Nicotinamide mononucleotide (NMN), a key nicotinamide adenine dinucleotide (NAD+) intermediate, has been shown to ameliorate various pathologies in elderly mouse disease models. Natural killer (NK) cells are important innate immune cells; however, their functions decline with aging. In this study, we examined the effect of NMN treatment on NK cells in mice. Intraperitoneal administration of NMN augmented NK cell cytotoxic activity in both young and elderly B6 mice as well as young BALB/c mice. Oral administration of NMN also increased NK cell cytotoxicity in elderly B6 and BALB/c mice. However, the NK cell population was not increased in the mice whose NK cell cytotoxic activity was activated by NMN. Interestingly, NMN administration did not augment NK cell cytotoxic activity in IFN-γ deficient mice. These results suggest that NMN administration augments NK cell cytotoxic activity, but not cell number, in a manner dependent on IFN-γ in both young and elderly mice.
The perception of tastes is sensed by the receptors that stimulate sensory cells. We previously reported that TRPA1 and TRPV1 channels expressed in the oral cavity of mammals, are activated by the auto-oxidized product of epigallocatechin gallate (oxiEGCG), a major astringent catechin in green tea. Here, we investigated and compared the sensitivity of TRPA1 and TRPV1 from various animals to astringent polyphenols. We selected three polyphenols, oxiEGCG, tannic acid and myricetin. HEK293T cells expressing TRPA1 or TRPV1 from mammal, bird, reptile, amphibian, and fish, were analyzed for their activation by the Ca2+-imaging. We found the apparent diversity in the polyphenol-sensitivity among various animals. Mammalian TRPs showed relatively higher sensitivity to polyphenols, and especially, human TRPA1 and TRPV1 could be activated by all of three polyphenols at 20 μM. Reptile TRP channels, however, were insensitive to any polyphenols examined. Moreover, the polyphenol-sensitivity of zebrafish TRPA1 and TRPV1 was quite different from that of medaka TRP channels. Since many polyphenols are present in plants and the sensing of polyphenols using TRP channels in the oral cavity might cause astringent taste, the observed diversity of the polyphenol-sensitivity of TRP channels might be involved in the divergence in the food habit of various animals.

