severe side effects. With the advance in nanotechnology, drugs contained within a nano-delivery device or drugs aggregated into nanoparticles (nano-drugs) have shown promises in targeted drug delivery. The ability to design nanoparticles to target bone has attracted many researchers to develop new systems for treating bone related diseases and even repurposing current drug therapies. In this review, we shall summarise the latest progress in this area and present a perspective for future development in the field. We will focus on calcium-based nanoparticle systems that modulate calcium metabolism and consequently, the bone microenvironment to inhibit disease progression (including cancer). We shall also review the bone affinity drug family, bisphosphonates, as both a nano-drug and nano-delivery system for bone targeted therapy. The ability to target and release the drug in a controlled manner at the disease site represents a promising safe therapy to treat bone diseases in the future.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"9 8 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1038/s41413-024-00357-1
Panpan Yang, Yun Xiao, Liangyu Chen, Chengliang Yang, Qinwei Cheng, Honghao Li, Dalin Chen, Junfeng Wu, Zhengquan Liao, Changsheng Yang, Chong Wang, Hong Wang, Bin Huang, Ee Ke, Xiaochun Bai, Kai Li
Osteoarthritis (OA) is the most common form of arthritic disease, and phenotypic modification of chondrocytes is an important mechanism that contributes to the loss of cartilage homeostasis. This study identified that Fascin actin-bundling protein 1 (FSCN1) plays a pivotal role in regulating chondrocytes phenotype and maintaining cartilage homeostasis. Proteome-wide screening revealed markedly upregulated FSCN1 protein expression in human OA cartilage. FSCN1 accumulation was confirmed in the superficial layer of OA cartilage from humans and mice, primarily in dedifferentiated-like chondrocytes, associated with enhanced actin stress fiber formation and upregulated type I and III collagens. FSCN1-inducible knockout mice exhibited delayed cartilage degeneration following experimental OA surgery. Mechanistically, FSCN1 promoted actin polymerization and disrupted the inhibition of Decorin on TGF-β1, leading to excessive TGF-β1 production and ALK1/Smad1/5 signaling activation, thus, accelerated chondrocyte dedifferentiation. Intra-articular injection of FSCN1-overexpressing adeno-associated virus exacerbated OA progression in mice, which was mitigated by an ALK1 inhibitor. Moreover, FSCN1 inhibitor NP-G2-044 effectively reduced extracellular matrix degradation in OA mice, cultured human OA chondrocytes, and cartilage explants by suppressing ALK1/Smad1/5 signaling. These findings suggest that targeting FSCN1 represents a promising therapeutic approach for OA.
骨关节炎(OA)是最常见的关节炎疾病,而软骨细胞的表型改变是导致软骨失去平衡的重要机制。本研究发现,Fascin肌动蛋白束缚蛋白1(FSCN1)在调控软骨细胞表型和维持软骨稳态方面发挥着关键作用。全蛋白质组筛选发现,在人类 OA 软骨中,FSCN1 蛋白表达明显上调。FSCN1在人和小鼠OA软骨表层的积聚得到证实,主要是在已分化的类软骨细胞中,与肌动蛋白应力纤维形成的增强以及I型和III型胶原的上调有关。FSCN1 诱导的基因敲除小鼠在实验性 OA 手术后表现出延迟的软骨退化。从机制上讲,FSCN1促进了肌动蛋白聚合,破坏了Decorin对TGF-β1的抑制作用,导致TGF-β1产生过多和ALK1/Smad1/5信号激活,从而加速了软骨细胞的去分化。关节内注射FSCN1表达的腺相关病毒会加剧小鼠的OA进展,而ALK1抑制剂可减轻这种情况。此外,FSCN1抑制剂NP-G2-044通过抑制ALK1/Smad1/5信号传导,有效减少了OA小鼠、培养的人类OA软骨细胞和软骨外植体的细胞外基质降解。这些研究结果表明,靶向 FSCN1 是治疗 OA 的一种很有前景的方法。
{"title":"Targeting Fascin1 maintains chondrocytes phenotype and attenuates osteoarthritis development","authors":"Panpan Yang, Yun Xiao, Liangyu Chen, Chengliang Yang, Qinwei Cheng, Honghao Li, Dalin Chen, Junfeng Wu, Zhengquan Liao, Changsheng Yang, Chong Wang, Hong Wang, Bin Huang, Ee Ke, Xiaochun Bai, Kai Li","doi":"10.1038/s41413-024-00357-1","DOIUrl":"https://doi.org/10.1038/s41413-024-00357-1","url":null,"abstract":"<p>Osteoarthritis (OA) is the most common form of arthritic disease, and phenotypic modification of chondrocytes is an important mechanism that contributes to the loss of cartilage homeostasis. This study identified that Fascin actin-bundling protein 1 (FSCN1) plays a pivotal role in regulating chondrocytes phenotype and maintaining cartilage homeostasis. Proteome-wide screening revealed markedly upregulated FSCN1 protein expression in human OA cartilage. FSCN1 accumulation was confirmed in the superficial layer of OA cartilage from humans and mice, primarily in dedifferentiated-like chondrocytes, associated with enhanced actin stress fiber formation and upregulated type I and III collagens. FSCN1-inducible knockout mice exhibited delayed cartilage degeneration following experimental OA surgery. Mechanistically, FSCN1 promoted actin polymerization and disrupted the inhibition of Decorin on TGF-β1, leading to excessive TGF-β1 production and ALK1/Smad1/5 signaling activation, thus, accelerated chondrocyte dedifferentiation. Intra-articular injection of FSCN1-overexpressing adeno-associated virus exacerbated OA progression in mice, which was mitigated by an ALK1 inhibitor. Moreover, FSCN1 inhibitor NP-G2-044 effectively reduced extracellular matrix degradation in OA mice, cultured human OA chondrocytes, and cartilage explants by suppressing ALK1/Smad1/5 signaling. These findings suggest that targeting FSCN1 represents a promising therapeutic approach for OA.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"7 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osteoclast is critical in skeletal development and fracture healing, yet the impact and underlying mechanisms of their metabolic state on these processes remain unclear. Here, by using osteoclast-specific small GTPase Rheb1-knockout mice, we reveal that mitochondrial respiration, rather than glycolysis, is essential for cathepsin K (CTSK) production in osteoclasts and is regulated by Rheb1 in a mechanistic target of rapamycin complex 1 (mTORC1)-independent manner. Mechanistically, we find that Rheb1 coordinates with mitochondrial acetyl-CoA generation to fuel CTSK, and acetyl-CoA availability in osteoclasts is the central to elevating CTSK. Importantly, our findings demonstrate that the regulation of CTSK by acetyl-CoA availability is critical and may confer a risk for abnormal endochondral ossification, which may be the main cause of poor fracture healing on alcohol consumption, targeting Rheb1 could successfully against the process. These findings uncover a pivotal role of mitochondria in osteoclasts and provide a potent therapeutic opportunity in bone disorders.
{"title":"Osteoclasts control endochondral ossification via regulating acetyl-CoA availability","authors":"Daizhao Deng, Xianming Liu, Wenlan Huang, Sirui Yuan, Genming Liu, Shanshan Ai, Yijie Fu, Haokun Xu, Xinyi Zhang, Shihai Li, Song Xu, Xiaochun Bai, Yue Zhang","doi":"10.1038/s41413-024-00360-6","DOIUrl":"https://doi.org/10.1038/s41413-024-00360-6","url":null,"abstract":"<p>Osteoclast is critical in skeletal development and fracture healing, yet the impact and underlying mechanisms of their metabolic state on these processes remain unclear. Here, by using osteoclast-specific small GTPase Rheb1-knockout mice, we reveal that mitochondrial respiration, rather than glycolysis, is essential for cathepsin K (CTSK) production in osteoclasts and is regulated by Rheb1 in a mechanistic target of rapamycin complex 1 (mTORC1)-independent manner. Mechanistically, we find that Rheb1 coordinates with mitochondrial acetyl-CoA generation to fuel CTSK, and acetyl-CoA availability in osteoclasts is the central to elevating CTSK. Importantly, our findings demonstrate that the regulation of CTSK by acetyl-CoA availability is critical and may confer a risk for abnormal endochondral ossification, which may be the main cause of poor fracture healing on alcohol consumption, targeting Rheb1 could successfully against the process. These findings uncover a pivotal role of mitochondria in osteoclasts and provide a potent therapeutic opportunity in bone disorders.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"22 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osteoclasts are multinucleated bone-resorbing cells, and their formation is tightly regulated to prevent excessive bone loss. However, the mechanisms by which osteoclast formation is restricted remain incompletely determined. Here, we found that sterol regulatory element binding protein 2 (SREBP2) functions as a negative regulator of osteoclast formation and inflammatory bone loss. Cholesterols and SREBP2, a key transcription factor for cholesterol biosynthesis, increased in the late phase of osteoclastogenesis. The ablation of SREBP2 in myeloid cells resulted in increased in vivo and in vitro osteoclastogenesis, leading to low bone mass. Moreover, deletion of SREBP2 accelerated inflammatory bone destruction in murine inflammatory osteolysis and arthritis models. SREBP2-mediated regulation of osteoclastogenesis is independent of its canonical function in cholesterol biosynthesis but is mediated, in part, by its downstream target, interferon regulatory factor 7 (IRF7). Taken together, our study highlights a previously undescribed role of the SREBP2-IRF7 regulatory circuit as a negative feedback loop in osteoclast differentiation and represents a novel mechanism to restrain pathological bone destruction.
{"title":"SREBP2 restricts osteoclast differentiation and activity by regulating IRF7 and limits inflammatory bone erosion.","authors":"Haemin Kim, In Ah Choi, Akio Umemoto, Seyeon Bae, Kaichi Kaneko, Masataka Mizuno, Eugenia Giannopoulou, Tania Pannellini, Liang Deng, Kyung-Hyun Park-Min","doi":"10.1038/s41413-024-00354-4","DOIUrl":"10.1038/s41413-024-00354-4","url":null,"abstract":"<p><p>Osteoclasts are multinucleated bone-resorbing cells, and their formation is tightly regulated to prevent excessive bone loss. However, the mechanisms by which osteoclast formation is restricted remain incompletely determined. Here, we found that sterol regulatory element binding protein 2 (SREBP2) functions as a negative regulator of osteoclast formation and inflammatory bone loss. Cholesterols and SREBP2, a key transcription factor for cholesterol biosynthesis, increased in the late phase of osteoclastogenesis. The ablation of SREBP2 in myeloid cells resulted in increased in vivo and in vitro osteoclastogenesis, leading to low bone mass. Moreover, deletion of SREBP2 accelerated inflammatory bone destruction in murine inflammatory osteolysis and arthritis models. SREBP2-mediated regulation of osteoclastogenesis is independent of its canonical function in cholesterol biosynthesis but is mediated, in part, by its downstream target, interferon regulatory factor 7 (IRF7). Taken together, our study highlights a previously undescribed role of the SREBP2-IRF7 regulatory circuit as a negative feedback loop in osteoclast differentiation and represents a novel mechanism to restrain pathological bone destruction.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"12 1","pages":"48"},"PeriodicalIF":14.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350122/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1038/s41413-024-00350-8
Kun Li, Bo Yang, Yingying Du, Yi Ding, Shihui Shen, Zhengwang Sun, Yun Liu, Yuhan Wang, Siyuan Cao, Wenjie Ren, Xiangyu Wang, Mengjuan Li, Yunpeng Zhang, Juan Wu, Wei Zheng, Wangjun Yan, Lei Li
While KRAS mutation is the leading cause of low survival rates in lung cancer bone metastasis patients, effective treatments are still lacking. Here, we identified homeobox C10 (HOXC10) as a lynchpin in pan-KRAS-mutant lung cancer bone metastasis. Through RNA-seq approach and patient tissue studies, we demonstrated that HOXC10 expression was dramatically increased. Genetic depletion of HOXC10 preferentially impeded cell proliferation and migration in vitro. The bioluminescence imaging and micro-CT results demonstrated that inhibition of HOXC10 significantly reduced bone metastasis of KRAS-mutant lung cancer in vivo. Mechanistically, the transcription factor HOXC10 activated NOD1/ERK signaling pathway to reprogram epithelial-mesenchymal transition (EMT) and bone microenvironment by activating the NOD1 promoter. Strikingly, inhibition of HOXC10 in combination with STAT3 inhibitor was effective against KRAS-mutant lung cancer bone metastasis by triggering ferroptosis. Taken together, these findings reveal that HOXC10 effectively alleviates pan-KRAS-mutant lung cancer with bone metastasis in the NOD1/ERK axis-dependent manner, and support further development of an effective combinatorial strategy for this kind of disease.
{"title":"The HOXC10/NOD1/ERK axis drives osteolytic bone metastasis of pan-KRAS-mutant lung cancer.","authors":"Kun Li, Bo Yang, Yingying Du, Yi Ding, Shihui Shen, Zhengwang Sun, Yun Liu, Yuhan Wang, Siyuan Cao, Wenjie Ren, Xiangyu Wang, Mengjuan Li, Yunpeng Zhang, Juan Wu, Wei Zheng, Wangjun Yan, Lei Li","doi":"10.1038/s41413-024-00350-8","DOIUrl":"10.1038/s41413-024-00350-8","url":null,"abstract":"<p><p>While KRAS mutation is the leading cause of low survival rates in lung cancer bone metastasis patients, effective treatments are still lacking. Here, we identified homeobox C10 (HOXC10) as a lynchpin in pan-KRAS-mutant lung cancer bone metastasis. Through RNA-seq approach and patient tissue studies, we demonstrated that HOXC10 expression was dramatically increased. Genetic depletion of HOXC10 preferentially impeded cell proliferation and migration in vitro. The bioluminescence imaging and micro-CT results demonstrated that inhibition of HOXC10 significantly reduced bone metastasis of KRAS-mutant lung cancer in vivo. Mechanistically, the transcription factor HOXC10 activated NOD1/ERK signaling pathway to reprogram epithelial-mesenchymal transition (EMT) and bone microenvironment by activating the NOD1 promoter. Strikingly, inhibition of HOXC10 in combination with STAT3 inhibitor was effective against KRAS-mutant lung cancer bone metastasis by triggering ferroptosis. Taken together, these findings reveal that HOXC10 effectively alleviates pan-KRAS-mutant lung cancer with bone metastasis in the NOD1/ERK axis-dependent manner, and support further development of an effective combinatorial strategy for this kind of disease.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"12 1","pages":"47"},"PeriodicalIF":14.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1038/s41413-024-00349-1
Na Li, Baohong Shi, Zan Li, Jie Han, Jun Sun, Haitao Huang, Alisha R Yallowitz, Seoyeon Bok, Shuang Xiao, Zuoxing Wu, Yu Chen, Yan Xu, Tian Qin, Rui Huang, Haiping Zheng, Rong Shen, Lin Meng, Matthew B Greenblatt, Ren Xu
Osteogenesis imperfecta (OI) is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding type I collagen. While it is well known that OI reflects defects in the activity of bone-forming osteoblasts, it is currently unclear whether OI also reflects defects in the many other cell types comprising bone, including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility. Here, we find that numbers of skeletal stem cells (SSCs) and skeletal arterial endothelial cells (AECs) are augmented in Col1a2oim/oim mice, a well-studied animal model of moderate to severe OI, suggesting that disruption of a vascular SSC niche is a feature of OI pathogenesis. Moreover, crossing Col1a2oim/oim mice to mice lacking a negative regulator of skeletal angiogenesis and bone formation, Schnurri 3 (SHN3), not only corrected the SSC and AEC phenotypes but moreover robustly corrected the bone mass and spontaneous fracture phenotypes. As this finding suggested a strong therapeutic utility of SHN3 inhibition for the treatment of OI, a bone-targeting AAV was used to mediate Shn3 knockdown, rescuing the Col1a2oim/oim phenotype and providing therapeutic proof-of-concept for targeting SHN3 for the treatment of OI. Overall, this work both provides proof-of-concept for inhibition of the SHN3 pathway and more broadly addressing defects in the stem/osteoprogenitor niche as is a strategy to treat OI.
成骨不全症(OI)是一种骨量低和骨折风险增加的疾病,由一系列基因变异引起,主要包括编码 I 型胶原蛋白的基因突变。众所周知,OI 反映了成骨细胞活性的缺陷,但目前还不清楚 OI 是否也反映了组成骨骼的许多其他细胞类型的缺陷,包括骨骼血管内皮细胞或产生成骨细胞的骨骼干细胞群的缺陷,也不清楚纠正这些更广泛的缺陷是否有治疗作用。在这里,我们发现,在Col1a2oim/oim小鼠体内,骨骼干细胞(SSCs)和骨骼动脉内皮细胞(AECs)的数量增加了,Col1a2oim/oim小鼠是一种经过充分研究的中重度OI动物模型,这表明血管SSC生态位的破坏是OI发病机制的一个特征。此外,将Col1a2oim/oim小鼠与缺乏骨骼血管生成和骨形成负调控因子Schnurri 3(SHN3)的小鼠杂交,不仅能纠正SSC和AEC表型,还能有力地纠正骨量和自发性骨折表型。由于这一发现表明抑制 SHN3 对治疗 OI 有很强的治疗作用,研究人员使用骨靶向 AAV 来介导 Shn3 敲除,从而挽救了 Col1a2oim/oim 表型,并为靶向 SHN3 治疗 OI 提供了治疗概念验证。总之,这项工作既为抑制SHN3通路提供了概念验证,也更广泛地解决了干细胞/造血干细胞生态位的缺陷,是治疗OI的一种策略。
{"title":"Schnurri-3 inhibition rescues skeletal fragility and vascular skeletal stem cell niche pathology in the OIM model of osteogenesis imperfecta.","authors":"Na Li, Baohong Shi, Zan Li, Jie Han, Jun Sun, Haitao Huang, Alisha R Yallowitz, Seoyeon Bok, Shuang Xiao, Zuoxing Wu, Yu Chen, Yan Xu, Tian Qin, Rui Huang, Haiping Zheng, Rong Shen, Lin Meng, Matthew B Greenblatt, Ren Xu","doi":"10.1038/s41413-024-00349-1","DOIUrl":"10.1038/s41413-024-00349-1","url":null,"abstract":"<p><p>Osteogenesis imperfecta (OI) is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding type I collagen. While it is well known that OI reflects defects in the activity of bone-forming osteoblasts, it is currently unclear whether OI also reflects defects in the many other cell types comprising bone, including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility. Here, we find that numbers of skeletal stem cells (SSCs) and skeletal arterial endothelial cells (AECs) are augmented in Col1a2<sup>oim/oim</sup> mice, a well-studied animal model of moderate to severe OI, suggesting that disruption of a vascular SSC niche is a feature of OI pathogenesis. Moreover, crossing Col1a2<sup>oim/oim</sup> mice to mice lacking a negative regulator of skeletal angiogenesis and bone formation, Schnurri 3 (SHN3), not only corrected the SSC and AEC phenotypes but moreover robustly corrected the bone mass and spontaneous fracture phenotypes. As this finding suggested a strong therapeutic utility of SHN3 inhibition for the treatment of OI, a bone-targeting AAV was used to mediate Shn3 knockdown, rescuing the Col1a2<sup>oim/oim</sup> phenotype and providing therapeutic proof-of-concept for targeting SHN3 for the treatment of OI. Overall, this work both provides proof-of-concept for inhibition of the SHN3 pathway and more broadly addressing defects in the stem/osteoprogenitor niche as is a strategy to treat OI.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"12 1","pages":"46"},"PeriodicalIF":14.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345453/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142054853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1038/s41413-024-00351-7
Ziwei Luo, Wanyi Wei, Dawei Qiu, Zixia Su, Liangpu Liu, Honghai Zhou, Hao Cui, Li Yang
Bone marrow stromal/stem cells (BMSCs) are generally considered as common progenitors for both osteoblasts and adipocytes in the bone marrow, but show preferential differentiation into adipocytes rather than osteoblasts under aging, thus leading to senile osteoporosis. Accumulated evidences indicate that rejuvenation of BMSCs by autophagic enhancement delays bone aging. Here we synthetized and demonstrated a novel autophagy activator, CXM102 that could induce autophagy in aged BMSCs, resulting in rejuvenation and preferential differentiation into osteoblasts of BMSCs. Furthermore, CXM102 significantly stimulated bone anabolism, reduced marrow adipocytes, and delayed bone loss in middle-age male mice. Mechanistically, CXM102 promoted transcription factor EB (TFEB) nuclear translocation and favored osteoblasts formation both in vitro and in vivo. Moreover, CXM102 decreased serum levels of inflammation and reduced organ fibrosis, leading to a prolonger lifespan in male mice. Our results indicated that CXM102 could be used as an autophagy inducer to rejuvenate BMSCs and shed new lights on strategies for senile osteoporosis and healthyspan improvement.
{"title":"Rejuvenation of BMSCs senescence by pharmacological enhancement of TFEB-mediated autophagy alleviates aged-related bone loss and extends lifespan in middle aged mice.","authors":"Ziwei Luo, Wanyi Wei, Dawei Qiu, Zixia Su, Liangpu Liu, Honghai Zhou, Hao Cui, Li Yang","doi":"10.1038/s41413-024-00351-7","DOIUrl":"10.1038/s41413-024-00351-7","url":null,"abstract":"<p><p>Bone marrow stromal/stem cells (BMSCs) are generally considered as common progenitors for both osteoblasts and adipocytes in the bone marrow, but show preferential differentiation into adipocytes rather than osteoblasts under aging, thus leading to senile osteoporosis. Accumulated evidences indicate that rejuvenation of BMSCs by autophagic enhancement delays bone aging. Here we synthetized and demonstrated a novel autophagy activator, CXM102 that could induce autophagy in aged BMSCs, resulting in rejuvenation and preferential differentiation into osteoblasts of BMSCs. Furthermore, CXM102 significantly stimulated bone anabolism, reduced marrow adipocytes, and delayed bone loss in middle-age male mice. Mechanistically, CXM102 promoted transcription factor EB (TFEB) nuclear translocation and favored osteoblasts formation both in vitro and in vivo. Moreover, CXM102 decreased serum levels of inflammation and reduced organ fibrosis, leading to a prolonger lifespan in male mice. Our results indicated that CXM102 could be used as an autophagy inducer to rejuvenate BMSCs and shed new lights on strategies for senile osteoporosis and healthyspan improvement.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"12 1","pages":"45"},"PeriodicalIF":14.3,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}