Intervertebral disc degeneration (IVDD) is the primary contributor to a range of spinal diseases. Dynamin-related protein 1 (Drp1)-mediated mitochondrial fission has recently been identified as a new cause of nucleus pulposus cell (NPC) death and IVDD, but the underlying mechanisms remain unclear. Although the effects of Drp1 phosphorylation in IVDD have been studied, it is currently unknown if small ubiquitin-like modifications (SUMOylation) of Drp1 regulate IVDD. This study aimed to investigate the functions and mechanisms of mitochondria-anchored protein ligase (MAPL), a mitochondrial SUMO E3 ligase, during IVDD progression. The expression of genes related to SUMOylation and mitochondrial dynamics in TNF-α-stimulated NPCs was analysed via RNA sequencing. The levels of total and mitochondrial SUMO1 conjugates were elevated with MAPL upregulation in TNF-α-treated NPCs. Additionally, mitochondrial fragmentation and dysfunction were induced by TNF-α stimulation. MAPL overexpression promoted mitochondrial SUMOylation and SUMO1 modification of Drp1, thereby facilitating the mitochondrial translocation of Drp1 and mitochondrial fission. MAPL-induced ROS accumulation and ΔΨm loss led to increased NPC apoptosis. Mutation of the SUMO-acceptor lysine residues of Drp1 hindered its SUMOylation and rescued the mitochondrial phenotypes caused by MAPL. SENP5 overexpression phenocopied MAPL silencing, negatively modulating the SUMO1 modification of Drp1 and mitochondrial fission in NPCs. In a rat IVDD model, forced expression of MAPL by using an adeno-associated virus (AAV) vector aggravated IVD tissue damage, whereas the knockdown of MAPL delayed IVDD progression. Our findings highlight the importance of SUMOylation in IVDD. The inhibition of MAPL-mediated Drp1 SUMOylation alleviates mitochondrial fission and limits IVDD development, providing a potential strategy for IVDD treatment.
{"title":"The mitochondrial E3 ligase MAPL SUMOylates Drp1 to facilitate mitochondrial fission in intervertebral disc degeneration","authors":"Zhidi Lin, Xiao Lu, Guangyu Xu, Jian Song, Hongli Wang, Xinlei Xia, Feizhou Lu, Jianyuan Jiang, Wei Zhu, Zuochong Yu, Xiaosheng Ma, Fei Zou","doi":"10.1038/s41413-025-00449-6","DOIUrl":"https://doi.org/10.1038/s41413-025-00449-6","url":null,"abstract":"<p>Intervertebral disc degeneration (IVDD) is the primary contributor to a range of spinal diseases. Dynamin-related protein 1 (Drp1)-mediated mitochondrial fission has recently been identified as a new cause of nucleus pulposus cell (NPC) death and IVDD, but the underlying mechanisms remain unclear. Although the effects of Drp1 phosphorylation in IVDD have been studied, it is currently unknown if small ubiquitin-like modifications (SUMOylation) of Drp1 regulate IVDD. This study aimed to investigate the functions and mechanisms of mitochondria-anchored protein ligase (MAPL), a mitochondrial SUMO E3 ligase, during IVDD progression. The expression of genes related to SUMOylation and mitochondrial dynamics in TNF-α-stimulated NPCs was analysed via RNA sequencing. The levels of total and mitochondrial SUMO1 conjugates were elevated with MAPL upregulation in TNF-α-treated NPCs. Additionally, mitochondrial fragmentation and dysfunction were induced by TNF-α stimulation. MAPL overexpression promoted mitochondrial SUMOylation and SUMO1 modification of Drp1, thereby facilitating the mitochondrial translocation of Drp1 and mitochondrial fission. MAPL-induced ROS accumulation and ΔΨm loss led to increased NPC apoptosis. Mutation of the SUMO-acceptor lysine residues of Drp1 hindered its SUMOylation and rescued the mitochondrial phenotypes caused by MAPL. SENP5 overexpression phenocopied MAPL silencing, negatively modulating the SUMO1 modification of Drp1 and mitochondrial fission in NPCs. In a rat IVDD model, forced expression of MAPL by using an adeno-associated virus (AAV) vector aggravated IVD tissue damage, whereas the knockdown of MAPL delayed IVDD progression. Our findings highlight the importance of SUMOylation in IVDD. The inhibition of MAPL-mediated Drp1 SUMOylation alleviates mitochondrial fission and limits IVDD development, providing a potential strategy for IVDD treatment.</p><figure></figure>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"38 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144819224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Precision medicine has become a cornerstone in modern therapeutic strategies, with nucleic acid aptamers emerging as pivotal tools due to their unique properties. These oligonucleotide fragments, selected through the Systematic Evolution of Ligands by Exponential Enrichment process, exhibit high affinity and specificity toward their targets, such as DNA, RNA, proteins, and other biomolecules. Nucleic acid aptamers offer significant advantages over traditional therapeutic agents, including superior biological stability, minimal immunogenicity, and the capacity for universal chemical modifications that enhance their in vivo performance and targeting precision. In the realm of osseous tissue repair and regeneration, a complex physiological process essential for maintaining skeletal integrity, aptamers have shown remarkable potential in influencing molecular pathways crucial for bone regeneration, promoting osteogenic differentiation and supporting osteoblast survival. By engineering aptamers to regulate inflammatory responses and facilitate the proliferation and differentiation of fibroblasts, these oligonucleotides can be integrated into advanced drug delivery systems, significantly improving bone repair efficacy while minimizing adverse effects. Aptamer-mediated strategies, including the use of siRNA and miRNA mimics or inhibitors, have shown efficacy in enhancing bone mass and microstructure. These approaches hold transformative potential for treating a range of orthopedic conditions like osteoporosis, osteosarcoma, and osteoarthritis. This review synthesizes the molecular mechanisms and biological roles of aptamers in orthopedic diseases, emphasizing their potential to drive innovative and effective therapeutic interventions.
{"title":"Nucleic acid aptamers in orthopedic diseases: promising therapeutic agents for bone disorders","authors":"Zhenhong He, Qingping Peng, Wenying Bin, Luyao Zhao, Yihuang Chen, Yuanqun Zhang, Weihu Yang, Xingchen Yan, Huan Liu","doi":"10.1038/s41413-025-00447-8","DOIUrl":"https://doi.org/10.1038/s41413-025-00447-8","url":null,"abstract":"<p>Precision medicine has become a cornerstone in modern therapeutic strategies, with nucleic acid aptamers emerging as pivotal tools due to their unique properties. These oligonucleotide fragments, selected through the Systematic Evolution of Ligands by Exponential Enrichment process, exhibit high affinity and specificity toward their targets, such as DNA, RNA, proteins, and other biomolecules. Nucleic acid aptamers offer significant advantages over traditional therapeutic agents, including superior biological stability, minimal immunogenicity, and the capacity for universal chemical modifications that enhance their in vivo performance and targeting precision. In the realm of osseous tissue repair and regeneration, a complex physiological process essential for maintaining skeletal integrity, aptamers have shown remarkable potential in influencing molecular pathways crucial for bone regeneration, promoting osteogenic differentiation and supporting osteoblast survival. By engineering aptamers to regulate inflammatory responses and facilitate the proliferation and differentiation of fibroblasts, these oligonucleotides can be integrated into advanced drug delivery systems, significantly improving bone repair efficacy while minimizing adverse effects. Aptamer-mediated strategies, including the use of siRNA and miRNA mimics or inhibitors, have shown efficacy in enhancing bone mass and microstructure. These approaches hold transformative potential for treating a range of orthopedic conditions like osteoporosis, osteosarcoma, and osteoarthritis. This review synthesizes the molecular mechanisms and biological roles of aptamers in orthopedic diseases, emphasizing their potential to drive innovative and effective therapeutic interventions.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"16 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144694217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-19DOI: 10.1038/s41413-025-00440-1
Jialiang S Wang,Katelyn Strauss,Caroline Houghton,Numa Islam,Sung-Hee Yoon,Tatsuya Kobayashi,Daniel J Brooks,Mary L Bouxsein,Yingshe Zhao,Cristal S Yee,Tamara N Alliston,Marc N Wein
Osteogenesis imperfecta (OI) is a group of diseases caused by defects in type I collagen processing which result in skeletal fragility. While these disorders have been regarded as defects in osteoblast function, the role of matrix-embedded osteocytes in OI pathogenesis remains largely unknown. Homozygous human SP7 (c.946 C > T, R316C) mutation results in a recessive form of OI characterized by fragility fractures, low bone mineral density and osteocyte dendrite defects. To better understand how the OI-causing R316C mutation affects the function of SP7, we generated Sp7R342C knock-in mice. Consistent with patient phenotypes, Sp7R342C/R342C mice demonstrate increased cortical porosity and reduced cortical bone mineral density. Sp7R342C/R342C mice show osteocyte dendrite defects, increased osteocyte apoptosis, and intracortical bone remodeling with ectopic intracortical osteoclasts and elevated osteocyte Tnfsf11 expression. Remarkably, these defects in osteocyte function contrast to only mild changes in mature osteoblast function, suggesting that this Sp7 mutation selectively interferes with the function of Sp7 in osteocytes and mature osteoblasts, but not during early stages of osteoblast differentiation. Osteocyte morphology changes in Sp7R342C/R342C mice were not restored by inhibiting osteoclast formation, indicating that dendrite defects lie upstream of high intracortical osteoclast activity in this model. Moreover, transcriptomic profiling reveals that the expression of a core set osteocyte-enriched genes is highly dysregulated by the R342C mutation. Thus, this supports a model in which osteocyte dysfunction can drive OI pathogenesis and provides a valuable resource to test novel therapeutic approaches and to understand the osteocyte-specific role of SP7 in bone remodeling.
成骨不全症(Osteogenesis imperfecta, OI)是一组由I型胶原蛋白加工缺陷导致骨骼脆弱而引起的疾病。虽然这些疾病被认为是成骨细胞功能的缺陷,但基质嵌入骨细胞在成骨不全发病机制中的作用仍然很大程度上未知。纯合子人类SP7 (C .946 C > T, R316C)突变导致隐性成骨不全,其特征为脆性骨折、低骨密度和骨细胞树突缺陷。为了更好地了解引起oi的R316C突变如何影响SP7的功能,我们产生了Sp7R342C敲入小鼠。与患者表型一致,Sp7R342C/R342C小鼠表现出皮质孔隙度增加和皮质骨矿物质密度降低。Sp7R342C/R342C小鼠表现为骨细胞树突缺陷,骨细胞凋亡增加,皮质内骨重塑,皮质内破骨细胞异位,骨细胞Tnfsf11表达升高。值得注意的是,这些骨细胞功能缺陷与成熟成骨细胞功能的轻微变化形成鲜明对比,这表明Sp7突变选择性地干扰了Sp7在骨细胞和成熟成骨细胞中的功能,而不是在成骨细胞分化的早期阶段。抑制破骨细胞形成并不能恢复Sp7R342C/R342C小鼠的骨细胞形态变化,这表明在该模型中,树突缺陷位于高皮质内破骨细胞活性的上游。此外,转录组学分析显示,一组核心骨细胞富集基因的表达受到R342C突变的高度失调。因此,这支持了骨细胞功能障碍可以驱动成骨不全发病机制的模型,并为测试新的治疗方法和了解SP7在骨重塑中的骨细胞特异性作用提供了宝贵的资源。
{"title":"Osteoclast-independent osteocyte dendrite defects in mice bearing the osteogenesis imperfecta-causing Sp7 R342C mutation.","authors":"Jialiang S Wang,Katelyn Strauss,Caroline Houghton,Numa Islam,Sung-Hee Yoon,Tatsuya Kobayashi,Daniel J Brooks,Mary L Bouxsein,Yingshe Zhao,Cristal S Yee,Tamara N Alliston,Marc N Wein","doi":"10.1038/s41413-025-00440-1","DOIUrl":"https://doi.org/10.1038/s41413-025-00440-1","url":null,"abstract":"Osteogenesis imperfecta (OI) is a group of diseases caused by defects in type I collagen processing which result in skeletal fragility. While these disorders have been regarded as defects in osteoblast function, the role of matrix-embedded osteocytes in OI pathogenesis remains largely unknown. Homozygous human SP7 (c.946 C > T, R316C) mutation results in a recessive form of OI characterized by fragility fractures, low bone mineral density and osteocyte dendrite defects. To better understand how the OI-causing R316C mutation affects the function of SP7, we generated Sp7R342C knock-in mice. Consistent with patient phenotypes, Sp7R342C/R342C mice demonstrate increased cortical porosity and reduced cortical bone mineral density. Sp7R342C/R342C mice show osteocyte dendrite defects, increased osteocyte apoptosis, and intracortical bone remodeling with ectopic intracortical osteoclasts and elevated osteocyte Tnfsf11 expression. Remarkably, these defects in osteocyte function contrast to only mild changes in mature osteoblast function, suggesting that this Sp7 mutation selectively interferes with the function of Sp7 in osteocytes and mature osteoblasts, but not during early stages of osteoblast differentiation. Osteocyte morphology changes in Sp7R342C/R342C mice were not restored by inhibiting osteoclast formation, indicating that dendrite defects lie upstream of high intracortical osteoclast activity in this model. Moreover, transcriptomic profiling reveals that the expression of a core set osteocyte-enriched genes is highly dysregulated by the R342C mutation. Thus, this supports a model in which osteocyte dysfunction can drive OI pathogenesis and provides a valuable resource to test novel therapeutic approaches and to understand the osteocyte-specific role of SP7 in bone remodeling.","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"5 1","pages":"70"},"PeriodicalIF":12.7,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144664280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-07DOI: 10.1038/s41413-025-00448-7
Ke Li, Sihan Hu, Hao Chen
Cellular senescence and its senescence-associated secretory phenotype (SASP) represent a pivotal role in the development of skeletal diseases. Targeted elimination or rejuvenation of senescent cells has shown potential as a therapeutic strategy to reverse age-related skeletal senescence and promote bone regeneration. Meanwhile, other age-related mechanisms, involving altered cellular functions, impaired intercellular crosstalk, disturbed tissue microenvironment, and decreased regenerative capacity, synergistically contribute to the pathogenesis. In this review, we outline the cellular senescence and other age-related mechanisms in developing skeletal diseases, including osteoporosis, intervertebral disc degeneration, osteoarthritis, rheumatoid arthritis, bone tumors and ankylosing spondylitis, with the aim of comprehensively understanding their detrimental effects on the aged skeleton and screening the potential targets for anti-aging therapy within the skeletal system.
{"title":"Cellular senescence and other age-related mechanisms in skeletal diseases","authors":"Ke Li, Sihan Hu, Hao Chen","doi":"10.1038/s41413-025-00448-7","DOIUrl":"https://doi.org/10.1038/s41413-025-00448-7","url":null,"abstract":"<p>Cellular senescence and its senescence-associated secretory phenotype (SASP) represent a pivotal role in the development of skeletal diseases. Targeted elimination or rejuvenation of senescent cells has shown potential as a therapeutic strategy to reverse age-related skeletal senescence and promote bone regeneration. Meanwhile, other age-related mechanisms, involving altered cellular functions, impaired intercellular crosstalk, disturbed tissue microenvironment, and decreased regenerative capacity, synergistically contribute to the pathogenesis. In this review, we outline the cellular senescence and other age-related mechanisms in developing skeletal diseases, including osteoporosis, intervertebral disc degeneration, osteoarthritis, rheumatoid arthritis, bone tumors and ankylosing spondylitis, with the aim of comprehensively understanding their detrimental effects on the aged skeleton and screening the potential targets for anti-aging therapy within the skeletal system.</p><figure></figure>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"26 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144568324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-07DOI: 10.1038/s41413-025-00444-x
Drishti Maniar, M. Cole Keenum, Casey E. Vantucci, Tyler Guyer, Paramita Chatterjee, Kelly Leguineche, Kaitlyn Cheung, Robert E. Guldberg, Krishnendu Roy
Polytrauma with significant bone and volumetric muscle loss presents substantial clinical challenges. Although immune responses significantly influence fracture healing post-polytrauma, the cellular and molecular underpinnings of polytrauma-induced immune dysregulation require further investigation. While previous studies examined either injury site tissue or systemic tissue (peripheral blood), our study uniquely investigated both systemic and local immune cells at the same time to better understand polytrauma-induced immune dysregulation and associated impaired bone healing. Using single-cell RNA sequencing (scRNA-seq) in a rat polytrauma model, we analyzed blood, bone marrow, and the local defect soft tissue to identify potential cellular and molecular targets involved in immune dysregulation. We identified a trauma-associated immunosuppressive myeloid (TIM) cell population that drives systemic immune dysregulation, immunosuppression, and potentially impaired bone healing. We found CD1d as a global marker for TIM cells in polytrauma. In the local defect tissue, we observed Spp1+ monocytes/macrophages mediating inflammatory, fibrotic, and impaired adaptive immune responses. Finally, our findings highlighted increased signaling via Anxa1-Fpr2 and Spp1-Cd44 axes. This comprehensive analysis enhances our understanding of immune dysregulation-mediated nonunion following traumatic injury and provides biomarkers that could function as treatment targets.
{"title":"Single-cell transcriptomic analysis identifies systemic immunosuppressive myeloid cells and local monocytes/macrophages as key regulators in polytrauma-induced immune dysregulation","authors":"Drishti Maniar, M. Cole Keenum, Casey E. Vantucci, Tyler Guyer, Paramita Chatterjee, Kelly Leguineche, Kaitlyn Cheung, Robert E. Guldberg, Krishnendu Roy","doi":"10.1038/s41413-025-00444-x","DOIUrl":"https://doi.org/10.1038/s41413-025-00444-x","url":null,"abstract":"<p>Polytrauma with significant bone and volumetric muscle loss presents substantial clinical challenges. Although immune responses significantly influence fracture healing post-polytrauma, the cellular and molecular underpinnings of polytrauma-induced immune dysregulation require further investigation. While previous studies examined either injury site tissue or systemic tissue (peripheral blood), our study uniquely investigated both systemic and local immune cells at the same time to better understand polytrauma-induced immune dysregulation and associated impaired bone healing. Using single-cell RNA sequencing (scRNA-seq) in a rat polytrauma model, we analyzed blood, bone marrow, and the local defect soft tissue to identify potential cellular and molecular targets involved in immune dysregulation. We identified a trauma-associated immunosuppressive myeloid (TIM) cell population that drives systemic immune dysregulation, immunosuppression, and potentially impaired bone healing. We found CD1d as a global marker for TIM cells in polytrauma. In the local defect tissue, we observed <i>Spp1</i><sup>+</sup> monocytes/macrophages mediating inflammatory, fibrotic, and impaired adaptive immune responses. Finally, our findings highlighted increased signaling via <i>Anxa1-Fpr2</i> and <i>Spp1-Cd44</i> axes. This comprehensive analysis enhances our understanding of immune dysregulation-mediated nonunion following traumatic injury and provides biomarkers that could function as treatment targets.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"111 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144568325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-04DOI: 10.1038/s41413-025-00436-x
Masnsen Cherief, Mario Gomez-Salazar, Minjung Kang, Seungyong Lee, Sowmya Ramesh, Qizhi Qin, Mingxin Xu, Soohyun Kim, Mary Archer, Manyu Zhu, Ahmet Hoke, Aaron W James
Peripheral neuropathy is a common complication in diabetes, affecting around 50% of the diabetic population. Co-occurrence of diabetic peripheral neuropathy (DPN) and diabetic bone disease has led to the hypothesis that DPN influences bone metabolism, although little experimental evidence has yet supported this premise. To investigate, mice were fed a high-fat diet (HFD) followed by phenotyping of skeletal-innervating neurons and bone architectural parameters. Results showed that HFD feeding resulted in a marked decrease in skeletal innervation (69%-41% reduction in Beta-III-Tubulin-stained nerves, 38% reduction in CGRP-stained nerves in long bone periosteum). These changes in skeletal innervation were associated with significant alterations in bone mass and in cortical and trabecular bone microarchitecture of long bones. Single-cell RNA sequencing (scRNA-Seq) of sensory neurons and bone tissue was next utilized to reconstruct potential nerve-to-bone signaling interactions, including implication of sensory nerve-derived neurotrophins (Bdnf), neuropeptides (Gal, Calca and Calcb), and other morphogens (Vegfa, Pdgfa, and Angpt2). Moreover, scRNA-Seq identified marked shifts in periosteal cell transcriptional changes within HFD-fed conditions, including a reduction in cell proliferation, an increase in adipogenic differentiation markers, and reductions in WNT, TGFβ, and MAPK signaling activity. When isolated, periosteal cells from HFD-fed mice showed deficits in proliferative and osteogenic differentiation potential. Moreover, these cellular changes in proliferation and differentiation capacity were restored by treatment of HFD-exposed periosteal cells to sensory neuron-conditioned medium. In summary, HFD modeling of type 2 diabetes results in skeletal polyneuropathy. Moreover, the combination of multi-tissue scRNA-Seq and isolated in vitro studies strengthen the case for altered nerve-to-bone signaling in diabetic bone disease.
周围神经病变是糖尿病的常见并发症,影响约50%的糖尿病患者。糖尿病周围神经病变(DPN)和糖尿病骨病的共同发生导致了DPN影响骨代谢的假设,尽管很少有实验证据支持这一前提。为了进行研究,小鼠被喂食高脂肪饮食(HFD),然后对骨骼神经支配神经元和骨骼结构参数进行表型分析。结果显示,HFD喂养导致骨神经支配明显减少(β - iii - tubulin染色神经减少69%-41%,长骨骨膜cgrp染色神经减少38%)。骨骼神经支配的这些变化与骨量以及长骨皮质和骨小梁骨微结构的显著改变有关。接下来,利用感觉神经元和骨组织的单细胞RNA测序(scRNA-Seq)来重建潜在的神经-骨信号相互作用,包括感觉神经来源的神经营养因子(Bdnf)、神经肽(Gal、Calca和Calcb)和其他形态因子(Vegfa、Pdgfa和Angpt2)的影响。此外,scRNA-Seq还发现了hfd喂养条件下骨膜细胞转录变化的显著变化,包括细胞增殖减少、脂肪生成分化标志物增加、WNT、TGFβ和MAPK信号活性降低。当分离时,hfd喂养小鼠的骨膜细胞显示出增殖和成骨分化潜力的缺陷。此外,通过将暴露于hfd的骨膜细胞处理于感觉神经元条件培养基中,这些细胞增殖和分化能力的变化得以恢复。总之,HFD模拟2型糖尿病导致骨骼多神经病变。此外,结合多组织scRNA-Seq和分离的体外研究,加强了糖尿病骨病中神经到骨信号改变的情况。
{"title":"Reduced somatosensory innervation alters the skeletal transcriptome at a single cell level in a mouse model of type 2 diabetes.","authors":"Masnsen Cherief, Mario Gomez-Salazar, Minjung Kang, Seungyong Lee, Sowmya Ramesh, Qizhi Qin, Mingxin Xu, Soohyun Kim, Mary Archer, Manyu Zhu, Ahmet Hoke, Aaron W James","doi":"10.1038/s41413-025-00436-x","DOIUrl":"10.1038/s41413-025-00436-x","url":null,"abstract":"<p><p>Peripheral neuropathy is a common complication in diabetes, affecting around 50% of the diabetic population. Co-occurrence of diabetic peripheral neuropathy (DPN) and diabetic bone disease has led to the hypothesis that DPN influences bone metabolism, although little experimental evidence has yet supported this premise. To investigate, mice were fed a high-fat diet (HFD) followed by phenotyping of skeletal-innervating neurons and bone architectural parameters. Results showed that HFD feeding resulted in a marked decrease in skeletal innervation (69%-41% reduction in Beta-III-Tubulin-stained nerves, 38% reduction in CGRP-stained nerves in long bone periosteum). These changes in skeletal innervation were associated with significant alterations in bone mass and in cortical and trabecular bone microarchitecture of long bones. Single-cell RNA sequencing (scRNA-Seq) of sensory neurons and bone tissue was next utilized to reconstruct potential nerve-to-bone signaling interactions, including implication of sensory nerve-derived neurotrophins (Bdnf), neuropeptides (Gal, Calca and Calcb), and other morphogens (Vegfa, Pdgfa, and Angpt2). Moreover, scRNA-Seq identified marked shifts in periosteal cell transcriptional changes within HFD-fed conditions, including a reduction in cell proliferation, an increase in adipogenic differentiation markers, and reductions in WNT, TGFβ, and MAPK signaling activity. When isolated, periosteal cells from HFD-fed mice showed deficits in proliferative and osteogenic differentiation potential. Moreover, these cellular changes in proliferation and differentiation capacity were restored by treatment of HFD-exposed periosteal cells to sensory neuron-conditioned medium. In summary, HFD modeling of type 2 diabetes results in skeletal polyneuropathy. Moreover, the combination of multi-tissue scRNA-Seq and isolated in vitro studies strengthen the case for altered nerve-to-bone signaling in diabetic bone disease.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"13 1","pages":"67"},"PeriodicalIF":14.3,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144564419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effectiveness of cranial suture expansion therapy hinges on the timely and adequate regeneration of bone tissue in response to mechanical stimuli. To optimize clinical outcomes and prevent post-expansion relapse, we delved into the underlying mechanisms governing bone remodeling during the processes of suture expansion and relapse. Our findings revealed that in vitro stretching bolstered mesenchymal stem cells’ antioxidative and osteogenic capacity by orchestrating mitochondrial activities, which governed by force-induced endoplasmic reticulum (ER) stress. Nonetheless, this signal transduction occurred through the activation of protein kinase R-like ER kinase (PERK) at the ER-mitochondria interface, rather than ER-mitochondria calcium flow as previously reported. Subsequently, PERK activation triggered TFEB translocation to the nucleus, thus regulating mitochondrial dynamics transcriptionally. Assessment of the mitochondrial pool during expansion and relapse unveiled a sequential, two-phase regulation governed by the ER stress/p-PERK/TFEB signaling cascade. Initially, PERK activation facilitated TFEB nuclear localization, stimulating mitochondrial biogenesis through PGC1-α, thereby addressing energy demands during the initial phase. Subsequently, TFEB shifted focus towards ensuring adequate mitophagy for mitochondrial quality maintenance during the remodeling process. Premature withdrawal of expanding force disrupted this sequential regulation, leading to compromised mitophagy and the accumulation of dysfunctional mitochondria, culminating in suboptimal bone regeneration and relapse. Notably, pharmacological activation of mitophagy effectively mitigated relapse and attenuated bone loss, while its inhibition impeded anticipated bone growth in remodeling progress. Conclusively, we elucidated the ER stress/p-PERK/TFEB signaling orchestrated sequential mitochondria biogenesis and mitophagy under mechanical stretch, thus ensuring antioxidative capacity and osteogenic potential of cranial suture tissues.
{"title":"ER-induced PERK/TFEB cascade sequentially modulates mitochondrial dynamics during cranial suture expansion","authors":"Jingyi Cai, Ziyang Min, Chaoyuan Li, Zhihe Zhao, Jun Liu, Dian Jing","doi":"10.1038/s41413-025-00427-y","DOIUrl":"https://doi.org/10.1038/s41413-025-00427-y","url":null,"abstract":"<p>The effectiveness of cranial suture expansion therapy hinges on the timely and adequate regeneration of bone tissue in response to mechanical stimuli. To optimize clinical outcomes and prevent post-expansion relapse, we delved into the underlying mechanisms governing bone remodeling during the processes of suture expansion and relapse. Our findings revealed that in vitro stretching bolstered mesenchymal stem cells’ antioxidative and osteogenic capacity by orchestrating mitochondrial activities, which governed by force-induced endoplasmic reticulum (ER) stress. Nonetheless, this signal transduction occurred through the activation of protein kinase R-like ER kinase (PERK) at the ER-mitochondria interface, rather than ER-mitochondria calcium flow as previously reported. Subsequently, PERK activation triggered TFEB translocation to the nucleus, thus regulating mitochondrial dynamics transcriptionally. Assessment of the mitochondrial pool during expansion and relapse unveiled a sequential, two-phase regulation governed by the ER stress/p-PERK/TFEB signaling cascade. Initially, PERK activation facilitated TFEB nuclear localization, stimulating mitochondrial biogenesis through PGC1-α, thereby addressing energy demands during the initial phase. Subsequently, TFEB shifted focus towards ensuring adequate mitophagy for mitochondrial quality maintenance during the remodeling process. Premature withdrawal of expanding force disrupted this sequential regulation, leading to compromised mitophagy and the accumulation of dysfunctional mitochondria, culminating in suboptimal bone regeneration and relapse. Notably, pharmacological activation of mitophagy effectively mitigated relapse and attenuated bone loss, while its inhibition impeded anticipated bone growth in remodeling progress. Conclusively, we elucidated the ER stress/p-PERK/TFEB signaling orchestrated sequential mitochondria biogenesis and mitophagy under mechanical stretch, thus ensuring antioxidative capacity and osteogenic potential of cranial suture tissues.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"13 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144341084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-17DOI: 10.1038/s41413-025-00439-8
Yiwen Jiang, Karin Horkeby, Petra Henning, Jianyao Wu, Karin H. Nilsson, Lina Lawenius, Sofia Movérare-Skrtic, Priti Gupta, Cecilia Engdahl, Antti Koskela, Juha Tuukkanen, Lei Li, Claes Ohlsson, Marie K. Lagerquist
Membrane-initiated estrogen receptor α (mERα) signaling has been shown to affect bone mass in murine models. However, it remains unknown which cell types mediate the mERα-dependent effects on bone. In this study, we generated a novel mouse model with a conditional C451A mutation in Esr1, which enables selective knockout of the palmitoylation site essential for the membrane localization of ERα (C451Af/f). First, we used Runx2-Cre mice to generate Runx2-C451Af/f mice with conditional inactivation of mERα signaling in Runx2-expressing osteoblast lineage cells. No significant changes were observed in body weight, weights of estrogen-responsive organs, or serum concentrations of estradiol between female Runx2-C451Af/f and homozygous C451Af/f littermate controls. High-resolution microcomputed tomography analysis showed a consistent decrease in cortical bone mass in the tibia, femur, and vertebra L5 of Runx2-C451Af/f mice and three-point bending analysis of humerus revealed an impaired mechanical bone strength in Runx2-C451Af/f female mice compared to controls. Additionally, primary osteoblast cultures from mice lacking mERα signaling showed impaired differentiation compared to controls. In contrast, conditional inactivation of mERα signaling in hematopoietic cells, by transplantation of bone marrow from mice lacking mERα signaling in all cells to adult wildtype female mice, did not result in any skeletal alterations. In conclusion, this study demonstrates that mERα signaling in osteoblast lineage cells plays a crucial role in the regulation of cortical bone in female mice and shows that mERα inactivation in hematopoietic cells of adult female mice is dispensable for bone regulation.
{"title":"Membrane-initiated estrogen receptor-α signaling in osteoblasts is crucial for normal regulation of the cortical bone in female mice","authors":"Yiwen Jiang, Karin Horkeby, Petra Henning, Jianyao Wu, Karin H. Nilsson, Lina Lawenius, Sofia Movérare-Skrtic, Priti Gupta, Cecilia Engdahl, Antti Koskela, Juha Tuukkanen, Lei Li, Claes Ohlsson, Marie K. Lagerquist","doi":"10.1038/s41413-025-00439-8","DOIUrl":"https://doi.org/10.1038/s41413-025-00439-8","url":null,"abstract":"<p>Membrane-initiated estrogen receptor α (mERα) signaling has been shown to affect bone mass in murine models. However, it remains unknown which cell types mediate the mERα-dependent effects on bone. In this study, we generated a novel mouse model with a conditional C451A mutation in <i>Esr1</i>, which enables selective knockout of the palmitoylation site essential for the membrane localization of ERα (C451A<sup>f/f</sup>). First, we used <i>Runx2</i>-Cre mice to generate <i>Runx2</i>-C451A<sup>f/f</sup> mice with conditional inactivation of mERα signaling in <i>Runx2</i>-expressing osteoblast lineage cells. No significant changes were observed in body weight, weights of estrogen-responsive organs, or serum concentrations of estradiol between female <i>Runx2</i>-C451A<sup>f/f</sup> and homozygous C451A<sup>f/f</sup> littermate controls. High-resolution microcomputed tomography analysis showed a consistent decrease in cortical bone mass in the tibia, femur, and vertebra L5 of <i>Runx2</i>-C451A<sup>f/f</sup> mice and three-point bending analysis of humerus revealed an impaired mechanical bone strength in <i>Runx2</i>-C451A<sup>f/f</sup> female mice compared to controls. Additionally, primary osteoblast cultures from mice lacking mERα signaling showed impaired differentiation compared to controls. In contrast, conditional inactivation of mERα signaling in hematopoietic cells, by transplantation of bone marrow from mice lacking mERα signaling in all cells to adult wildtype female mice, did not result in any skeletal alterations. In conclusion, this study demonstrates that mERα signaling in osteoblast lineage cells plays a crucial role in the regulation of cortical bone in female mice and shows that mERα inactivation in hematopoietic cells of adult female mice is dispensable for bone regulation.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"43 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144305214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-16DOI: 10.1038/s41413-025-00438-9
Haiming Jin, Gang Wang, Qichen Lu, Jessica Rawlins, Junchun Chen, Saanya Kashyap, Oscar Charlesworth, Dan Xu, Lie Dai, Sipin Zhu, Jiake Xu
Rheumatoid arthritis (RA) is a prevalent and debilitating inflammatory disease that significantly impairs functional capacity and quality of life. RA accelerates musculoskeletal aging, leading to complications such as muscle degeneration and sarcopenia. Recent research has identified myopenia as a condition of significant muscle loss associated with illness, distinct from the muscle wasting seen in other chronic diseases like cancer cachexia or heart failure. In RA, myopenia is characterized by muscle depletion without concurrent significant fat loss, and it can affect individuals of all ages. While inflammation plays a central role, it is not the sole factor contributing to the high incidence of muscle wasting in RA. In subsequent discussions, secondary sarcopenia will be considered alongside myopenia, as both involve muscle wasting decline primarily due to disease. This review summarizes recent findings on the impact of RA-related myopenia and secondary sarcopenia on functional capacity, explores its underlying mechanisms, and discusses contemporary strategies to mitigate the process of musculoskeletal aging in RA patients.
{"title":"Pathophysiology of Myopenia in rheumatoid arthritis","authors":"Haiming Jin, Gang Wang, Qichen Lu, Jessica Rawlins, Junchun Chen, Saanya Kashyap, Oscar Charlesworth, Dan Xu, Lie Dai, Sipin Zhu, Jiake Xu","doi":"10.1038/s41413-025-00438-9","DOIUrl":"https://doi.org/10.1038/s41413-025-00438-9","url":null,"abstract":"<p>Rheumatoid arthritis (RA) is a prevalent and debilitating inflammatory disease that significantly impairs functional capacity and quality of life. RA accelerates musculoskeletal aging, leading to complications such as muscle degeneration and <i>sarcopenia</i>. Recent research has identified <i>myopenia</i> as a condition of significant muscle loss associated with illness, distinct from the muscle wasting seen in other chronic diseases like cancer cachexia or heart failure. In RA, <i>myopenia</i> is characterized by muscle depletion without concurrent significant fat loss, and it can affect individuals of all ages. While inflammation plays a central role, it is not the sole factor contributing to the high incidence of muscle wasting in RA. In subsequent discussions, <i>secondary sarcopenia</i> will be considered alongside <i>myopenia</i>, as both involve muscle wasting decline primarily due to disease. This review summarizes recent findings on the impact of RA-related <i>myopenia</i> and <i>secondary sarcopenia</i> on functional capacity, explores its underlying mechanisms, and discusses contemporary strategies to mitigate the process of musculoskeletal aging in RA patients.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"33 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144296123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-13DOI: 10.1038/s41413-025-00432-1
Xuan-Qi Zheng, Zhi-Yuan Guan, Yun-Di Zhang, Chun-Li Song
{"title":"Different role of the gut microbiota in postmenopausal and senile osteoporosis","authors":"Xuan-Qi Zheng, Zhi-Yuan Guan, Yun-Di Zhang, Chun-Li Song","doi":"10.1038/s41413-025-00432-1","DOIUrl":"https://doi.org/10.1038/s41413-025-00432-1","url":null,"abstract":"","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"116 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144278210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}