首页 > 最新文献

Neuropsychiatric electrophysiology最新文献

英文 中文
Nonlinear EEG biomarker profiles for autism and absence epilepsy 自闭症和失神性癫痫的非线性脑电图生物标志物图谱
Pub Date : 2017-03-23 DOI: 10.1186/S40810-017-0023-X
W. Bosl, T. Loddenkemper, C. Nelson
{"title":"Nonlinear EEG biomarker profiles for autism and absence epilepsy","authors":"W. Bosl, T. Loddenkemper, C. Nelson","doi":"10.1186/S40810-017-0023-X","DOIUrl":"https://doi.org/10.1186/S40810-017-0023-X","url":null,"abstract":"","PeriodicalId":91583,"journal":{"name":"Neuropsychiatric electrophysiology","volume":"3 1","pages":"1-22"},"PeriodicalIF":0.0,"publicationDate":"2017-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/S40810-017-0023-X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44301825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 43
Trait aspects of auditory mismatch negativity predict response to auditory training in individuals with early illness schizophrenia. 听觉错配负性的特质可预测早期精神分裂症患者对听觉训练的反应。
Pub Date : 2017-01-01 Epub Date: 2017-06-09 DOI: 10.1186/s40810-017-0024-9
Bruno Biagianti, Brian J Roach, Melissa Fisher, Rachel Loewy, Judith M Ford, Sophia Vinogradov, Daniel H Mathalon

Background: Individuals with schizophrenia have heterogeneous impairments of the auditory processing system that likely mediate differences in the cognitive gains induced by auditory training (AT). Mismatch negativity (MMN) is an event-related potential component reflecting auditory echoic memory, and its amplitude reduction in schizophrenia has been linked to cognitive deficits. Therefore, MMN may predict response to AT and identify individuals with schizophrenia who have the most to gain from AT. Furthermore, to the extent that AT strengthens auditory deviance processing, MMN may also serve as a readout of the underlying changes in the auditory system induced by AT.

Methods: Fifty-six individuals early in the course of a schizophrenia-spectrum illness (ESZ) were randomly assigned to 40 h of AT or Computer Games (CG). Cognitive assessments and EEG recordings during a multi-deviant MMN paradigm were obtained before and after AT and CG. Changes in these measures were compared between the treatment groups. Baseline and trait-like MMN data were evaluated as predictors of treatment response. MMN data collected with the same paradigm from a sample of Healthy Controls (HC; n = 105) were compared to baseline MMN data from the ESZ group.

Results: Compared to HC, ESZ individuals showed significant MMN reductions at baseline (p = .003). Reduced Double-Deviant MMN was associated with greater general cognitive impairment in ESZ individuals (p = .020). Neither ESZ intervention group showed significant change in MMN. We found high correlations in all MMN deviant types (rs = .59-.68, all ps < .001) between baseline and post-intervention amplitudes irrespective of treatment group, suggesting trait-like stability of the MMN signal. Greater deficits in trait-like Double-Deviant MMN predicted greater cognitive improvements in the AT group (p = .02), but not in the CG group.

Conclusions: In this sample of ESZ individuals, AT had no effect on auditory deviance processing as assessed by MMN. In ESZ individuals, baseline MMN was significantly reduced relative to HCs, and associated with global cognitive impairment. MMN did not show changes after AT and exhibited trait-like stability. Greater deficits in the trait aspects of Double-Deviant MMN predicted greater gains in global cognition in response to AT, suggesting that MMN may identify individuals who stand to gain the most from AT.

Trial registration: NCT00694889. Registered 1 August 2007.

背景:精神分裂症患者的听觉处理系统存在不同程度的损伤,这可能是听觉训练(AT)诱导认知收益差异的介导因素。错配负性(MMN)是一种反映听觉回声记忆的事件相关电位成分,精神分裂症患者的MMN振幅降低与认知缺陷有关。因此,MMN 可以预测对 AT 的反应,并识别出哪些精神分裂症患者最有可能从 AT 中获益。此外,如果听觉障碍加强了听觉偏差处理,那么MMN也可作为听觉障碍引起的听觉系统潜在变化的读数:方法:56名精神分裂症谱系病(ESZ)早期患者被随机分配到40小时的听觉障碍或电脑游戏(CG)中。在AT和CG前后进行认知评估和多偏差MMN范式的脑电图记录。这些指标的变化在治疗组之间进行了比较。基线和特质类 MMN 数据被评估为治疗反应的预测因素。用相同范式收集的健康对照组(HC;n = 105)的 MMN 数据与 ESZ 组的基线 MMN 数据进行了比较:结果:与健康对照组相比,ESZ 组的基线 MMN 显著降低(p = .003)。双向偏差 MMN 的减少与 ESZ 患者的一般认知功能损害程度增加有关(p = .020)。ESZ 干预组的 MMN 均未出现明显变化。我们发现,无论治疗组,所有 MMN 偏差类型的基线振幅与干预后振幅之间都存在高度相关性(rs = .59-.68,所有 ps < .001),这表明 MMN 信号具有特质稳定性。特质类双重偏离MMN的更大缺陷预示着AT组认知能力的更大改善(P = .02),但在CG组则不然:结论:在这一 ESZ 患者样本中,通过 MMN 评估,AT 对听觉偏差处理没有影响。在 ESZ 患者中,基线 MMN 相对于 HC 显著降低,并与整体认知障碍有关。听觉偏差处理后,听觉偏差网没有发生变化,并表现出类似特质的稳定性。双重偏差MMN的特质方面的更大缺陷预示着AT治疗后整体认知能力的更大提高,这表明MMN可以识别出从AT治疗中获益最大的个体:试验注册:NCT00694889。注册日期:2007 年 8 月 1 日。
{"title":"Trait aspects of auditory mismatch negativity predict response to auditory training in individuals with early illness schizophrenia.","authors":"Bruno Biagianti, Brian J Roach, Melissa Fisher, Rachel Loewy, Judith M Ford, Sophia Vinogradov, Daniel H Mathalon","doi":"10.1186/s40810-017-0024-9","DOIUrl":"10.1186/s40810-017-0024-9","url":null,"abstract":"<p><strong>Background: </strong>Individuals with schizophrenia have heterogeneous impairments of the auditory processing system that likely mediate differences in the cognitive gains induced by auditory training (AT). Mismatch negativity (MMN) is an event-related potential component reflecting auditory echoic memory, and its amplitude reduction in schizophrenia has been linked to cognitive deficits. Therefore, MMN may predict response to AT and identify individuals with schizophrenia who have the most to gain from AT. Furthermore, to the extent that AT strengthens auditory deviance processing, MMN may also serve as a readout of the underlying changes in the auditory system induced by AT.</p><p><strong>Methods: </strong>Fifty-six individuals early in the course of a schizophrenia-spectrum illness (ESZ) were randomly assigned to 40 h of AT or Computer Games (CG). Cognitive assessments and EEG recordings during a multi-deviant MMN paradigm were obtained before and after AT and CG. Changes in these measures were compared between the treatment groups. Baseline and trait-like MMN data were evaluated as predictors of treatment response. MMN data collected with the same paradigm from a sample of Healthy Controls (HC; <i>n</i> = 105) were compared to baseline MMN data from the ESZ group.</p><p><strong>Results: </strong>Compared to HC, ESZ individuals showed significant MMN reductions at baseline (<i>p</i> = .003). Reduced Double-Deviant MMN was associated with greater general cognitive impairment in ESZ individuals (<i>p</i> = .020). Neither ESZ intervention group showed significant change in MMN. We found high correlations in all MMN deviant types (rs = .59-.68, all ps < .001) between baseline and post-intervention amplitudes irrespective of treatment group, suggesting trait-like stability of the MMN signal. Greater deficits in trait-like Double-Deviant MMN predicted greater cognitive improvements in the AT group (<i>p</i> = .02), but not in the CG group.</p><p><strong>Conclusions: </strong>In this sample of ESZ individuals, AT had no effect on auditory deviance processing as assessed by MMN. In ESZ individuals, baseline MMN was significantly reduced relative to HCs, and associated with global cognitive impairment. MMN did not show changes after AT and exhibited trait-like stability. Greater deficits in the trait aspects of Double-Deviant MMN predicted greater gains in global cognition in response to AT, suggesting that MMN may identify individuals who stand to gain the most from AT.</p><p><strong>Trial registration: </strong>NCT00694889. Registered 1 August 2007.</p>","PeriodicalId":91583,"journal":{"name":"Neuropsychiatric electrophysiology","volume":"3 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35449186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disturbed theta and gamma coupling as a potential mechanism for visuospatial working memory dysfunction in people with schizophrenia 干扰的θ和γ耦合作为精神分裂症患者视觉空间工作记忆功能障碍的潜在机制
Pub Date : 2016-11-15 DOI: 10.1186/S40810-016-0022-3
Peter A Lynn, S. Sponheim
{"title":"Disturbed theta and gamma coupling as a potential mechanism for visuospatial working memory dysfunction in people with schizophrenia","authors":"Peter A Lynn, S. Sponheim","doi":"10.1186/S40810-016-0022-3","DOIUrl":"https://doi.org/10.1186/S40810-016-0022-3","url":null,"abstract":"","PeriodicalId":91583,"journal":{"name":"Neuropsychiatric electrophysiology","volume":"55 1","pages":"1-30"},"PeriodicalIF":0.0,"publicationDate":"2016-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/S40810-016-0022-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65757245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Electrophysiological insights into connectivity anomalies in schizophrenia: a systematic review 精神分裂症中连通性异常的电生理学见解:系统回顾
Pub Date : 2016-11-05 DOI: 10.1186/S40810-016-0020-5
Matteo Maran, T. Grent-‘t-Jong, P. Uhlhaas
{"title":"Electrophysiological insights into connectivity anomalies in schizophrenia: a systematic review","authors":"Matteo Maran, T. Grent-‘t-Jong, P. Uhlhaas","doi":"10.1186/S40810-016-0020-5","DOIUrl":"https://doi.org/10.1186/S40810-016-0020-5","url":null,"abstract":"","PeriodicalId":91583,"journal":{"name":"Neuropsychiatric electrophysiology","volume":"2 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2016-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/S40810-016-0020-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65757202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 43
19th biennial IPEG Meeting 第19届两年一次的IPEG会议
Pub Date : 2016-11-01 DOI: 10.1186/S40810-016-0021-4
I. Timofeev, L. Kenemans, P. Fabene, A. Ahnaou, S. Olbrich, R. Oostenveld, M. Arns, N. Boutros, Fernando Lopes da Silva, Ole J. Jensen, S. Loo, H. Landolt, J. Schoffelen, A. Gouw, A. Hillebrand, M. Demuru, Peterjan Ris, P. Scheltens, C. Stam, I. A. Nissen, Ilse E C W van Straaten, J. Reijneveld, Sonja Simpraga, R. Alvarez-Jimenez, H. Mansvelder, J. V. van Gerven, G. Groeneveld, Simon-Shlomo Poil, K. Linkenkaer-Hansen, M. V. van Putten, M. Tjepkema-Cloostermans, J. Hofmeijer, C. Babiloni, A. I. Triggiani, R. Lizio, S. Cordone, Antonio Brunetti, Giacomo Tattoli, Vitoantonio Bevilacqua, A. Soricelli, R. Ferri, F. Nobili, L. Gesualdo, J. Millán-Calenti, A. Buján, R. Tortelli, V. Cardinali, Orietta Barulli, A. Giannini, Pantaleo Spagnolo, Silvia Armenise, Grazia Buenza, G. Scianatico, G. Logroscino, G. Frisoni, C. Del Percio, J. Hipp, R. Comley, D. Bentley, Michael G. M. Derks, P. Garcés, F. Knoflach, S. Lennon-Chrimes, S. Nave, Jana Noldeke, N. Seneca, G. Trube, C. Wandel, Andrew WThomas, Maria-Clemencia Hern
{"title":"19th biennial IPEG Meeting","authors":"I. Timofeev, L. Kenemans, P. Fabene, A. Ahnaou, S. Olbrich, R. Oostenveld, M. Arns, N. Boutros, Fernando Lopes da Silva, Ole J. Jensen, S. Loo, H. Landolt, J. Schoffelen, A. Gouw, A. Hillebrand, M. Demuru, Peterjan Ris, P. Scheltens, C. Stam, I. A. Nissen, Ilse E C W van Straaten, J. Reijneveld, Sonja Simpraga, R. Alvarez-Jimenez, H. Mansvelder, J. V. van Gerven, G. Groeneveld, Simon-Shlomo Poil, K. Linkenkaer-Hansen, M. V. van Putten, M. Tjepkema-Cloostermans, J. Hofmeijer, C. Babiloni, A. I. Triggiani, R. Lizio, S. Cordone, Antonio Brunetti, Giacomo Tattoli, Vitoantonio Bevilacqua, A. Soricelli, R. Ferri, F. Nobili, L. Gesualdo, J. Millán-Calenti, A. Buján, R. Tortelli, V. Cardinali, Orietta Barulli, A. Giannini, Pantaleo Spagnolo, Silvia Armenise, Grazia Buenza, G. Scianatico, G. Logroscino, G. Frisoni, C. Del Percio, J. Hipp, R. Comley, D. Bentley, Michael G. M. Derks, P. Garcés, F. Knoflach, S. Lennon-Chrimes, S. Nave, Jana Noldeke, N. Seneca, G. Trube, C. Wandel, Andrew WThomas, Maria-Clemencia Hern","doi":"10.1186/S40810-016-0021-4","DOIUrl":"https://doi.org/10.1186/S40810-016-0021-4","url":null,"abstract":"","PeriodicalId":91583,"journal":{"name":"Neuropsychiatric electrophysiology","volume":"2 1","pages":"1-34"},"PeriodicalIF":0.0,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/S40810-016-0021-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65757231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The impact of Arterial Pulse Impedance Artifact (APIA) on test-retest reliability of quantitative EEG 动脉脉冲阻抗伪影对定量脑电图重测信度的影响
Pub Date : 2016-10-04 DOI: 10.1186/S40810-016-0019-Y
G. Ulrich, Willi Schlosser, G. Juckel
{"title":"The impact of Arterial Pulse Impedance Artifact (APIA) on test-retest reliability of quantitative EEG","authors":"G. Ulrich, Willi Schlosser, G. Juckel","doi":"10.1186/S40810-016-0019-Y","DOIUrl":"https://doi.org/10.1186/S40810-016-0019-Y","url":null,"abstract":"","PeriodicalId":91583,"journal":{"name":"Neuropsychiatric electrophysiology","volume":"2 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2016-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/S40810-016-0019-Y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65757185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The modulating effects of brain stimulation on emotion regulation and decision-making 脑刺激对情绪调节和决策的调节作用
Pub Date : 2016-06-10 DOI: 10.1186/S40810-016-0018-Z
Kyung Mook Choi, D. T. Scott, Seung-Lark Lim
{"title":"The modulating effects of brain stimulation on emotion regulation and decision-making","authors":"Kyung Mook Choi, D. T. Scott, Seung-Lark Lim","doi":"10.1186/S40810-016-0018-Z","DOIUrl":"https://doi.org/10.1186/S40810-016-0018-Z","url":null,"abstract":"","PeriodicalId":91583,"journal":{"name":"Neuropsychiatric electrophysiology","volume":"2 1","pages":"1-24"},"PeriodicalIF":0.0,"publicationDate":"2016-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/S40810-016-0018-Z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65757179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Cortical activation patterns in healthy subjects during the traditional Japanese word generation task Shiritori determined by multichannel near-infrared spectroscopy 用多通道近红外光谱测定健康受试者在传统日语词生成任务Shiritori中的皮层激活模式
Pub Date : 2016-01-24 DOI: 10.1186/S40810-016-0016-1
T. Nakahachi, Ryouhei Ishii, L. Canuet, Hidetoshi Takahashi, M. Ishitobi, Y. Kamio, M. Iwase
{"title":"Cortical activation patterns in healthy subjects during the traditional Japanese word generation task Shiritori determined by multichannel near-infrared spectroscopy","authors":"T. Nakahachi, Ryouhei Ishii, L. Canuet, Hidetoshi Takahashi, M. Ishitobi, Y. Kamio, M. Iwase","doi":"10.1186/S40810-016-0016-1","DOIUrl":"https://doi.org/10.1186/S40810-016-0016-1","url":null,"abstract":"","PeriodicalId":91583,"journal":{"name":"Neuropsychiatric electrophysiology","volume":"2 1","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2016-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/S40810-016-0016-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65757145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Coherence a measure of the brain networks: past and present 连贯性:衡量过去和现在的大脑网络
Pub Date : 2016-01-17 DOI: 10.1186/S40810-015-0015-7
S. Bowyer
{"title":"Coherence a measure of the brain networks: past and present","authors":"S. Bowyer","doi":"10.1186/S40810-015-0015-7","DOIUrl":"https://doi.org/10.1186/S40810-015-0015-7","url":null,"abstract":"","PeriodicalId":91583,"journal":{"name":"Neuropsychiatric electrophysiology","volume":"41 2 1","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2016-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/S40810-015-0015-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65757132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 227
Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults. 机器学习识别预测精神分裂症和健康成人工作记忆表现的脑电图特征。
Pub Date : 2016-01-01 Epub Date: 2016-02-11 DOI: 10.1186/s40810-016-0017-0
Jason K Johannesen, Jinbo Bi, Ruhua Jiang, Joshua G Kenney, Chi-Ming A Chen

Background: With millisecond-level resolution, electroencephalographic (EEG) recording provides a sensitive tool to assay neural dynamics of human cognition. However, selection of EEG features used to answer experimental questions is typically determined a priori. The utility of machine learning was investigated as a computational framework for extracting the most relevant features from EEG data empirically.

Methods: Schizophrenia (SZ; n = 40) and healthy community (HC; n = 12) subjects completed a Sternberg Working Memory Task (SWMT) during EEG recording. EEG was analyzed to extract 5 frequency components (theta1, theta2, alpha, beta, gamma) at 4 processing stages (baseline, encoding, retention, retrieval) and 3 scalp sites (frontal-Fz, central-Cz, occipital-Oz) separately for correctly and incorrectly answered trials. The 1-norm support vector machine (SVM) method was used to build EEG classifiers of SWMT trial accuracy (correct vs. incorrect; Model 1) and diagnosis (HC vs. SZ; Model 2). External validity of SVM models was examined in relation to neuropsychological test performance and diagnostic classification using conventional regression-based analyses.

Results: SWMT performance was significantly reduced in SZ (p < .001). Model 1 correctly classified trial accuracy at 84 % in HC, and at 74 % when cross-validated in SZ data. Frontal gamma at encoding and central theta at retention provided highest weightings, accounting for 76 % of variance in SWMT scores and 42 % variance in neuropsychological test performance across samples. Model 2 identified frontal theta at baseline and frontal alpha during retrieval as primary classifiers of diagnosis, providing 87 % classification accuracy as a discriminant function.

Conclusions: EEG features derived by SVM are consistent with literature reports of gamma's role in memory encoding, engagement of theta during memory retention, and elevated resting low-frequency activity in schizophrenia. Tests of model performance and cross-validation support the stability and generalizability of results, and utility of SVM as an analytic approach for EEG feature selection.

背景:以毫秒级的分辨率,脑电图(EEG)记录提供了一种灵敏的工具来分析人类认知的神经动力学。然而,用于回答实验问题的EEG特征的选择通常是先验确定的。利用机器学习作为一种计算框架,从脑电数据中提取最相关的特征。方法:精神分裂症(SZ;n = 40)和健康社区(HC;n = 12)受试者在EEG记录期间完成了Sternberg工作记忆任务(SWMT)。分析EEG,分别提取4个处理阶段(基线、编码、保留、检索)和3个头皮部位(额- fz、中央- cz、枕- oz)的5个频率分量(theta1、theta2、alpha、beta、gamma),用于正确回答和错误回答的试验。采用1范数支持向量机(SVM)方法构建SWMT试验精度(正确vs不正确;模型1)和诊断(HC vs. SZ;模型2).使用传统的基于回归的分析来检验SVM模型与神经心理测试性能和诊断分类的外部有效性。结果:SZ组SWMT成绩显著降低(p < 0.001)。模型1在HC中正确分类试验准确率为84%,在SZ数据中交叉验证时为74%。编码时的额叶伽马和保留时的中央θ提供了最高的权重,占SWMT分数方差的76%和神经心理测试表现方差的42%。模型2将基线时的额叶θ和检索时的额叶α识别为诊断的主要分类器,作为判别函数提供了87%的分类准确率。结论:支持向量机得出的脑电图特征与文献报道的伽马在记忆编码中的作用、记忆保持过程中theta的参与以及精神分裂症静息低频活动的升高一致。模型性能测试和交叉验证支持了结果的稳定性和泛化性,以及支持向量机作为EEG特征选择分析方法的实用性。
{"title":"Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults.","authors":"Jason K Johannesen,&nbsp;Jinbo Bi,&nbsp;Ruhua Jiang,&nbsp;Joshua G Kenney,&nbsp;Chi-Ming A Chen","doi":"10.1186/s40810-016-0017-0","DOIUrl":"https://doi.org/10.1186/s40810-016-0017-0","url":null,"abstract":"<p><strong>Background: </strong>With millisecond-level resolution, electroencephalographic (EEG) recording provides a sensitive tool to assay neural dynamics of human cognition. However, selection of EEG features used to answer experimental questions is typically determined <i>a priori</i>. The utility of machine learning was investigated as a computational framework for extracting the most relevant features from EEG data empirically.</p><p><strong>Methods: </strong>Schizophrenia (SZ; <i>n</i> = 40) and healthy community (HC; <i>n</i> = 12) subjects completed a Sternberg Working Memory Task (SWMT) during EEG recording. EEG was analyzed to extract 5 <i>frequency components</i> (theta1, theta2, alpha, beta, gamma) at 4 <i>processing stages</i> (baseline, encoding, retention, retrieval) and 3 scalp sites (frontal-Fz, central-Cz, occipital-Oz) separately for correctly and incorrectly answered trials. The 1-norm support vector machine (SVM) method was used to build EEG classifiers of SWMT trial accuracy (correct vs. incorrect; Model 1) and diagnosis (HC vs. SZ; Model 2). External validity of SVM models was examined in relation to neuropsychological test performance and diagnostic classification using conventional regression-based analyses.</p><p><strong>Results: </strong>SWMT performance was significantly reduced in SZ (<i>p</i> < .001). Model 1 correctly classified trial accuracy at 84 % in HC, and at 74 % when cross-validated in SZ data. Frontal gamma at encoding and central theta at retention provided highest weightings, accounting for 76 % of variance in SWMT scores and 42 % variance in neuropsychological test performance across samples. Model 2 identified frontal theta at baseline and frontal alpha during retrieval as primary classifiers of diagnosis, providing 87 % classification accuracy as a discriminant function.</p><p><strong>Conclusions: </strong>EEG features derived by SVM are consistent with literature reports of gamma's role in memory encoding, engagement of theta during memory retention, and elevated resting low-frequency activity in schizophrenia. Tests of model performance and cross-validation support the stability and generalizability of results, and utility of SVM as an analytic approach for EEG feature selection.</p>","PeriodicalId":91583,"journal":{"name":"Neuropsychiatric electrophysiology","volume":"2 ","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40810-016-0017-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34633804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 101
期刊
Neuropsychiatric electrophysiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1