首页 > 最新文献

Boundary-Layer Meteorology最新文献

英文 中文
A Systematic Investigation of the Applicability of Taylor’s Hypothesis in an Idealized Surface Layer 对理想化表层中泰勒假说适用性的系统研究
IF 4.3 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-04-30 DOI: 10.1007/s10546-024-00861-1
Rainer Hilland, Andreas Christen

Taylor’s Frozen Turbulence Hypothesis (TH) is a critical assumption in turbulent theory and practice which allows time series of point measurements of turbulent variables to be translated to the spatial domain via the mean wind. Using a 3D array of fibre-optic distributed temperature sensing in the atmospheric surface layer over an idealized desert site we present a systematic investigation of the applicability of Taylor’s Hypothesis to atmospheric surface layer flows over a variety of conditions: unstable, near-neutral, and stable atmospheric stabilities; and multiple measurement heights between the surface and 3 m above ground level. Both spatially integrated and spatially scale-dependent eddy velocities are investigated by means of time-lagged streamwise two-point correlations and compared to the mean Eulerian wind. We find that eddies travel slower than predicted by TH at small spatial separations, as predicted by TH at separations typically between 5 and 16 m, and faster than predicted by TH at larger spatial separations. In unstable atmospheric conditions the spatial separation at which eddy velocity is larger than Eulerian velocity decreases with height.

泰勒冻结湍流假说(TH)是湍流理论和实践中的一个关键假设,它允许通过平均风将湍流变量点测量的时间序列转换到空间领域。通过在理想化的沙漠地区大气表层使用三维光纤分布式温度传感阵列,我们系统地研究了泰勒假说在各种条件下对大气表层流的适用性:不稳定、接近中性和稳定的大气稳定性;以及从地表到地面以上 3 米的多个测量高度。通过时滞流向两点相关性研究了空间综合涡速和空间尺度相关涡速,并与平均欧拉风进行了比较。我们发现,在较小的空间分隔处,涡流的行进速度比欧拉平均风速预测的要慢,在通常为 5 至 16 米的空间分隔处,涡流的行进速度与欧拉平均风速预测的相同,而在较大的空间分隔处,涡流的行进速度比欧拉平均风速预测的要快。在不稳定的大气条件下,涡流速度大于欧拉速度的空间间隔随高度的增加而减小。
{"title":"A Systematic Investigation of the Applicability of Taylor’s Hypothesis in an Idealized Surface Layer","authors":"Rainer Hilland, Andreas Christen","doi":"10.1007/s10546-024-00861-1","DOIUrl":"https://doi.org/10.1007/s10546-024-00861-1","url":null,"abstract":"<p>Taylor’s Frozen Turbulence Hypothesis (TH) is a critical assumption in turbulent theory and practice which allows time series of point measurements of turbulent variables to be translated to the spatial domain via the mean wind. Using a 3D array of fibre-optic distributed temperature sensing in the atmospheric surface layer over an idealized desert site we present a systematic investigation of the applicability of Taylor’s Hypothesis to atmospheric surface layer flows over a variety of conditions: unstable, near-neutral, and stable atmospheric stabilities; and multiple measurement heights between the surface and 3 m above ground level. Both spatially integrated and spatially scale-dependent eddy velocities are investigated by means of time-lagged streamwise two-point correlations and compared to the mean Eulerian wind. We find that eddies travel slower than predicted by TH at small spatial separations, as predicted by TH at separations typically between 5 and 16 m, and faster than predicted by TH at larger spatial separations. In unstable atmospheric conditions the spatial separation at which eddy velocity is larger than Eulerian velocity decreases with height.</p>","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"30 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating Fire–Atmosphere Interaction in a Forest Canopy Using Wavelets 利用小波研究林冠中火灾与大气的相互作用
IF 4.3 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-04-18 DOI: 10.1007/s10546-024-00862-0
Ajinkya Desai, Clément Guilloteau, Warren E. Heilman, Joseph J. Charney, Nicholas S. Skowronski, Kenneth L. Clark, Michael R. Gallagher, Efi Foufoula-Georgiou, Tirtha Banerjee

Wildland fire–atmosphere interaction generates complex turbulence patterns, organized across multiple scales, which inform fire-spread behaviour, firebrand transport, and smoke dispersion. Here, we utilize wavelet-based techniques to explore the characteristic temporal scales associated with coherent patterns in the measured temperature and the turbulent fluxes during a prescribed wind-driven (heading) surface fire beneath a forest canopy. We use temperature and velocity measurements from tower-mounted sonic anemometers at multiple heights. Patterns in the wavelet-based energy density of the measured temperature plotted on a time–frequency plane indicate the presence of fire-modulated ramp–cliff structures in the low-to-mid-frequency band (0.01–0.33 Hz), with mean ramp durations approximately 20% shorter and ramp slopes that are an order of magnitude higher compared to no-fire conditions. We then investigate heat- and momentum-flux events near the canopy top through a cross-wavelet coherence analysis. Briefly before the fire-front arrives at the tower base, momentum-flux events are relatively suppressed and turbulent fluxes are chiefly thermally-driven near the canopy top, owing to the tilting of the flame in the direction of the wind. Fire-induced heat-flux events comprising warm updrafts and cool downdrafts are coherent down to periods of a second, whereas ambient heat-flux events operate mainly at higher periods (above 17 s). Later, when the strongest temperature fluctuations are recorded near the surface, fire-induced heat-flux events occur intermittently at shorter scales and cool sweeps start being seen for periods ranging from 8 to 35 s near the canopy top, suggesting a diminishing influence of the flame and increasing background atmospheric variability thereat. The improved understanding of the characteristic time scales associated with fire-induced turbulence features, as the fire-front evolves, will help develop more reliable fire behaviour and scalar transport models.

野地火灾与大气层的相互作用会产生复杂的湍流模式,这种模式跨越多个尺度,为火灾蔓延行为、火苗传播和烟雾扩散提供信息。在此,我们利用基于小波的技术,探索在森林树冠下的规定风力(航向)地表火灾中,与测量温度和湍流通量的连贯模式相关的特征时间尺度。我们使用了塔式声波风速计在多个高度测量的温度和速度。在时频平面上绘制的基于小波的测量温度能量密度模式表明,在中低频段(0.01-0.33 Hz)存在火灾调制的斜坡-悬崖结构,与无火灾条件相比,平均斜坡持续时间缩短了约 20%,斜坡斜率高出一个数量级。然后,我们通过交叉小波相干性分析研究了冠层顶附近的热流和动量流事件。在火锋到达塔基之前,动量通量事件受到相对抑制,由于火焰沿风的方向倾斜,湍流通量主要由冠层顶附近的热量驱动。由暖上升气流和冷下降气流组成的火灾引起的热通量事件在一秒周期内是连贯的,而环境热通量事件主要在更高的周期(17 秒以上)运行。随后,当在地表附近记录到最强烈的温度波动时,由火焰引起的热流事件会在较短的时间尺度上间歇出现,而在树冠顶附近则开始出现 8 至 35 秒的冷扫掠,这表明火焰的影响在减弱,背景大气的变化在增加。随着火锋的演变,对与火灾诱发的湍流特征相关的特征时间尺度的进一步了解将有助于开发更可靠的火灾行为和标量传输模型。
{"title":"Investigating Fire–Atmosphere Interaction in a Forest Canopy Using Wavelets","authors":"Ajinkya Desai, Clément Guilloteau, Warren E. Heilman, Joseph J. Charney, Nicholas S. Skowronski, Kenneth L. Clark, Michael R. Gallagher, Efi Foufoula-Georgiou, Tirtha Banerjee","doi":"10.1007/s10546-024-00862-0","DOIUrl":"https://doi.org/10.1007/s10546-024-00862-0","url":null,"abstract":"<p>Wildland fire–atmosphere interaction generates complex turbulence patterns, organized across multiple scales, which inform fire-spread behaviour, firebrand transport, and smoke dispersion. Here, we utilize wavelet-based techniques to explore the characteristic temporal scales associated with coherent patterns in the measured temperature and the turbulent fluxes during a prescribed wind-driven (heading) surface fire beneath a forest canopy. We use temperature and velocity measurements from tower-mounted sonic anemometers at multiple heights. Patterns in the wavelet-based energy density of the measured temperature plotted on a time–frequency plane indicate the presence of fire-modulated ramp–cliff structures in the low-to-mid-frequency band (0.01–0.33 Hz), with mean ramp durations approximately 20% shorter and ramp slopes that are an order of magnitude higher compared to no-fire conditions. We then investigate heat- and momentum-flux events near the canopy top through a cross-wavelet coherence analysis. Briefly before the fire-front arrives at the tower base, momentum-flux events are relatively suppressed and turbulent fluxes are chiefly thermally-driven near the canopy top, owing to the tilting of the flame in the direction of the wind. Fire-induced heat-flux events comprising warm updrafts and cool downdrafts are coherent down to periods of a second, whereas ambient heat-flux events operate mainly at higher periods (above 17 s). Later, when the strongest temperature fluctuations are recorded near the surface, fire-induced heat-flux events occur intermittently at shorter scales and cool sweeps start being seen for periods ranging from 8 to 35 s near the canopy top, suggesting a diminishing influence of the flame and increasing background atmospheric variability thereat. The improved understanding of the characteristic time scales associated with fire-induced turbulence features, as the fire-front evolves, will help develop more reliable fire behaviour and scalar transport models.</p>","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"30 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140615517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Flow Variability on Dispersion of Continuous and Puff Releases in a Regular Street Network 流量变化对常规街道网络中连续排放和喷涌排放的扩散的影响
IF 4.3 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-04-15 DOI: 10.1007/s10546-024-00863-z
T. Auerswald, K. Klippel, T. G. Thomas, E. V. Goulart, M. Carpentieri, P. Hayden, D. Hertwig, N. C. Reis, A. Robins, O. Coceal

This study investigates flow variability at different scales and its effects on the dispersion of a passive scalar in a regular street network by means of direct numerical simulations (DNS), and compared to wind tunnel (WT) measurements. Specific scientific questions addressed include: (i) sources of variability in the flow at street-network scale, (ii) the effects of such variability on both puff and continuous localised releases, (iii) additional sources of uncertainty related to experimental setups and their consequences. The street network modelled here consists of an array of rectangular buildings arranged uniformly and with periodic horizontal boundary conditions. The flow is driven by a body force at an angle of 45 degrees relative to the streets in the network. Sources of passive scalars were located near ground level at three different types of locations: a short street, an intersection between streets and a long street. Flow variability is documented at different scales: small-scale intra-street variations linked with local flow topology; inter-street flow structure differences; street-network scale variability; and larger-scale spatial variations associated with above-canopy structures. Flow statistics and the dispersion behaviour of both continuous and short-duration (puff) releases of a passive scalar in the street network are analysed and compared with the results of wind-tunnel measurements. Results agree well with the experimental data for a source location in an intersection, especially for flow statistics and mean concentration profiles for continuous releases. Larger differences arise in the comparisons of puff releases. These differences are quantified by computing several puff parameters including time of arrival, travel time, rise and decay times. Reasons for the differences are discussed in relation to the underlying flow variability identified, differences between the DNS and WT setup and uncertainties in the experimental setup. Implications for the propagation of short-duration releases in real urban areas are discussed in the light of our findings. In particular, it is highlighted that in modelling singular events such as accidental releases, characterising uncertainties is more meaningful and useful than computing ensemble averages.

本研究通过直接数值模拟(DNS),并与风洞(WT)测量结果进行比较,研究了不同尺度的流动变化及其对规则街道网络中被动标量的扩散的影响。解决的具体科学问题包括(i) 街道网络尺度上流动的变异性来源,(ii) 这种变异性对瞬时和连续局部释放的影响,(iii) 与实验设置有关的其他不确定性来源及其后果。这里模拟的街道网络由均匀排列的矩形建筑物阵列组成,具有周期性水平边界条件。气流由与网络中的街道成 45 度角的体力驱动。被动标量源位于地面附近的三种不同位置:短街道、街道之间的交叉口和长街道。记录了不同尺度的水流变化:与当地水流拓扑结构相关的小尺度街道内变化;街道间水流结构差异;街道-网络尺度变化;以及与树冠上方结构相关的更大尺度空间变化。分析了街道网络中被动标量连续释放和短时间(喷发)释放的流量统计和扩散行为,并与风洞测量结果进行了比较。结果与十字路口源位置的实验数据非常吻合,特别是连续释放的流量统计和平均浓度曲线。较大的差异出现在对脉冲释放的比较中。这些差异是通过计算若干粉尘参数(包括到达时间、传播时间、上升和衰减时间)来量化的。讨论了造成差异的原因,包括已确定的基本流动变异性、DNS 和 WT 设置之间的差异以及实验设置中的不确定性。根据我们的研究结果,讨论了短时释放在实际城市地区传播的影响。特别强调的是,在模拟意外排放等奇异事件时,描述不确定性比计算集合平均值更有意义、更有用。
{"title":"Effect of Flow Variability on Dispersion of Continuous and Puff Releases in a Regular Street Network","authors":"T. Auerswald, K. Klippel, T. G. Thomas, E. V. Goulart, M. Carpentieri, P. Hayden, D. Hertwig, N. C. Reis, A. Robins, O. Coceal","doi":"10.1007/s10546-024-00863-z","DOIUrl":"https://doi.org/10.1007/s10546-024-00863-z","url":null,"abstract":"<p>This study investigates flow variability at different scales and its effects on the dispersion of a passive scalar in a regular street network by means of direct numerical simulations (DNS), and compared to wind tunnel (WT) measurements. Specific scientific questions addressed include: (i) sources of variability in the flow at street-network scale, (ii) the effects of such variability on both puff and continuous localised releases, (iii) additional sources of uncertainty related to experimental setups and their consequences. The street network modelled here consists of an array of rectangular buildings arranged uniformly and with periodic horizontal boundary conditions. The flow is driven by a body force at an angle of 45 degrees relative to the streets in the network. Sources of passive scalars were located near ground level at three different types of locations: a short street, an intersection between streets and a long street. Flow variability is documented at different scales: small-scale intra-street variations linked with local flow topology; inter-street flow structure differences; street-network scale variability; and larger-scale spatial variations associated with above-canopy structures. Flow statistics and the dispersion behaviour of both continuous and short-duration (puff) releases of a passive scalar in the street network are analysed and compared with the results of wind-tunnel measurements. Results agree well with the experimental data for a source location in an intersection, especially for flow statistics and mean concentration profiles for continuous releases. Larger differences arise in the comparisons of puff releases. These differences are quantified by computing several puff parameters including time of arrival, travel time, rise and decay times. Reasons for the differences are discussed in relation to the underlying flow variability identified, differences between the DNS and WT setup and uncertainties in the experimental setup. Implications for the propagation of short-duration releases in real urban areas are discussed in the light of our findings. In particular, it is highlighted that in modelling singular events such as accidental releases, characterising uncertainties is more meaningful and useful than computing ensemble averages.</p>","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"189 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lagrangian Stochastic Modeling of Stratified Atmospheric Boundary Layer 分层大气边界层的拉格朗日随机建模
IF 4.3 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-04-06 DOI: 10.1007/s10546-023-00849-3
Jihoon Shin, Jong-Jin Baik

A single-column turbulence model for stratified atmospheric boundary layer (ABL), which solves the transport equations of turbulence probability density function (PDF) using a Lagrangian stochastic modeling (LSM) approach, is proposed in this study. This study adopts previously developed stochastic differential equations (SDEs) for particle velocity and temperature and extends the LSM to simulate inhomogeneous turbulence. The proposed LSM is tested for its ability to fully simulate statistics of inhomogeneous stratified turbulence. In the model, particles evolve by SDEs, and turbulence statistics are calculated by averaging the properties of particles. The model provides a full representation of turbulence PDF and simulates turbulent transport without any modeling assumption. The model performance is evaluated against large-eddy simulation (LES) results in the simulations of convective and stable ABL cases. For the convective ABL, LSM realistically simulates the entrainment process with the temperature and heat flux profiles that closely match with LES. The joint PDF simulated by LSM reproduces a curved and highly skewed shape, and some distinct features, like the asymmetric distribution of vertical velocity and the separation of the PDF in the entrainment zone, are simulated. LSM also reproduces the entrainment enhancement by wind shear in the simulation of sheared convective ABL. The LSM simulation of stable ABL predicts realistic turbulence intensity and mean field profiles, where Gaussian-like PDFs are simulated both in LSM and LES.

本研究提出了分层大气边界层(ABL)的单柱湍流模型,该模型采用拉格朗日随机建模(LSM)方法求解湍流概率密度函数(PDF)的传输方程。本研究采用了之前开发的粒子速度和温度随机微分方程(SDE),并扩展了 LSM 以模拟非均质湍流。本文测试了所提出的 LSM 全面模拟非均质分层湍流统计的能力。在该模型中,粒子通过 SDEs 演变,湍流统计则通过平均粒子特性来计算。该模型提供了湍流 PDF 的完整表述,并在没有任何建模假设的情况下模拟了湍流传输。在模拟对流和稳定 ABL 时,根据大涡模拟(LES)结果对模型性能进行了评估。对于对流 ABL,LSM 真实地模拟了夹带过程,其温度和热通量剖面与 LES 非常接近。LSM 模拟的联合 PDF 再现了弯曲和高度倾斜的形状,并模拟了一些明显的特征,如垂直速度的非对称分布和夹带区 PDF 的分离。在模拟剪切对流 ABL 时,LSM 还再现了风切变对夹带的增强作用。LSM 对稳定 ABL 的模拟预测了逼真的湍流强度和平均场剖面,其中类高斯 PDF 在 LSM 和 LES 中都得到了模拟。
{"title":"Lagrangian Stochastic Modeling of Stratified Atmospheric Boundary Layer","authors":"Jihoon Shin, Jong-Jin Baik","doi":"10.1007/s10546-023-00849-3","DOIUrl":"https://doi.org/10.1007/s10546-023-00849-3","url":null,"abstract":"<p>A single-column turbulence model for stratified atmospheric boundary layer (ABL), which solves the transport equations of turbulence probability density function (PDF) using a Lagrangian stochastic modeling (LSM) approach, is proposed in this study. This study adopts previously developed stochastic differential equations (SDEs) for particle velocity and temperature and extends the LSM to simulate inhomogeneous turbulence. The proposed LSM is tested for its ability to fully simulate statistics of inhomogeneous stratified turbulence. In the model, particles evolve by SDEs, and turbulence statistics are calculated by averaging the properties of particles. The model provides a full representation of turbulence PDF and simulates turbulent transport without any modeling assumption. The model performance is evaluated against large-eddy simulation (LES) results in the simulations of convective and stable ABL cases. For the convective ABL, LSM realistically simulates the entrainment process with the temperature and heat flux profiles that closely match with LES. The joint PDF simulated by LSM reproduces a curved and highly skewed shape, and some distinct features, like the asymmetric distribution of vertical velocity and the separation of the PDF in the entrainment zone, are simulated. LSM also reproduces the entrainment enhancement by wind shear in the simulation of sheared convective ABL. The LSM simulation of stable ABL predicts realistic turbulence intensity and mean field profiles, where Gaussian-like PDFs are simulated both in LSM and LES.</p>","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"124 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140563851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation, Implementation and Validation of a 1D Boundary Layer Inflow Scheme for the QUIC Modeling System QUIC 建模系统一维边界层流入方案的制定、实施和验证
IF 4.3 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-04-01 DOI: 10.1007/s10546-024-00860-2

Abstract

Recent studies have highlighted the importance of accurate meteorological conditions for urban transport and dispersion calculations. In this work, we present a novel scheme to compute the meteorological input in the Quick Urban & Industrial Complex (QUIC) diagnostic urban wind solver to improve the characterization of upstream wind veer and shear in the Atmospheric Boundary Layer (ABL). The new formulation is based on a coupled set of Ordinary Differential Equations (ODEs) derived from the Reynolds Averaged Navier–Stokes (RANS) equations, and is fast to compute. Building upon recent progress in modeling the idealized ABL, we include effects from surface roughness, turbulent stress, Coriolis force, buoyancy and baroclinicity. We verify the performance of the new scheme with canonical Large Eddy Simulation (LES) tests with the GPU-accelerated FastEddy solver in neutral, stable, unstable and baroclinic conditions with different surface roughness. Furthermore, we evaluate QUIC calculations with and without the new inflow scheme with real data from the Urban Threat Dispersion (UTD) field experiment, which includes Lidar-based wind measurements as well as concentration observations from multiple outdoor releases of a non-reactive tracer in downtown New York City. Compared to previous inflow capabilities that were limited to a constant wind direction with height, we show that the new scheme can model wind veer in the ABL and enhance the prediction of the surface cross-isobaric angle, improving evaluation statistics of simulated concentrations paired in time and space with UTD measurements.

摘要 近期的研究强调了准确的气象条件对于城市交通和扩散计算的重要性。在这项工作中,我们提出了一种新方案,用于计算快速城市与amp; 工业综合体(QUIC)诊断型城市风求解器中的气象输入,以改进大气边界层(ABL)中的上游风偏转和剪切特征。新公式基于雷诺平均纳维-斯托克斯(RANS)方程衍生的一组耦合常微分方程(ODE),计算速度快。基于最近在理想化 ABL 建模方面取得的进展,我们纳入了表面粗糙度、湍流应力、科里奥利力、浮力和气压的影响。我们利用 GPU 加速的 FastEddy 求解器,在不同表面粗糙度的中性、稳定、不稳定和气压条件下进行了典型大涡模拟(LES)测试,验证了新方案的性能。此外,我们还利用来自城市威胁扩散(UTD)现场实验的真实数据,评估了采用和不采用新流入方案的 QUIC 计算结果,这些数据包括基于激光雷达的风力测量结果,以及在纽约市中心多次室外释放非反应性示踪剂的浓度观测结果。以前的流入能力仅限于随高度变化的恒定风向,与此相比,我们发现新方案可以模拟 ABL 中的风向偏移,并增强对地表交叉等压角的预测,从而改进与 UTD 测量结果在时间和空间上配对的模拟浓度的评估统计。
{"title":"Formulation, Implementation and Validation of a 1D Boundary Layer Inflow Scheme for the QUIC Modeling System","authors":"","doi":"10.1007/s10546-024-00860-2","DOIUrl":"https://doi.org/10.1007/s10546-024-00860-2","url":null,"abstract":"<h3>Abstract</h3> <p>Recent studies have highlighted the importance of accurate meteorological conditions for urban transport and dispersion calculations. In this work, we present a novel scheme to compute the meteorological input in the Quick Urban &amp; Industrial Complex (<span>QUIC</span>) diagnostic urban wind solver to improve the characterization of upstream wind veer and shear in the Atmospheric Boundary Layer (ABL). The new formulation is based on a coupled set of Ordinary Differential Equations (ODEs) derived from the Reynolds Averaged Navier–Stokes (RANS) equations, and is fast to compute. Building upon recent progress in modeling the idealized ABL, we include effects from surface roughness, turbulent stress, Coriolis force, buoyancy and baroclinicity. We verify the performance of the new scheme with canonical Large Eddy Simulation (LES) tests with the GPU-accelerated FastEddy<span> </span> solver in neutral, stable, unstable and baroclinic conditions with different surface roughness. Furthermore, we evaluate QUIC calculations with and without the new inflow scheme with real data from the Urban Threat Dispersion (UTD) field experiment, which includes Lidar-based wind measurements as well as concentration observations from multiple outdoor releases of a non-reactive tracer in downtown New York City. Compared to previous inflow capabilities that were limited to a constant wind direction with height, we show that the new scheme can model wind veer in the ABL and enhance the prediction of the surface cross-isobaric angle, improving evaluation statistics of simulated concentrations paired in time and space with UTD measurements.</p>","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"189 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140563834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Reinterpretation of Phenomenological Modeling Approaches for Lagrangian Particles Settling in a Turbulent Boundary Layer 重新解释湍流边界层中拉格朗日粒子沉降的现象学建模方法
IF 4.3 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-03-22 DOI: 10.1007/s10546-024-00858-w
Andrew P. Grace, David H. Richter, Andrew D. Bragg

It has long been known that under the right circumstances, inertial particles (such as sand, dust, pollen, or water droplets) settling through the atmospheric boundary layer can experience a net enhancement in their average settling velocity due to their inertia. Since this enhancement arises due to their interactions with the surrounding turbulence it must be modelled at coarse scales. Models for the enhanced settling velocity (or deposition) of the dispersed phase that find practical use in mesoscale weather models are often ad hoc or are built on phenomenological closure assumptions, meaning that the general deposition rate of particles is a key uncertainty in these models. Instead of taking a phenomenological approach, exact phase-space methods can be used to model the physical mechanisms responsible for the enhanced settling, and these individual mechanisms can be estimated or modelled to build a more general parameterization of the enhanced settling of inertial particles. In this work, we use direct numerical simulations (DNS) and phase-space methods as tools to evaluate the efficacy of phenomenological modeling approaches for the enhanced settling velocity of inertial particles for particles with varying friction Stokes numbers and settling velocity parameters. We use the DNS data to estimate profiles of a drift–diffusion based parameterization of the fluid velocity sampled by the particles, which is key for determining the settling velocity behaviour of particles with low to moderate Stokes number. We find that by increasing the settling velocity parameter at moderate friction Stokes number, the magnitude of preferential sweeping is modified, and this behaviour is explained by the drift component of the aforementioned parameterization. These profiles indicate that that when eddy-diffusivity-like closures are used to represent turbulent transport, empirical corrections used in phenomenological models may be potentially compensating for their incompleteness. Finally, we discuss opportunities for reinterpreting phenomenological approaches for use in coarse-scale weather models in terms of the exact phase-space approach.

众所周知,在适当的情况下,惯性颗粒(如沙粒、灰尘、花粉或水滴)在大气边界层中沉降时,由于其惯性,其平均沉降速度会出现净增强。由于这种增强是由于它们与周围湍流的相互作用而产生的,因此必须在较粗的尺度上进行模拟。中尺度天气模式中实际使用的分散相沉降速度(或沉积)增强模型通常是临时建立的,或者是建立在现象学闭合假设的基础上,这意味着粒子的一般沉积速率是这些模型中的一个关键不确定因素。与其采用现象学方法,不如采用精确的相空间方法来模拟造成沉降增强的物理机制,并对这些单独的机制进行估算或建模,以建立惯性粒子沉降增强的更一般的参数化。在这项工作中,我们以直接数值模拟(DNS)和相空间方法为工具,评估了针对具有不同摩擦斯托克斯数和沉降速度参数的惯性粒子的增强沉降速度的现象学建模方法的有效性。我们利用 DNS 数据来估算颗粒采样流体速度的漂移扩散参数化剖面,这是确定低至中等斯托克斯数颗粒沉降速度行为的关键。我们发现,通过增加中等摩擦斯托克斯数时的沉降速度参数,优先扫掠的幅度会发生改变,这种行为可以用上述参数化的漂移成分来解释。这些剖面表明,当使用类似涡扩散的闭合来表示湍流输运时,现象学模型中使用的经验修正可能会弥补其不完整性。最后,我们讨论了用精确相空间方法重新解释用于粗尺度天气模式的现象学方法的机会。
{"title":"A Reinterpretation of Phenomenological Modeling Approaches for Lagrangian Particles Settling in a Turbulent Boundary Layer","authors":"Andrew P. Grace, David H. Richter, Andrew D. Bragg","doi":"10.1007/s10546-024-00858-w","DOIUrl":"https://doi.org/10.1007/s10546-024-00858-w","url":null,"abstract":"<p>It has long been known that under the right circumstances, inertial particles (such as sand, dust, pollen, or water droplets) settling through the atmospheric boundary layer can experience a net enhancement in their average settling velocity due to their inertia. Since this enhancement arises due to their interactions with the surrounding turbulence it must be modelled at coarse scales. Models for the enhanced settling velocity (or deposition) of the dispersed phase that find practical use in mesoscale weather models are often ad hoc or are built on phenomenological closure assumptions, meaning that the general deposition rate of particles is a key uncertainty in these models. Instead of taking a phenomenological approach, exact phase-space methods can be used to model the physical mechanisms responsible for the enhanced settling, and these individual mechanisms can be estimated or modelled to build a more general parameterization of the enhanced settling of inertial particles. In this work, we use direct numerical simulations (DNS) and phase-space methods as tools to evaluate the efficacy of phenomenological modeling approaches for the enhanced settling velocity of inertial particles for particles with varying friction Stokes numbers and settling velocity parameters. We use the DNS data to estimate profiles of a drift–diffusion based parameterization of the fluid velocity sampled by the particles, which is key for determining the settling velocity behaviour of particles with low to moderate Stokes number. We find that by increasing the settling velocity parameter at moderate friction Stokes number, the magnitude of preferential sweeping is modified, and this behaviour is explained by the drift component of the aforementioned parameterization. These profiles indicate that that when eddy-diffusivity-like closures are used to represent turbulent transport, empirical corrections used in phenomenological models may be potentially compensating for their incompleteness. Finally, we discuss opportunities for reinterpreting phenomenological approaches for use in coarse-scale weather models in terms of the exact phase-space approach.</p>","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"96 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140200168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytical Model Coupling Ekman and Surface Layer Structure in Atmospheric Boundary Layer Flows 大气边界层流动中埃克曼和表层结构耦合的分析模型
IF 4.3 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-03-22 DOI: 10.1007/s10546-024-00859-9
Ghanesh Narasimhan, Dennice F. Gayme, Charles Meneveau

We introduce an analytical model that describes the vertical structure of Ekman boundary layer flows coupled to the Monin-Obukhov Similarity Theory (MOST) surface layer representation, which is valid for conventionally neutral (CNBL) and stable (SBL) atmospheric conditions. The model is based on a self-similar profile of horizontal stress for both CNBL and SBL flows that merges the classic 3/2 power law profile with a MOST-consistent stress profile in the surface layer. The velocity profiles are then obtained from the Ekman momentum balance equation. The same stress model is used to derive a new self-consistent Geostrophic Drag Law (GDL). We determine the ABL height (h) using an equilibrium boundary layer height model and parameterize the surface heat flux for quasi-steady SBL flows as a function of a prescribed surface temperature cooling rate. The ABL height and GDL equations can then be solved together to obtain the friction velocity ((u_*)) and the cross-isobaric angle ((alpha _0)) as a function of known input parameters such as the Geostrophic wind speed and surface roughness ((z_0)). We show that the model predictions agree well with simulation data from the literature and newly generated Large Eddy Simulations (LES). These results indicate that the proposed model provides an efficient and relatively accurate self-consistent approach for predicting the mean wind velocity distribution in CNBL and SBL flows.

我们介绍了一种分析模型,该模型描述了与莫宁-奥布霍夫相似理论(MOST)表层表示法相结合的埃克曼边界层流的垂直结构,适用于常规中性(CNBL)和稳定(SBL)大气条件。该模型基于中性(CNBL)和稳定(SBL)气流的水平应力自相似剖面,将经典的 3/2 幂律剖面与 MOST 一致的表层应力剖面合并在一起。然后根据埃克曼动量平衡方程得出速度剖面。同样的应力模型用于推导新的自洽的地营阻力定律(GDL)。我们利用平衡边界层高度模型确定 ABL 高度(h),并将准稳 SBL 流动的表面热通量参数化为规定表面温度冷却率的函数。然后,ABL 高度和 GDL 方程可以一起求解,以获得摩擦速度 ((u_*))和交叉等压角 ((alpha _0)),它们是已知输入参数(如地转风速和表面粗糙度 ((z_0)))的函数。结果表明,该模型的预测结果与文献中的模拟数据和新生成的大涡模拟(LES)数据吻合良好。这些结果表明,所提出的模型为预测 CNBL 和 SBL 气流中的平均风速分布提供了一种高效和相对准确的自洽方法。
{"title":"Analytical Model Coupling Ekman and Surface Layer Structure in Atmospheric Boundary Layer Flows","authors":"Ghanesh Narasimhan, Dennice F. Gayme, Charles Meneveau","doi":"10.1007/s10546-024-00859-9","DOIUrl":"https://doi.org/10.1007/s10546-024-00859-9","url":null,"abstract":"<p>We introduce an analytical model that describes the vertical structure of Ekman boundary layer flows coupled to the Monin-Obukhov Similarity Theory (MOST) surface layer representation, which is valid for conventionally neutral (CNBL) and stable (SBL) atmospheric conditions. The model is based on a self-similar profile of horizontal stress for both CNBL and SBL flows that merges the classic 3/2 power law profile with a MOST-consistent stress profile in the surface layer. The velocity profiles are then obtained from the Ekman momentum balance equation. The same stress model is used to derive a new self-consistent Geostrophic Drag Law (GDL). We determine the ABL height (<i>h</i>) using an equilibrium boundary layer height model and parameterize the surface heat flux for quasi-steady SBL flows as a function of a prescribed surface temperature cooling rate. The ABL height and GDL equations can then be solved together to obtain the friction velocity <span>((u_*))</span> and the cross-isobaric angle (<span>(alpha _0)</span>) as a function of known input parameters such as the Geostrophic wind speed and surface roughness <span>((z_0))</span>. We show that the model predictions agree well with simulation data from the literature and newly generated Large Eddy Simulations (LES). These results indicate that the proposed model provides an efficient and relatively accurate self-consistent approach for predicting the mean wind velocity distribution in CNBL and SBL flows.</p>","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"47 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140200122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat Transport by Turbulence and Submeso Structures in the Stable Boundary Layer 稳定边界层中湍流和亚漩涡结构的热量传输
IF 4.3 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-03-07 DOI: 10.1007/s10546-023-00845-7
L. Mahrt

We examine measurements in the very stable boundary layer using tower data and a network of flux stations in the Shallow Cold Pool experiment. Submeso motions in the very stable boundary layer significantly modulate the turbulent heat fluxes and also directly contribute to the submeso vertical heat flux. Time series include well-defined submeso structures such as microfronts, wave-like motions, and meandering but also include complex structures that are difficult to isolate. These structures significantly influence the time and height variation of the turbulent heat flux. From the 19 flux stations distributed across the shallow valley, we find that the surface heat flux with low wind speeds varies significantly on a horizontal scale of 100 m, or less, related partly to the modest topography. For this dataset, the turbulent surface heat fluxes for low wind speeds are closely related to submeso variations of the wind speed but not significantly related to variations of the stratification.

我们利用塔式数据和浅层冷池实验中的通量站网络对非常稳定边界层进行了测量。非常稳定边界层中的亚介质运动对湍流热通量有显著的调节作用,也直接导致了亚介质垂直热通量。时间序列包括定义明确的亚介质结构,如微锋、波状运动和蜿蜒,但也包括难以分离的复杂结构。这些结构会对湍流热通量的时间和高度变化产生重大影响。从分布在浅谷的 19 个通量站中,我们发现低风速下的地表热通量在 100 米或更小的水平尺度上变化很大,这部分与不高的地形有关。就该数据集而言,低风速下的湍流表面热通量与风速的亚介质变化密切相关,但与分层变化关系不大。
{"title":"Heat Transport by Turbulence and Submeso Structures in the Stable Boundary Layer","authors":"L. Mahrt","doi":"10.1007/s10546-023-00845-7","DOIUrl":"https://doi.org/10.1007/s10546-023-00845-7","url":null,"abstract":"<p>We examine measurements in the very stable boundary layer using tower data and a network of flux stations in the Shallow Cold Pool experiment. Submeso motions in the very stable boundary layer significantly modulate the turbulent heat fluxes and also directly contribute to the submeso vertical heat flux. Time series include well-defined submeso structures such as microfronts, wave-like motions, and meandering but also include complex structures that are difficult to isolate. These structures significantly influence the time and height variation of the turbulent heat flux. From the 19 flux stations distributed across the shallow valley, we find that the surface heat flux with low wind speeds varies significantly on a horizontal scale of 100 m, or less, related partly to the modest topography. For this dataset, the turbulent surface heat fluxes for low wind speeds are closely related to submeso variations of the wind speed but not significantly related to variations of the stratification.</p>","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"39 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reducing Parametrization Errors for Polar Surface Turbulent Fluxes Using Machine Learning 利用机器学习减少极地表面湍流通量的参数化误差
IF 4.3 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-02-21 DOI: 10.1007/s10546-023-00852-8

Abstract

Turbulent exchanges between sea ice and the atmosphere are known to influence the melting rate of sea ice, the development of atmospheric circulation anomalies and, potentially, teleconnections between polar and non-polar regions. Large model errors remain in the parametrization of turbulent heat fluxes over sea ice in climate models, resulting in significant uncertainties in projections of future climate. Fluxes are typically calculated using bulk formulae, based on Monin-Obukhov similarity theory, which have shown particular limitations in polar regions. Parametrizations developed specifically for polar conditions (e.g. representing form drag from ridges or melt ponds on sea ice) rely on sparse observations and thus may not be universally applicable. In this study, new data-driven parametrizations have been developed for surface turbulent fluxes of momentum, sensible heat and latent heat in the Arctic. Machine learning has already been used outside the polar regions to provide accurate and computationally inexpensive estimates of surface turbulent fluxes. To investigate the feasibility of this approach in the Arctic, we have fitted neural-network models to a reference dataset (SHEBA). Predictive performance has been tested using data from other observational campaigns. For momentum and sensible heat, performance of the neural networks is found to be comparable to, and in some cases substantially better than, that of a state-of-the-art bulk formulation. These results offer an efficient alternative to the traditional bulk approach in cases where the latter fails, and can serve to inform further physically based developments.

摘要 众所周知,海冰与大气之间的湍流交换会影响海冰的融化速度、大气环流异常的发展,并有可能影响极地与非极地区域之间的远程联系。气候模式中海冰上湍流热通量的参数化仍存在很大的模式误差,导致对未来气候的预测存在很大的不确定性。通量通常使用基于莫宁-奥布霍夫相似性理论的大体积公式计算,这在极地地区显示出特别的局限性。专为极地条件开发的参数化(如代表海脊或海冰熔池的形式阻力)依赖于稀少的观测数据,因此可能并不普遍适用。在这项研究中,针对北极地区的表面动量、显热和潜热的湍流通量,开发了新的数据驱动参数。机器学习已被用于极地以外地区,以提供精确且计算成本低廉的地表湍流通量估计值。为了研究这种方法在北极地区的可行性,我们将神经网络模型与参考数据集(SHEBA)进行了匹配。使用其他观测活动的数据对预测性能进行了测试。在动量和显热方面,我们发现神经网络的性能与最先进的批量公式相当,在某些情况下甚至大大优于后者。这些结果为传统的大容量方法失效时提供了有效的替代方法,并可为进一步基于物理的开发提供参考。
{"title":"Reducing Parametrization Errors for Polar Surface Turbulent Fluxes Using Machine Learning","authors":"","doi":"10.1007/s10546-023-00852-8","DOIUrl":"https://doi.org/10.1007/s10546-023-00852-8","url":null,"abstract":"<h3>Abstract</h3> <p>Turbulent exchanges between sea ice and the atmosphere are known to influence the melting rate of sea ice, the development of atmospheric circulation anomalies and, potentially, teleconnections between polar and non-polar regions. Large model errors remain in the parametrization of turbulent heat fluxes over sea ice in climate models, resulting in significant uncertainties in projections of future climate. Fluxes are typically calculated using bulk formulae, based on Monin-Obukhov similarity theory, which have shown particular limitations in polar regions. Parametrizations developed specifically for polar conditions (e.g. representing form drag from ridges or melt ponds on sea ice) rely on sparse observations and thus may not be universally applicable. In this study, new data-driven parametrizations have been developed for surface turbulent fluxes of momentum, sensible heat and latent heat in the Arctic. Machine learning has already been used outside the polar regions to provide accurate and computationally inexpensive estimates of surface turbulent fluxes. To investigate the feasibility of this approach in the Arctic, we have fitted neural-network models to a reference dataset (SHEBA). Predictive performance has been tested using data from other observational campaigns. For momentum and sensible heat, performance of the neural networks is found to be comparable to, and in some cases substantially better than, that of a state-of-the-art bulk formulation. These results offer an efficient alternative to the traditional bulk approach in cases where the latter fails, and can serve to inform further physically based developments. </p>","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"9 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139922264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Setting Up a Large-Eddy Simulation to Focus on the Atmospheric Surface Layer 建立大型埃迪模拟,聚焦大气表层
IF 4.3 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-02-21 DOI: 10.1007/s10546-023-00841-x

Abstract

Large-eddy simulations (LES) above forests and cities typically constrain the simulation domain to the first 10–20% of the Atmospheric Boundary Layer (ABL), aiming to represent the finer details of the roughness elements and sublayer. These simulations are also commonly driven by a constant pressure gradient term in the streamwise direction and zero stress at the top, resulting in an unrealistic fast decay of the total stress profile. In this study, we investigate five LES setups, including pressure and/or top-shear driven flows with and without the Coriolis force, with the aim of identifying which option best represents turbulence profiles in the atmospheric surface layer (ASL). We show that flows driven solely by pressure not only result in a fast-decaying stress profile, but also in lower velocity variances and higher velocity skewnesses. Top-shear driven flows, on the other hand, better replicate ASL statistics. Overall, we recommend, and provide setup guidance for, simulation designs that include both a large scale pressure forcing and a non-zero stress and scalar flux at the top of the domain, and that also represent the Coriolis force. Such setups retain all the forces used in typical full ABL cases and result in the best match of the profiles of various statistical moments.

摘要 森林和城市上空的大涡度模拟(LES)通常将模拟域限制在大气边界层(ABL)的前 10-20%,目的是表现粗糙度要素和子层的更精细细节。这些模拟还通常由流向方向的恒定压力梯度项和顶部的零应力驱动,导致总应力剖面不切实际地快速衰减。在本研究中,我们研究了五种 LES 设置,包括有科里奥利力和无科里奥利力的压力和/或顶部剪切力驱动流动,目的是确定哪种方案最能代表大气表层(ASL)的湍流剖面。我们的研究表明,仅由压力驱动的流动不仅会产生快速衰减的应力剖面,还会产生较低的速度方差和较高的速度偏度。另一方面,顶部剪切驱动的流动能更好地复制 ASL 统计数据。总之,我们建议在模拟设计中同时包含大尺度压力强迫和域顶非零应力和标量通量,并体现科里奥利力,并为其提供设置指导。这种设置保留了典型的全 ABL 案例中使用的所有力,并使各种统计力矩的剖面达到最佳匹配。
{"title":"Setting Up a Large-Eddy Simulation to Focus on the Atmospheric Surface Layer","authors":"","doi":"10.1007/s10546-023-00841-x","DOIUrl":"https://doi.org/10.1007/s10546-023-00841-x","url":null,"abstract":"<h3>Abstract</h3> <p>Large-eddy simulations (LES) above forests and cities typically constrain the simulation domain to the first 10–20% of the Atmospheric Boundary Layer (ABL), aiming to represent the finer details of the roughness elements and sublayer. These simulations are also commonly driven by a constant pressure gradient term in the streamwise direction and zero stress at the top, resulting in an unrealistic fast decay of the total stress profile. In this study, we investigate five LES setups, including pressure and/or top-shear driven flows with and without the Coriolis force, with the aim of identifying which option best represents turbulence profiles in the atmospheric surface layer (ASL). We show that flows driven solely by pressure not only result in a fast-decaying stress profile, but also in lower velocity variances and higher velocity skewnesses. Top-shear driven flows, on the other hand, better replicate ASL statistics. Overall, we recommend, and provide setup guidance for, simulation designs that include both a large scale pressure forcing and a non-zero stress and scalar flux at the top of the domain, and that also represent the Coriolis force. Such setups retain all the forces used in typical full ABL cases and result in the best match of the profiles of various statistical moments. </p>","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"63 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139922195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Boundary-Layer Meteorology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1