首页 > 最新文献

Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis最新文献

英文 中文
Out-of-Distribution Generalisation with Symmetry-Based Disentangled Representations 基于对称的解纠缠表示的分布外泛化
Loek Tonnaer, M. Holenderski, Vlado Menkovski
{"title":"Out-of-Distribution Generalisation with Symmetry-Based Disentangled Representations","authors":"Loek Tonnaer, M. Holenderski, Vlado Menkovski","doi":"10.1007/978-3-031-30047-9_34","DOIUrl":"https://doi.org/10.1007/978-3-031-30047-9_34","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"30 1","pages":"433-445"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80547980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Don't Start Your Data Labeling from Scratch: OpSaLa - Optimized Data Sampling Before Labeling 不要从头开始你的数据标签:OpSaLa -优化的数据采样前标签
Andraz Pelicon, Syrielle Montariol, Petra Kralj Novak
{"title":"Don't Start Your Data Labeling from Scratch: OpSaLa - Optimized Data Sampling Before Labeling","authors":"Andraz Pelicon, Syrielle Montariol, Petra Kralj Novak","doi":"10.1007/978-3-031-30047-9_28","DOIUrl":"https://doi.org/10.1007/978-3-031-30047-9_28","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"159 1","pages":"353-365"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83324131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mind the Gap: Measuring Generalization Performance Across Multiple Objectives 注意差距:跨多个目标测量泛化性能
Matthias Feurer, Katharina Eggensperger, Eddie Bergman, Florian Pfisterer, B. Bischl, F. Hutter
Modern machine learning models are often constructed taking into account multiple objectives, e.g., minimizing inference time while also maximizing accuracy. Multi-objective hyperparameter optimization (MHPO) algorithms return such candidate models, and the approximation of the Pareto front is used to assess their performance. In practice, we also want to measure generalization when moving from the validation to the test set. However, some of the models might no longer be Pareto-optimal which makes it unclear how to quantify the performance of the MHPO method when evaluated on the test set. To resolve this, we provide a novel evaluation protocol that allows measuring the generalization performance of MHPO methods and studying its capabilities for comparing two optimization experiments.
现代机器学习模型通常考虑多个目标,例如,最小化推理时间,同时最大化准确性。多目标超参数优化(MHPO)算法返回这些候选模型,并使用Pareto前沿逼近来评估它们的性能。在实践中,我们还希望在从验证转移到测试集时度量泛化。然而,有些模型可能不再是帕累托最优的,这使得在测试集上评估MHPO方法时如何量化其性能变得不清楚。为了解决这个问题,我们提供了一种新的评估协议,可以测量MHPO方法的泛化性能,并研究其比较两个优化实验的能力。
{"title":"Mind the Gap: Measuring Generalization Performance Across Multiple Objectives","authors":"Matthias Feurer, Katharina Eggensperger, Eddie Bergman, Florian Pfisterer, B. Bischl, F. Hutter","doi":"10.48550/arXiv.2212.04183","DOIUrl":"https://doi.org/10.48550/arXiv.2212.04183","url":null,"abstract":"Modern machine learning models are often constructed taking into account multiple objectives, e.g., minimizing inference time while also maximizing accuracy. Multi-objective hyperparameter optimization (MHPO) algorithms return such candidate models, and the approximation of the Pareto front is used to assess their performance. In practice, we also want to measure generalization when moving from the validation to the test set. However, some of the models might no longer be Pareto-optimal which makes it unclear how to quantify the performance of the MHPO method when evaluated on the test set. To resolve this, we provide a novel evaluation protocol that allows measuring the generalization performance of MHPO methods and studying its capabilities for comparing two optimization experiments.","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"412 1","pages":"130-142"},"PeriodicalIF":0.0,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79931532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Meta-Learning for Automated Selection of Anomaly Detectors for Semi-Supervised Datasets 半监督数据集异常检测器自动选择的元学习
David Schubert, Pritha Gupta, Marcel Wever
In anomaly detection, a prominent task is to induce a model to identify anomalies learned solely based on normal data. Generally, one is interested in finding an anomaly detector that correctly identifies anomalies, i.e., data points that do not belong to the normal class, without raising too many false alarms. Which anomaly detector is best suited depends on the dataset at hand and thus needs to be tailored. The quality of an anomaly detector may be assessed via confusion-based metrics such as the Matthews correlation coefficient (MCC). However, since during training only normal data is available in a semi-supervised setting, such metrics are not accessible. To facilitate automated machine learning for anomaly detectors, we propose to employ meta-learning to predict MCC scores based on metrics that can be computed with normal data only. First promising results can be obtained considering the hypervolume and the false positive rate as meta-features.
在异常检测中,一个突出的任务是建立一个模型来识别仅仅基于正常数据学习到的异常。通常,人们感兴趣的是找到一个能够正确识别异常的异常检测器,即不属于正常类的数据点,而不会引发太多的假警报。哪种异常检测器最适合取决于手头的数据集,因此需要量身定制。异常检测器的质量可以通过基于混淆的度量来评估,比如马修斯相关系数(MCC)。然而,由于在训练期间,在半监督设置中只有正常数据可用,因此无法访问这些指标。为了促进异常检测器的自动化机器学习,我们建议采用元学习来预测MCC分数,该分数基于只能用正常数据计算的指标。首先,将超容积和假阳性率作为元特征,得到了令人满意的结果。
{"title":"Meta-Learning for Automated Selection of Anomaly Detectors for Semi-Supervised Datasets","authors":"David Schubert, Pritha Gupta, Marcel Wever","doi":"10.48550/arXiv.2211.13681","DOIUrl":"https://doi.org/10.48550/arXiv.2211.13681","url":null,"abstract":"In anomaly detection, a prominent task is to induce a model to identify anomalies learned solely based on normal data. Generally, one is interested in finding an anomaly detector that correctly identifies anomalies, i.e., data points that do not belong to the normal class, without raising too many false alarms. Which anomaly detector is best suited depends on the dataset at hand and thus needs to be tailored. The quality of an anomaly detector may be assessed via confusion-based metrics such as the Matthews correlation coefficient (MCC). However, since during training only normal data is available in a semi-supervised setting, such metrics are not accessible. To facilitate automated machine learning for anomaly detectors, we propose to employ meta-learning to predict MCC scores based on metrics that can be computed with normal data only. First promising results can be obtained considering the hypervolume and the false positive rate as meta-features.","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"94 1","pages":"392-405"},"PeriodicalIF":0.0,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88996623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Spatial Graph Convolution Neural Networks for Water Distribution Systems 配水系统的空间图卷积神经网络
Inaam Ashraf, L. Hermes, André Artelt, Barbara Hammer
We investigate the task of missing value estimation in graphs as given by water distribution systems (WDS) based on sparse signals as a representative machine learning challenge in the domain of critical infrastructure. The underlying graphs have a comparably low node degree and high diameter, while information in the graph is globally relevant, hence graph neural networks face the challenge of long-term dependencies. We propose a specific architecture based on message passing which displays excellent results for a number of benchmark tasks in the WDS domain. Further, we investigate a multi-hop variation, which requires considerably less resources and opens an avenue towards big WDS graphs.
我们研究了基于稀疏信号的配水系统(WDS)给出的图中缺失值估计任务,作为关键基础设施领域的代表性机器学习挑战。底层图具有相对较低的节点度和较高的直径,而图中的信息是全局相关的,因此图神经网络面临着长期依赖的挑战。我们提出了一种基于消息传递的特定体系结构,该体系结构在WDS域中的许多基准测试任务中显示出出色的结果。此外,我们还研究了一种多跳变量,它需要的资源少得多,并为构建大型WDS图开辟了一条道路。
{"title":"Spatial Graph Convolution Neural Networks for Water Distribution Systems","authors":"Inaam Ashraf, L. Hermes, André Artelt, Barbara Hammer","doi":"10.48550/arXiv.2211.09587","DOIUrl":"https://doi.org/10.48550/arXiv.2211.09587","url":null,"abstract":"We investigate the task of missing value estimation in graphs as given by water distribution systems (WDS) based on sparse signals as a representative machine learning challenge in the domain of critical infrastructure. The underlying graphs have a comparably low node degree and high diameter, while information in the graph is globally relevant, hence graph neural networks face the challenge of long-term dependencies. We propose a specific architecture based on message passing which displays excellent results for a number of benchmark tasks in the WDS domain. Further, we investigate a multi-hop variation, which requires considerably less resources and opens an avenue towards big WDS graphs.","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"12 1","pages":"29-41"},"PeriodicalIF":0.0,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89495376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
s-LIME: Reconciling Locality and Fidelity in Linear Explanations s-LIME:调和线性解释中的局部性和保真度
R. Gaudel, Luis Galárraga, J. Delaunay, L. Rozé, Vaishnavi Bhargava
{"title":"s-LIME: Reconciling Locality and Fidelity in Linear Explanations","authors":"R. Gaudel, Luis Galárraga, J. Delaunay, L. Rozé, Vaishnavi Bhargava","doi":"10.1007/978-3-031-01333-1_9","DOIUrl":"https://doi.org/10.1007/978-3-031-01333-1_9","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"8 1","pages":"102-114"},"PeriodicalIF":0.0,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81931415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Diffusion Transport Alignment 扩散输运对准
Andres F. Duque, Guy Wolf, Kevin R. Moon
The integration of multimodal data presents a challenge in cases when the study of a given phenomena by different instruments or conditions generates distinct but related domains. Many existing data integration methods assume a known one-to-one correspondence between domains of the entire dataset, which may be unrealistic. Furthermore, existing manifold alignment methods are not suited for cases where the data contains domain-specific regions, i.e., there is not a counterpart for a certain portion of the data in the other domain. We propose Diffusion Transport Alignment (DTA), a semi-supervised manifold alignment method that exploits prior correspondence knowledge between only a few points to align the domains. By building a diffusion process, DTA finds a transportation plan between data measured from two heterogeneous domains with different feature spaces, which by assumption, share a similar geometrical structure coming from the same underlying data generating process. DTA can also compute a partial alignment in a data-driven fashion, resulting in accurate alignments when some data are measured in only one domain. We empirically demonstrate that DTA outperforms other methods in aligning multimodal data in this semisupervised setting. We also empirically show that the alignment obtained by DTA can improve the performance of machine learning tasks, such as domain adaptation, inter-domain feature mapping, and exploratory data analysis, while outperforming competing methods.
当用不同的仪器或条件对某一现象进行研究,产生不同但相关的领域时,多模态数据的整合提出了挑战。许多现有的数据集成方法假设整个数据集的域之间存在已知的一对一对应关系,这可能是不现实的。此外,现有的流形对齐方法不适合数据包含特定于领域的区域的情况,即,在另一个领域中没有对应数据的特定部分。我们提出了扩散传输对齐(Diffusion Transport Alignment, DTA),这是一种半监督流形对齐方法,它只利用几个点之间的先验对应知识来对齐域。通过建立一个扩散过程,DTA在两个具有不同特征空间的异构域之间找到一个传输计划,假设它们共享来自相同底层数据生成过程的相似几何结构。DTA还可以以数据驱动的方式计算部分对齐,从而在仅在一个域中测量某些数据时产生精确的对齐。我们的经验表明,在这种半监督设置中,DTA在对齐多模态数据方面优于其他方法。我们还通过经验证明,DTA获得的对齐可以提高机器学习任务的性能,如领域自适应、域间特征映射和探索性数据分析,同时优于竞争方法。
{"title":"Diffusion Transport Alignment","authors":"Andres F. Duque, Guy Wolf, Kevin R. Moon","doi":"10.48550/arXiv.2206.07305","DOIUrl":"https://doi.org/10.48550/arXiv.2206.07305","url":null,"abstract":"The integration of multimodal data presents a challenge in cases when the study of a given phenomena by different instruments or conditions generates distinct but related domains. Many existing data integration methods assume a known one-to-one correspondence between domains of the entire dataset, which may be unrealistic. Furthermore, existing manifold alignment methods are not suited for cases where the data contains domain-specific regions, i.e., there is not a counterpart for a certain portion of the data in the other domain. We propose Diffusion Transport Alignment (DTA), a semi-supervised manifold alignment method that exploits prior correspondence knowledge between only a few points to align the domains. By building a diffusion process, DTA finds a transportation plan between data measured from two heterogeneous domains with different feature spaces, which by assumption, share a similar geometrical structure coming from the same underlying data generating process. DTA can also compute a partial alignment in a data-driven fashion, resulting in accurate alignments when some data are measured in only one domain. We empirically demonstrate that DTA outperforms other methods in aligning multimodal data in this semisupervised setting. We also empirically show that the alignment obtained by DTA can improve the performance of machine learning tasks, such as domain adaptation, inter-domain feature mapping, and exploratory data analysis, while outperforming competing methods.","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"26 1","pages":"116-129"},"PeriodicalIF":0.0,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89533782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Suitability of Different Metric Choices for Concept Drift Detection 概念漂移检测中不同度量选择的适用性
Fabian Hinder, Valerie Vaquet, Barbara Hammer
{"title":"Suitability of Different Metric Choices for Concept Drift Detection","authors":"Fabian Hinder, Valerie Vaquet, Barbara Hammer","doi":"10.1007/978-3-031-01333-1_13","DOIUrl":"https://doi.org/10.1007/978-3-031-01333-1_13","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"50 1","pages":"157-170"},"PeriodicalIF":0.0,"publicationDate":"2022-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81549171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Selecting Outstanding Patterns Based on Their Neighbourhood 基于邻域的优秀模式选择
E. Lehembre, R. Bureau, B. Crémilleux, Bertrand Cuissart, J. Lamotte, Alban Lepailleur, Abdelkader Ouali, Albrecht Zimmermann
{"title":"Selecting Outstanding Patterns Based on Their Neighbourhood","authors":"E. Lehembre, R. Bureau, B. Crémilleux, Bertrand Cuissart, J. Lamotte, Alban Lepailleur, Abdelkader Ouali, Albrecht Zimmermann","doi":"10.1007/978-3-031-01333-1_15","DOIUrl":"https://doi.org/10.1007/978-3-031-01333-1_15","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"77 1","pages":"185-198"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75520969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Fault Detection Framework Based on LSTM Autoencoder: A Case Study for Volvo Bus Data Set 基于LSTM自编码器的故障检测框架——以沃尔沃客车数据集为例
Narjes Davari, Sepideh Pashami, Bruno Veloso, Sławomir Nowaczyk, Yuantao Fan, P. Pereira, Rita P. Ribeiro, J. Gama
{"title":"A Fault Detection Framework Based on LSTM Autoencoder: A Case Study for Volvo Bus Data Set","authors":"Narjes Davari, Sepideh Pashami, Bruno Veloso, Sławomir Nowaczyk, Yuantao Fan, P. Pereira, Rita P. Ribeiro, J. Gama","doi":"10.1007/978-3-031-01333-1_4","DOIUrl":"https://doi.org/10.1007/978-3-031-01333-1_4","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"6 1","pages":"39-52"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78611358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1