Pub Date : 2023-10-13DOI: 10.1007/s10546-023-00831-z
Matthew Coburn, Christina Vanderwel, Steven Herring, Zheng-Tong Xie
Abstract Past work has shown that coupling can exist between atmospheric air flows at street scale (O(0.1 km)) and city scale (O(10 km)). It is generally impractical at present to develop high-fidelity urban simulations capable of capturing such effects. This limitation imposes a need to develop better parameterisations for meso-scale models but an information gap exists in that past work has generally focused on simplified urban geometries and assumed the buildings to be on flat ground. This study aimed to begin to address this gap in a systematic way by using the large eddy simulation method with synthetic turbulence inflow boundary conditions to simulate atmospheric air flows over the University of Southampton campus. Both flat and realistic terrains were simulated, including significant local terrain features, such as two valleys with a width about 50 m and a depth about average building height, and a step change of urban roughness height. The numerical data were processed to obtain averaged vertical profiles of time-averaged velocities and second order turbulence statistics. The flat terrain simulation was validated against high resolution particle image velocimetry data, and the impact of uncertainty in defining the turbulence intensity in the synthetic inflow method was assessed. The ratio between realistic and flat terrains of time-mean streamwise velocity at the same ground level height over a terrain crest location can be >2, while over a valley trough it can be <0.5. Further data analysis conclusively showed that the realistic terrain can have a considerable effect on global quantities, such as the depth of the spanwise-averaged internal boundary layer and spatially-averaged turbulent kinetic energy. These highlight the potential impact that local terrain features (O(0.1 km)) may have on near-field dispersion and the urban micro-climate.
{"title":"Impact of Local Terrain Features on Urban Airflow","authors":"Matthew Coburn, Christina Vanderwel, Steven Herring, Zheng-Tong Xie","doi":"10.1007/s10546-023-00831-z","DOIUrl":"https://doi.org/10.1007/s10546-023-00831-z","url":null,"abstract":"Abstract Past work has shown that coupling can exist between atmospheric air flows at street scale (O(0.1 km)) and city scale (O(10 km)). It is generally impractical at present to develop high-fidelity urban simulations capable of capturing such effects. This limitation imposes a need to develop better parameterisations for meso-scale models but an information gap exists in that past work has generally focused on simplified urban geometries and assumed the buildings to be on flat ground. This study aimed to begin to address this gap in a systematic way by using the large eddy simulation method with synthetic turbulence inflow boundary conditions to simulate atmospheric air flows over the University of Southampton campus. Both flat and realistic terrains were simulated, including significant local terrain features, such as two valleys with a width about 50 m and a depth about average building height, and a step change of urban roughness height. The numerical data were processed to obtain averaged vertical profiles of time-averaged velocities and second order turbulence statistics. The flat terrain simulation was validated against high resolution particle image velocimetry data, and the impact of uncertainty in defining the turbulence intensity in the synthetic inflow method was assessed. The ratio between realistic and flat terrains of time-mean streamwise velocity at the same ground level height over a terrain crest location can be >2, while over a valley trough it can be <0.5. Further data analysis conclusively showed that the realistic terrain can have a considerable effect on global quantities, such as the depth of the spanwise-averaged internal boundary layer and spatially-averaged turbulent kinetic energy. These highlight the potential impact that local terrain features (O(0.1 km)) may have on near-field dispersion and the urban micro-climate.","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135853106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-04DOI: 10.1007/s10546-023-00830-0
Abhishek Mishra, Marco Placidi, Matteo Carpentieri, Alan Robins
Abstract Wind tunnel experiments were conducted to understand the effect of building array size ( N ), aspect ratio ( AR ), and the spacing between buildings ( $$W_S$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>S</mml:mi> </mml:msub> </mml:math> ) on the mean structure and decay of their wakes. Arrays of size 3 $$times $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>×</mml:mo> </mml:math> 3, 4 $$times $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>×</mml:mo> </mml:math> 4,and 5 $$times $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>×</mml:mo> </mml:math> 5, AR = 4, 6, and 8, and $$W_S$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>S</mml:mi> </mml:msub> </mml:math> = 0.5 $$W_B$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> , 1 $$W_B$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> , 2 $$W_B$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> and 4 $$W_B$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> (where $$W_B$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> is the building width) were considered. Three different wake regimes behind the building clusters were identified: near-, transition-, and far-wake regimes. The results suggest that the spatial extent of these wake regimes is governed by the overall array width ( $$W_A$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:math> ). The effects of individual buildings are observed to be dominant in the near-wake regime ( $$0<x/W_A< {0.45}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo><</mml:mo> <mml:mi>x</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mo><</mml:mo> <mml:mrow> <mml:mn>0.45</mml:mn> </mml:mrow> </mml:mrow> </mml:math> ) where individual wakes appear behind each building. These wakes are observed to merge in the transition-wake region ( $${0.45}< x/W_A < 1.5$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow> <mml:mn>0.45</mml:mn> </mml:mrow> <mml:mo><</mml:mo> <mml:mi>x</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mo><</mml:mo> <mml:mn>1.5</mml:mn> </mml:mrow> </mml:math> ), forming a combined wake in which the individual contributions are no longer apparent. In the far-wake regime ( $$x/W_A > 1.5$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML
摘要通过风洞实验研究了建筑阵列尺寸(N)、建筑展弦比(AR)和建筑间距($$W_S$$ W S)对尾迹平均结构和衰减的影响。考虑大小为3 $$times $$ × 3,4 $$times $$ × 4和5 $$times $$ × 5的数组,AR = 4,6和8,$$W_S$$ ws = 0.5 $$W_B$$ wb, 1 $$W_B$$ wb, 2 $$W_B$$ wb和4 $$W_B$$ wb(其中$$W_B$$ wb为建筑物宽度)。确定了建筑群背后的三种不同的尾流状态:近尾流、过渡尾流和远尾流状态。结果表明,这些尾迹的空间范围是由总阵列宽度($$W_A$$ W A)控制的。单个建筑物的影响在近尾流状态下占主导地位($$0<x/W_A< {0.45}$$ 0 &lt;x / W &lt;0.45),每个建筑后面都有单独的尾流。观察到这些尾迹在过渡尾迹区域合并($${0.45}< x/W_A < 1.5$$ 0.45 &lt;x / W &lt;1.5),形成一个组合尾流,其中个体的贡献不再明显。远尾流状态下($$x/W_A > 1.5$$ x / W A &gt;1.5),集群的尾流类似于单个孤立建筑顺风处的尾流。因此,在近尾流和远尾流中引入了新的局部和全局尺度参数。然后将中线速度差的衰减建模为实验中考虑的三个参数的函数。
{"title":"Wake Characterization of Building Clusters Immersed in Deep Boundary Layers","authors":"Abhishek Mishra, Marco Placidi, Matteo Carpentieri, Alan Robins","doi":"10.1007/s10546-023-00830-0","DOIUrl":"https://doi.org/10.1007/s10546-023-00830-0","url":null,"abstract":"Abstract Wind tunnel experiments were conducted to understand the effect of building array size ( N ), aspect ratio ( AR ), and the spacing between buildings ( $$W_S$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>S</mml:mi> </mml:msub> </mml:math> ) on the mean structure and decay of their wakes. Arrays of size 3 $$times $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>×</mml:mo> </mml:math> 3, 4 $$times $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>×</mml:mo> </mml:math> 4,and 5 $$times $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>×</mml:mo> </mml:math> 5, AR = 4, 6, and 8, and $$W_S$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>S</mml:mi> </mml:msub> </mml:math> = 0.5 $$W_B$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> , 1 $$W_B$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> , 2 $$W_B$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> and 4 $$W_B$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> (where $$W_B$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> is the building width) were considered. Three different wake regimes behind the building clusters were identified: near-, transition-, and far-wake regimes. The results suggest that the spatial extent of these wake regimes is governed by the overall array width ( $$W_A$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:math> ). The effects of individual buildings are observed to be dominant in the near-wake regime ( $$0<x/W_A< {0.45}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo><</mml:mo> <mml:mi>x</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mo><</mml:mo> <mml:mrow> <mml:mn>0.45</mml:mn> </mml:mrow> </mml:mrow> </mml:math> ) where individual wakes appear behind each building. These wakes are observed to merge in the transition-wake region ( $${0.45}< x/W_A < 1.5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mn>0.45</mml:mn> </mml:mrow> <mml:mo><</mml:mo> <mml:mi>x</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mo><</mml:mo> <mml:mn>1.5</mml:mn> </mml:mrow> </mml:math> ), forming a combined wake in which the individual contributions are no longer apparent. In the far-wake regime ( $$x/W_A > 1.5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135592233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-26DOI: 10.1007/s10546-023-00827-9
Robert Schoetter, Cyril Caliot, Tin-Yuet Chung, Robin J. Hogan, Valéry Masson
{"title":"Quantification of Uncertainties of Radiative Transfer Calculation in Urban Canopy Models","authors":"Robert Schoetter, Cyril Caliot, Tin-Yuet Chung, Robin J. Hogan, Valéry Masson","doi":"10.1007/s10546-023-00827-9","DOIUrl":"https://doi.org/10.1007/s10546-023-00827-9","url":null,"abstract":"","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134960963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-11DOI: 10.1007/s10546-023-00828-8
Alan Shapiro, William Anderson, Dmitrii Mironov, Elie Bou-Zeid, Andrey Grachev
{"title":"Celebrating the Career of Evgeni Fedorovich: Explorer of the Boundary-Layer Realm and Ambassador for the Community","authors":"Alan Shapiro, William Anderson, Dmitrii Mironov, Elie Bou-Zeid, Andrey Grachev","doi":"10.1007/s10546-023-00828-8","DOIUrl":"https://doi.org/10.1007/s10546-023-00828-8","url":null,"abstract":"","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135980734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-09DOI: 10.1007/s10546-023-00821-1
Sofia Farina, Dino Zardi
Abstract The paper reviews recent advances in our understanding about the dynamics of thermally driven winds over sloping terrain. Major progress from recent experiments, both in the field and in the laboratory, are outlined. Achievements from numerical modelling efforts, including both parameterized turbulence and large eddy simulation approaches, up to direct numerical simulations, are also reviewed. Finally, theoretical insights on the nature of turbulence in such winds are analyzed along with applications which benefit from progress in understanding of these flows. Open questions to be faced for further investigations are finally highlighted.
{"title":"Understanding Thermally Driven Slope Winds: Recent Advances and Open Questions","authors":"Sofia Farina, Dino Zardi","doi":"10.1007/s10546-023-00821-1","DOIUrl":"https://doi.org/10.1007/s10546-023-00821-1","url":null,"abstract":"Abstract The paper reviews recent advances in our understanding about the dynamics of thermally driven winds over sloping terrain. Major progress from recent experiments, both in the field and in the laboratory, are outlined. Achievements from numerical modelling efforts, including both parameterized turbulence and large eddy simulation approaches, up to direct numerical simulations, are also reviewed. Finally, theoretical insights on the nature of turbulence in such winds are analyzed along with applications which benefit from progress in understanding of these flows. Open questions to be faced for further investigations are finally highlighted.","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136192057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-07DOI: 10.1007/s10546-023-00826-w
L. Freire, M. Chamecki, Edward G. Patton
{"title":"Atmospheric Small-Scale Turbulence from Three-Dimensional Hot-film Data","authors":"L. Freire, M. Chamecki, Edward G. Patton","doi":"10.1007/s10546-023-00826-w","DOIUrl":"https://doi.org/10.1007/s10546-023-00826-w","url":null,"abstract":"","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"1 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48360262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-26DOI: 10.1007/s10546-023-00822-0
Nasrollah Alinejad, Sungmoon Jung, Grzegorz Kakareko, Pedro L. Fernández-Cabán
{"title":"Wind-Tunnel Reproduction of Nonuniform Terrains Using Local Roughness Zones","authors":"Nasrollah Alinejad, Sungmoon Jung, Grzegorz Kakareko, Pedro L. Fernández-Cabán","doi":"10.1007/s10546-023-00822-0","DOIUrl":"https://doi.org/10.1007/s10546-023-00822-0","url":null,"abstract":"","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"188 1","pages":"463 - 484"},"PeriodicalIF":4.3,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43972719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-24DOI: 10.1007/s10546-023-00819-9
G. Rios, P. Ramamurthy
{"title":"Turbulence in the Mixed Layer Over an Urban Area: A New York City Case Study","authors":"G. Rios, P. Ramamurthy","doi":"10.1007/s10546-023-00819-9","DOIUrl":"https://doi.org/10.1007/s10546-023-00819-9","url":null,"abstract":"","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"188 1","pages":"419 - 440"},"PeriodicalIF":4.3,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46507874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}