Today, vehicular ad-hoc network (VANET) is a hot research topic due to its many applications like collision avoidance, congestion road notification, parking lot availability, road-side business advertisements, etc. All these applications have hard delay constraints i.e. the messages should reach the target location within certain time limits. So, there must be efficient routing in VANET which meets these delay constraints. In this paper, two techniques are proposed to minimize the data traffic and delay in VANET. Firstly, a context based clustering is proposed which takes into consideration various parameters in cluster formation-location of vehicle, direction of vehicle, velocity of vehicle, interest list of vehicle [1] and destination of vehicle. Secondly, a destination based routing protocol is proposed for these context based clusters for efficient inter-cluster communication.
{"title":"A Destination Based Routing Protocol for Context Based Clusters in VANET","authors":"Vivek Sethi, N. Chand","doi":"10.4236/CN.2017.93013","DOIUrl":"https://doi.org/10.4236/CN.2017.93013","url":null,"abstract":"Today, vehicular ad-hoc network (VANET) is a hot research topic due to its many applications like collision avoidance, congestion road notification, parking lot availability, road-side business advertisements, etc. All these applications have hard delay constraints i.e. the messages should reach the target location within certain time limits. So, there must be efficient routing in VANET which meets these delay constraints. In this paper, two techniques are proposed to minimize the data traffic and delay in VANET. Firstly, a context based clustering is proposed which takes into consideration various parameters in cluster formation-location of vehicle, direction of vehicle, velocity of vehicle, interest list of vehicle [1] and destination of vehicle. Secondly, a destination based routing protocol is proposed for these context based clusters for efficient inter-cluster communication.","PeriodicalId":91826,"journal":{"name":"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security","volume":"8 1","pages":"179-191"},"PeriodicalIF":0.0,"publicationDate":"2017-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78053830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To solve the problem of resource heterogeneity and the dynamic structure, loose coupling of integrated applications has brought a lot of benefits in clouds environment. Thus, the development of highly robust service-oriented applications has many challenges, especially for the autonomy of service resources over the system components to the end-user portal. In this paper, a proposed method for the business users can satisfy the service availability changes in the early warning and application for service relationship adjustment. Then, the designed mechanism can deal with exception not available for service in a real-time development application for a business user. Based on the heterogeneous model of service-oriented applications, an availability process with lifecycle analysis is proposed to ensure that service resources are available to integrate components at different levels.
{"title":"Uncertainty Analysis for Software Service Evolution in the Heterogeneous Cloud Environment","authors":"H. Qin, Li Zhu","doi":"10.4236/CN.2017.93010","DOIUrl":"https://doi.org/10.4236/CN.2017.93010","url":null,"abstract":"To solve the problem of resource heterogeneity and the dynamic structure, loose coupling of integrated applications has brought a lot of benefits in clouds environment. Thus, the development of highly robust service-oriented applications has many challenges, especially for the autonomy of service resources over the system components to the end-user portal. In this paper, a proposed method for the business users can satisfy the service availability changes in the early warning and application for service relationship adjustment. Then, the designed mechanism can deal with exception not available for service in a real-time development application for a business user. Based on the heterogeneous model of service-oriented applications, an availability process with lifecycle analysis is proposed to ensure that service resources are available to integrate components at different levels.","PeriodicalId":91826,"journal":{"name":"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security","volume":"85 1","pages":"155-163"},"PeriodicalIF":0.0,"publicationDate":"2017-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81068523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Orthogonal Frequency Division Multiplexing (OFDM) is readily employed in wireless communication to combat the intersymbol interference (ISI) effect with limited success because as the capacity of MIMO systems increases, other destructive effects affect the propagation channels and/or overall system performance. As such, research interest has increased, on how to improve performance in the mediums where fading and ISI permeate, working on several combinatorial techniques to achieving improved effective throughput. In this study, we propose a combined model of the Space-Time Trellis Code (STTC) and Single-Carrier Frequency Domain Equalization (SC-FDE) to mitigate multiple-fading and interference effects. We present analytical performance results for the combined model over spatially correlated Rayleigh fading channels. We also show that it is beneficial to combine coding with equalization at the system’s receiving-end ensuring overall performance: a better performance over the traditional space-time trellis codes.
{"title":"Single Carrier Frequency Domain Equalization with Space-Time Trellis Codes","authors":"I. A. Adebanjo, Y. Olasoji, M. Kolawole","doi":"10.4236/CN.2017.93011","DOIUrl":"https://doi.org/10.4236/CN.2017.93011","url":null,"abstract":"Orthogonal Frequency Division Multiplexing (OFDM) is readily employed in wireless communication to combat the intersymbol interference (ISI) effect with limited success because as the capacity of MIMO systems increases, other destructive effects affect the propagation channels and/or overall system performance. As such, research interest has increased, on how to improve performance in the mediums where fading and ISI permeate, working on several combinatorial techniques to achieving improved effective throughput. In this study, we propose a combined model of the Space-Time Trellis Code (STTC) and Single-Carrier Frequency Domain Equalization (SC-FDE) to mitigate multiple-fading and interference effects. We present analytical performance results for the combined model over spatially correlated Rayleigh fading channels. We also show that it is beneficial to combine coding with equalization at the system’s receiving-end ensuring overall performance: a better performance over the traditional space-time trellis codes.","PeriodicalId":91826,"journal":{"name":"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security","volume":"23 1","pages":"164-171"},"PeriodicalIF":0.0,"publicationDate":"2017-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81474765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multiple-input and multiple-output (MIMO) technique can significantly improve transmission reliability and bandwidth efficiency in wireless networks. However, many upper layer aspects of MIMO links, especially in mobile networks with heterogeneous antennas and strong interference environments, need further investigation. In this paper, we study its impact on medium access and network capacity. Since MIMO links can enhance physical layer capacity and co-channel interference suppression that affects network access scheduling directly, we develop a capacity-optimized access scheduling control (COASC) scheme for mobile ad hoc networks (MANETs) with MIMO links. We formulate the distributed scheduling taking the key of optimization into design to improve the network capacity and transmission reliability. Simulation results are presented to show the effectiveness of the proposed scheme.
{"title":"Capacity-Optimized Access Scheduling Control for Heterogeneous MANETs with MIMO Links","authors":"H. Cui, Wanmei Feng","doi":"10.4236/CN.2017.92009","DOIUrl":"https://doi.org/10.4236/CN.2017.92009","url":null,"abstract":"Multiple-input and multiple-output (MIMO) technique can significantly improve transmission reliability and bandwidth efficiency in wireless networks. However, many upper layer aspects of MIMO links, especially in mobile networks with heterogeneous antennas and strong interference environments, need further investigation. In this paper, we study its impact on medium access and network capacity. Since MIMO links can enhance physical layer capacity and co-channel interference suppression that affects network access scheduling directly, we develop a capacity-optimized access scheduling control (COASC) scheme for mobile ad hoc networks (MANETs) with MIMO links. We formulate the distributed scheduling taking the key of optimization into design to improve the network capacity and transmission reliability. Simulation results are presented to show the effectiveness of the proposed scheme.","PeriodicalId":91826,"journal":{"name":"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security","volume":"9 1","pages":"142-154"},"PeriodicalIF":0.0,"publicationDate":"2017-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81995725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced procedure of Multiple-Input Multiple-Output, which improves the performance of Wireless Local Area Networks. Moreover, Multi-user Multiple-Input Multiple-Output leads the Wireless Local Area Networks toward covering more areas. Due to the growth of the number of clients and requirements, researchers try to improve the performance of the Medium Access Control protocol of Multi-user Multiple-Input Multiple-Output technology to serve the user better, by supporting different data sizes, and reducing the waiting time to be able to transmit data quickly. In this paper, we propose a Clustering Multi-user Multiple-Input Multiple-Output protocol, which is an improved Medium Access Control protocol for Multi-user Multiple-Input Multiple-Out-put based on MIMOMate clustering technique and Padovan Backoff Algorithm. Utilizing MIMOMMate focuses on the signal power which only serves the user in that cluster, minimizes the energy consumption and increases the capacity. The implementation of Clustering Multi-user Multiple-Input Multiple-Output performs on the Network Simulator (NS2.34) platform. The results show that Clustering Multi-user Multiple-Input Multiple-Output protocol improves the throughput by 89.8%, and reduces the latency of wireless communication by 43.9% in scenarios with contention. As a result, the overall performances of the network are improved.
{"title":"Performance Improvement of Multi-User Multiple-Input Multiple-Output Protocol for WLAN","authors":"Maha Bakalla, Mznah Al-Rodhaan, Yuan Tian","doi":"10.4236/CN.2017.92008","DOIUrl":"https://doi.org/10.4236/CN.2017.92008","url":null,"abstract":"The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced procedure of Multiple-Input Multiple-Output, which improves the performance of Wireless Local Area Networks. Moreover, Multi-user Multiple-Input Multiple-Output leads the Wireless Local Area Networks toward covering more areas. Due to the growth of the number of clients and requirements, researchers try to improve the performance of the Medium Access Control protocol of Multi-user Multiple-Input Multiple-Output technology to serve the user better, by supporting different data sizes, and reducing the waiting time to be able to transmit data quickly. In this paper, we propose a Clustering Multi-user Multiple-Input Multiple-Output protocol, which is an improved Medium Access Control protocol for Multi-user Multiple-Input Multiple-Out-put based on MIMOMate clustering technique and Padovan Backoff Algorithm. Utilizing MIMOMMate focuses on the signal power which only serves the user in that cluster, minimizes the energy consumption and increases the capacity. The implementation of Clustering Multi-user Multiple-Input Multiple-Output performs on the Network Simulator (NS2.34) platform. The results show that Clustering Multi-user Multiple-Input Multiple-Output protocol improves the throughput by 89.8%, and reduces the latency of wireless communication by 43.9% in scenarios with contention. As a result, the overall performances of the network are improved.","PeriodicalId":91826,"journal":{"name":"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security","volume":"124 1","pages":"124-141"},"PeriodicalIF":0.0,"publicationDate":"2017-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88628114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Based on the characteristics of wireless communication technology and Wireless Sensor Network, this paper studies the well site environmental monitoring system. The relevant hardware and software of the system are designed to monitor the well site environment, thus preventing downhole accidents. The system uses the wireless ZigBee technology as the transmission mode, and combines the virtual instrument technology to design the upper machine interface. The test results show that the system can monitor the outdoor environment in real time. When the environmental parameters exceed the set value, the corresponding location of the LabVIEW interface will send an alarm.
{"title":"Research on Wireless Monitoring Technology of the Well Site Environment","authors":"Bo Chen, C. Zhang, Kui Deng, L. Ge, Pan Hu","doi":"10.4236/CN.2017.92006","DOIUrl":"https://doi.org/10.4236/CN.2017.92006","url":null,"abstract":"Based on the characteristics of wireless communication technology and \u0000Wireless Sensor Network, this paper studies the well site environmental monitoring \u0000system. The relevant hardware and software of the system are designed to monitor \u0000the well site environment, thus preventing downhole accidents. The system uses \u0000the wireless ZigBee technology as the transmission mode, and combines the \u0000virtual instrument technology to design the upper machine interface. The test results \u0000show that the system can monitor the outdoor environment in real time. When the \u0000environmental parameters exceed the set value, the corresponding location of \u0000the LabVIEW interface will send an alarm.","PeriodicalId":91826,"journal":{"name":"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security","volume":"20 1","pages":"101-110"},"PeriodicalIF":0.0,"publicationDate":"2017-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91223008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its power exponent is related to the edge-adding number m, but also a small-world effect which has large clustering coefficient and small average path length. Interestingly, the clustering coefficient of the model is close to that of globally coupled network, and the average path length is close to that of star coupled network. Meanwhile, the synchronizability of the NPG model is much stronger than that of BA scale-free network, even stronger than that of synchronization-optimal growth network.
{"title":"A Novel Neighbor-Preferential Growth Scale-Free Network Model and its Properties","authors":"Yongshang Long, Zhen Jia","doi":"10.4236/CN.2017.92007","DOIUrl":"https://doi.org/10.4236/CN.2017.92007","url":null,"abstract":"In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its power exponent is related to the edge-adding number m, but also a small-world effect which has large clustering coefficient and small average path length. Interestingly, the clustering coefficient of the model is close to that of globally coupled network, and the average path length is close to that of star coupled network. Meanwhile, the synchronizability of the NPG model is much stronger than that of BA scale-free network, even stronger than that of synchronization-optimal growth network.","PeriodicalId":91826,"journal":{"name":"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security","volume":"14 1","pages":"111-123"},"PeriodicalIF":0.0,"publicationDate":"2017-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89644392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In time division multiple access (TDMA) communication systems, correctly estimating the synchronization parameters is very important for reliable data transfer. The algorithms used for frequency/phase and symbol timing estimates are generally accepted as knowing the start of signal (SoS) parameter. Therefore, within these parameters, the SoS parameter is of particularly great importance. In this study, a reduced version of the SoS estimation algorithm introduced by Hosseini and Perrins is presented to estimate SoS for Gaussian Minimum Shift Keying (GMSK) modulated signals in burst format over additive white Gaussian noise (AWGN) channels. The reduced algorithm can be implemented on FPGA by using half the number of complex multipliers that would be required by the double correlation method and is robust to carrier frequency/phase errors. Simulations performed under 0.1 normalized frequency offset conditions show that the proposed algorithm has a probability of false lock which is less than 7×10-2, even at 0 dB SNR level.
{"title":"FPGA Implementable Frame Synchronization Algorithm for Burst Mode GMSK","authors":"O. Gamgam, E. Atilgan","doi":"10.4236/CN.2017.91005","DOIUrl":"https://doi.org/10.4236/CN.2017.91005","url":null,"abstract":"In time division multiple access (TDMA) communication systems, correctly estimating the synchronization parameters is very important for reliable data transfer. The algorithms used for frequency/phase and symbol timing estimates are generally accepted as knowing the start of signal (SoS) parameter. Therefore, within these parameters, the SoS parameter is of particularly great importance. In this study, a reduced version of the SoS estimation algorithm introduced by Hosseini and Perrins is presented to estimate SoS for Gaussian Minimum Shift Keying (GMSK) modulated signals in burst format over additive white Gaussian noise (AWGN) channels. The reduced algorithm can be implemented on FPGA by using half the number of complex multipliers that would be required by the double correlation method and is robust to carrier frequency/phase errors. Simulations performed under 0.1 normalized frequency offset conditions show that the proposed algorithm has a probability of false lock which is less than 7×10-2, even at 0 dB SNR level.","PeriodicalId":91826,"journal":{"name":"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security","volume":"17 1","pages":"89-100"},"PeriodicalIF":0.0,"publicationDate":"2017-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72585093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, we have seen an increasing interest in developing and designing Wireless Sensor Networks (WSNs). WSNs consist of large number of nodes, with wireless communications and computation abilities that can be used in variety of domains. It has been used in areas that have direct contact with monitoring and gathering data, to name few, health monitoring, military surveillance, geological monitoring (Earthquakes, Volcanoes, Tsunami), agriculture control and many more. However, the design and implementation of WSNs face many challenges, due to the power limitation of sensor nodes, deployment and localization, data routing and data aggregation, data security, limited bandwidth, storage capacity and network management. It is known that Operation Research (OR) has been widely used in different areas to solve optimization problems; such as improving network performance and maximizing lifetime of system. In this survey, we present the most recent OR based techniques applied to solve different WSNs problems: the node scheduling problem, energy management problems, nodes allocating issues and other WSNs related complex problems. Different Operational Research techniques are presented and discussed in details here, including graph theory based techniques, linear programing and mixed integer programming related approaches.
{"title":"Operation Research Based Techniques in Wireless Sensors Networks","authors":"A. Mahlous, M. Tounsi","doi":"10.4236/CN.2017.91003","DOIUrl":"https://doi.org/10.4236/CN.2017.91003","url":null,"abstract":"In recent years, we have seen an increasing interest in developing and designing Wireless Sensor Networks (WSNs). WSNs consist of large number of nodes, with wireless communications and computation abilities that can be used in variety of domains. It has been used in areas that have direct contact with monitoring and gathering data, to name few, health monitoring, military surveillance, geological monitoring (Earthquakes, Volcanoes, Tsunami), agriculture control and many more. However, the design and implementation of WSNs face many challenges, due to the power limitation of sensor nodes, deployment and localization, data routing and data aggregation, data security, limited bandwidth, storage capacity and network management. It is known that Operation Research (OR) has been widely used in different areas to solve optimization problems; such as improving network performance and maximizing lifetime of system. In this survey, we present the most recent OR based techniques applied to solve different WSNs problems: the node scheduling problem, energy management problems, nodes allocating issues and other WSNs related complex problems. Different Operational Research techniques are presented and discussed in details here, including graph theory based techniques, linear programing and mixed integer programming related approaches.","PeriodicalId":91826,"journal":{"name":"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security","volume":"24 1","pages":"54-70"},"PeriodicalIF":0.0,"publicationDate":"2017-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82404100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Hudaib, H. Fakhouri, Fatima Eid Zaid Al Adwan, Sandi N. Fakhouri
The complexity of computer architectures, software, web applications, and its large spread worldwide using the internet and the rapid increase in the number of users in companion with the increase of maintenance cost are all factors guided many researchers to develop software, web applications and systems that have the ability of self-healing. The aim of the self healing software feature is to fast recover the application and keep it running and available for 24/7 as optimal as possible. This survey provides an overview of self-healing software and system that is especially useful in all of those situations in which the involvement of humans is costly and hard to recover and needs to be automated with self healing. There are different aspects which will make us understand the different benefits of these self-healing systems. Finally, the approaches, techniques, mechanisms and individual characteristics of self healing are classified in different tables and then summarized.
{"title":"A Survey about Self-Healing Systems (Desktop and Web Application)","authors":"A. Hudaib, H. Fakhouri, Fatima Eid Zaid Al Adwan, Sandi N. Fakhouri","doi":"10.4236/CN.2017.91004","DOIUrl":"https://doi.org/10.4236/CN.2017.91004","url":null,"abstract":"The complexity of computer architectures, software, web applications, and its large spread worldwide using the internet and the rapid increase in the number of users in companion with the increase of maintenance cost are all factors guided many researchers to develop software, web applications and systems that have the ability of self-healing. The aim of the self healing software feature is to fast recover the application and keep it running and available for 24/7 as optimal as possible. This survey provides an overview of self-healing software and system that is especially useful in all of those situations in which the involvement of humans is costly and hard to recover and needs to be automated with self healing. There are different aspects which will make us understand the different benefits of these self-healing systems. Finally, the approaches, techniques, mechanisms and individual characteristics of self healing are classified in different tables and then summarized.","PeriodicalId":91826,"journal":{"name":"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security","volume":"48 1","pages":"71-88"},"PeriodicalIF":0.0,"publicationDate":"2017-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81495336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}