Pub Date : 2024-12-01Epub Date: 2024-09-09DOI: 10.1007/s11682-024-00916-4
Anastasia Cherednichenko, Anna Miró-Padilla, Jesús Adrián-Ventura, Irene Monzonís-Carda, Maria Reyes Beltran-Valls, Diego Moliner-Urdiales, César Ávila
Evidence from previous studies suggests that physical activity (PA) may contribute to functional and structural changes in the hippocampus throughout the lifespan. However, there is limited evidence available regarding the young adult population. Additionally, the personality traits that may influence this association remain unclear. With a sample of 84 young adults (43 women; age 22.7 ± 2.8y; range 18-29), the main aim of the current study was to analyze the association between objective and self-reported measures of daily PA and hippocampus subfield gray matter volumes, and to examine the role of the personality trait of punishment sensitivity in this association. Our results showed that only moderate to vigorous levels of objectively measured PA were positively associated with the hippocampal CA2/CA3 volume. Moreover, punishment sensitivity correlated negatively with the objective measure of sedentarism and with self-reported measures of PA. However, regression analyses did not find any interaction between punishment sensitivity and PA in explaining individual differences in hippocampal volumes. Thus, our data suggest that intense PA may contribute to enhancing the hippocampal CA2/CA3 volume in young adults.
{"title":"Physical activity and hippocampal volume in young adults.","authors":"Anastasia Cherednichenko, Anna Miró-Padilla, Jesús Adrián-Ventura, Irene Monzonís-Carda, Maria Reyes Beltran-Valls, Diego Moliner-Urdiales, César Ávila","doi":"10.1007/s11682-024-00916-4","DOIUrl":"10.1007/s11682-024-00916-4","url":null,"abstract":"<p><p>Evidence from previous studies suggests that physical activity (PA) may contribute to functional and structural changes in the hippocampus throughout the lifespan. However, there is limited evidence available regarding the young adult population. Additionally, the personality traits that may influence this association remain unclear. With a sample of 84 young adults (43 women; age 22.7 ± 2.8y; range 18-29), the main aim of the current study was to analyze the association between objective and self-reported measures of daily PA and hippocampus subfield gray matter volumes, and to examine the role of the personality trait of punishment sensitivity in this association. Our results showed that only moderate to vigorous levels of objectively measured PA were positively associated with the hippocampal CA2/CA3 volume. Moreover, punishment sensitivity correlated negatively with the objective measure of sedentarism and with self-reported measures of PA. However, regression analyses did not find any interaction between punishment sensitivity and PA in explaining individual differences in hippocampal volumes. Thus, our data suggest that intense PA may contribute to enhancing the hippocampal CA2/CA3 volume in young adults.</p>","PeriodicalId":9192,"journal":{"name":"Brain Imaging and Behavior","volume":" ","pages":"1333-1342"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-28DOI: 10.1007/s11682-024-00936-0
Carla Masala, Michele Porcu, Gianni Orofino, Giovanni Defazio, Ilenia Pinna, Paolo Solla, Tommaso Ercoli, Jasjit S Suri, Giacomo Spinato, Luca Saba
The World Health Organization indicated that around 36 million of patients in the European Region showed long COVID associated with olfactory and gustatory deficits. The precise mechanism underlying long COVID clinical manifestations is still debated. The aim of this study was to evaluate potential correlations between odor threshold, odor discrimination, odor identification, and the activation of specific brain areas in patients after COVID-19. Sixty subjects, 27 patients (15 women and 12 men) with long COVID and a mean age of 40.6 ± 13.4 years, were compared to 33 age-matched healthy controls (20 women and 13 men) with a mean age of 40.5 ± 9.8 years. Our data showed that patients with long COVID symptoms exhibited a significant decrease in odor threshold, odor discrimination, odor identification, and their sum TDI score compared to age-matched healthy controls. In addition, our results indicated significant correlations between odor discrimination and the increased activation in the right hemisphere, in the frontal pole, and in the superior frontal gyrus. This study indicated that the resting-state fMRI in combination with the objective evaluation of olfactory and gustatory function may be useful for the evaluation of patients with long COVID associated with anosmia and hyposmia.
{"title":"Neuroimaging evaluations of olfactory, gustatory, and neurological deficits in patients with long-term sequelae of COVID-19.","authors":"Carla Masala, Michele Porcu, Gianni Orofino, Giovanni Defazio, Ilenia Pinna, Paolo Solla, Tommaso Ercoli, Jasjit S Suri, Giacomo Spinato, Luca Saba","doi":"10.1007/s11682-024-00936-0","DOIUrl":"10.1007/s11682-024-00936-0","url":null,"abstract":"<p><p>The World Health Organization indicated that around 36 million of patients in the European Region showed long COVID associated with olfactory and gustatory deficits. The precise mechanism underlying long COVID clinical manifestations is still debated. The aim of this study was to evaluate potential correlations between odor threshold, odor discrimination, odor identification, and the activation of specific brain areas in patients after COVID-19. Sixty subjects, 27 patients (15 women and 12 men) with long COVID and a mean age of 40.6 ± 13.4 years, were compared to 33 age-matched healthy controls (20 women and 13 men) with a mean age of 40.5 ± 9.8 years. Our data showed that patients with long COVID symptoms exhibited a significant decrease in odor threshold, odor discrimination, odor identification, and their sum TDI score compared to age-matched healthy controls. In addition, our results indicated significant correlations between odor discrimination and the increased activation in the right hemisphere, in the frontal pole, and in the superior frontal gyrus. This study indicated that the resting-state fMRI in combination with the objective evaluation of olfactory and gustatory function may be useful for the evaluation of patients with long COVID associated with anosmia and hyposmia.</p>","PeriodicalId":9192,"journal":{"name":"Brain Imaging and Behavior","volume":" ","pages":"1480-1490"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680602/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-30DOI: 10.1007/s11682-024-00927-1
Aubrey A Knoff, Madeleine K Nowak, Emily J Van Etten, V Carlota Andreu-Arasa, Michael Esterman, Elizabeth C Leritz, Francesca C Fortenbaugh, William P Milberg, Catherine B Fortier, David H Salat
Metabolic syndrome is a collection of health factors that increases risk for cardiovascular disease. A condition of aging, metabolic syndrome is associated with reduced brain network integrity, including functional connectivity alterations among the default mode, regions vulnerable to neurodegeneration. Prevalence of metabolic syndrome is elevated in younger populations including post-9/11 Veterans and individuals with posttraumatic stress disorder, but it is unclear whether metabolic syndrome affects brain function in earlier adulthood. Identifying early effects of metabolic syndrome on brain network integrity is critical, as these impacts could contribute to increased risk for cognitive disorders later in life for Veterans. The current study examined whether metabolic syndrome and its individual components were associated with default mode functional connectivity. We also explored the contribution of posttraumatic stress disorder and traumatic brain injury on these metabolic syndrome-brain relationships. Post-9/11 Veterans with combat deployment history (95 with and 325 without metabolic syndrome) underwent functional magnetic resonance imaging to capture seed-based resting-state functional connectivity within the default mode. The metabolic syndrome group demonstrated reduced positive functional connectivity between the posterior cingulate cortex seed and the bilateral superior frontal gyrus. Data-driven analyses demonstrated that metabolic syndrome components, particularly cholesterol and central adiposity, were associated with widespread reductions in default mode network connectivity. Functional connectivity was also reduced in participants with metabolic syndrome but without current posttraumatic stress disorder diagnosis and with traumatic brain injury history. These results suggest that metabolic syndrome disrupts resting-state functional connectivity decades earlier than prior work has shown.
{"title":"Metabolic syndrome is associated with reduced default mode network functional connectivity in young post-9/11 Veterans.","authors":"Aubrey A Knoff, Madeleine K Nowak, Emily J Van Etten, V Carlota Andreu-Arasa, Michael Esterman, Elizabeth C Leritz, Francesca C Fortenbaugh, William P Milberg, Catherine B Fortier, David H Salat","doi":"10.1007/s11682-024-00927-1","DOIUrl":"10.1007/s11682-024-00927-1","url":null,"abstract":"<p><p>Metabolic syndrome is a collection of health factors that increases risk for cardiovascular disease. A condition of aging, metabolic syndrome is associated with reduced brain network integrity, including functional connectivity alterations among the default mode, regions vulnerable to neurodegeneration. Prevalence of metabolic syndrome is elevated in younger populations including post-9/11 Veterans and individuals with posttraumatic stress disorder, but it is unclear whether metabolic syndrome affects brain function in earlier adulthood. Identifying early effects of metabolic syndrome on brain network integrity is critical, as these impacts could contribute to increased risk for cognitive disorders later in life for Veterans. The current study examined whether metabolic syndrome and its individual components were associated with default mode functional connectivity. We also explored the contribution of posttraumatic stress disorder and traumatic brain injury on these metabolic syndrome-brain relationships. Post-9/11 Veterans with combat deployment history (95 with and 325 without metabolic syndrome) underwent functional magnetic resonance imaging to capture seed-based resting-state functional connectivity within the default mode. The metabolic syndrome group demonstrated reduced positive functional connectivity between the posterior cingulate cortex seed and the bilateral superior frontal gyrus. Data-driven analyses demonstrated that metabolic syndrome components, particularly cholesterol and central adiposity, were associated with widespread reductions in default mode network connectivity. Functional connectivity was also reduced in participants with metabolic syndrome but without current posttraumatic stress disorder diagnosis and with traumatic brain injury history. These results suggest that metabolic syndrome disrupts resting-state functional connectivity decades earlier than prior work has shown.</p>","PeriodicalId":9192,"journal":{"name":"Brain Imaging and Behavior","volume":" ","pages":"1499-1508"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-09DOI: 10.1007/s11682-024-00951-1
Youxue Zhang, Mingjun Duan, Hui He
Worry has been conceptualized as a relatively uncontrollable chain of thought that increases the risk of mental problems, such as anxiety disorders. Here, we examined the link between individual variation in the functional connectome and worry proneness, which remains unclear. A total of 32 high worry-proneness (HWP) subjects and 25 low worry-proneness (LWP) subjects were recruited. We conducted multivariate distance-based matrix regression to identify phenotypic relationships in high-dimensional brain resting-state functional connectivity data from HWP subjects. Multiple hub regions, including key brain nodes of the salience network (SN) and default mode network (DMN), were identified in HWP subjects. Follow-up analyses revealed that a high worry-proneness score was dominated by functional connectivity between the SN and the DMN. Moreover, HWP subjects showed hypoconnectivity between the cerebellum and the SN and DMN compared with LWP subjects. This cross-sectional study could not fully measure the causal relationships between changes in functional networks and worry proneness in healthy subjects. Functional changes in the cerebellum-cortical region might affect the modulation of external stimuli processing. Together, our results provide new insight into the role of key networks, including the SN, DMN and cerebellum, in understanding the potential mechanism underlying the high worry dimension in healthy subjects.
{"title":"Deficient salience and default mode functional integration in high worry-proneness subject: a connectome-wide association study.","authors":"Youxue Zhang, Mingjun Duan, Hui He","doi":"10.1007/s11682-024-00951-1","DOIUrl":"10.1007/s11682-024-00951-1","url":null,"abstract":"<p><p>Worry has been conceptualized as a relatively uncontrollable chain of thought that increases the risk of mental problems, such as anxiety disorders. Here, we examined the link between individual variation in the functional connectome and worry proneness, which remains unclear. A total of 32 high worry-proneness (HWP) subjects and 25 low worry-proneness (LWP) subjects were recruited. We conducted multivariate distance-based matrix regression to identify phenotypic relationships in high-dimensional brain resting-state functional connectivity data from HWP subjects. Multiple hub regions, including key brain nodes of the salience network (SN) and default mode network (DMN), were identified in HWP subjects. Follow-up analyses revealed that a high worry-proneness score was dominated by functional connectivity between the SN and the DMN. Moreover, HWP subjects showed hypoconnectivity between the cerebellum and the SN and DMN compared with LWP subjects. This cross-sectional study could not fully measure the causal relationships between changes in functional networks and worry proneness in healthy subjects. Functional changes in the cerebellum-cortical region might affect the modulation of external stimuli processing. Together, our results provide new insight into the role of key networks, including the SN, DMN and cerebellum, in understanding the potential mechanism underlying the high worry dimension in healthy subjects.</p>","PeriodicalId":9192,"journal":{"name":"Brain Imaging and Behavior","volume":" ","pages":"1560-1568"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680634/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-01DOI: 10.1007/s11682-024-00945-z
Lei Yu, Tianhao Wang, Alifiya Kapasi, Melissa Lamar, Gary Mottola, Konstantinos Arfanakis, David A Bennett, Patricia A Boyle
Financial and health literacy is essential for older adults to navigate complex decision processes in late life. However, the neurobiological basis of age-related decline in financial and health literacy is poorly understood. This study aimed to characterize progression of neurodegenerative and vascular conditions over time, and to assess how these changes coincide with declining financial and health literacy in old age. Data came from 319 community-living older adults who were free of dementia at baseline, and underwent annual literacy assessments, as well as biennial 3-Tesla neuroimaging scans. Financial and health literacy was assessed using a battery of 32 items. Two in vivo neuroimaging markers of neurodegenerative and cerebrovascular conditions were used, i.e., hippocampal volume and the ARTS marker of arteriolosclerosis. A multivariate linear mixed effects model estimated the simultaneous changes in financial and health literacy, hippocampal volume, and the ARTS score. Over a mean of 7 years of follow-up, these older adults experienced a significant decline in financial and health literacy, a significant reduction in hippocampal volume, and a significant progression in ARTS score. Individuals with faster hippocampal atrophy had faster decline in literacy. Similarly, those with faster progression in ARTS also had faster decline in literacy. The correlation between the rates of hippocampal atrophy and declining literacy, however, was stronger than the correlation between the progression of ARTS with declining literacy. These findings suggest that neurodegeneration and, to a lesser extent, cerebrovascular conditions are correlated with declining financial and health literacy in old age.
在晚年生活中,财务和健康知识对于老年人驾驭复杂的决策过程至关重要。然而,人们对与年龄相关的财务和健康素养下降的神经生物学基础知之甚少。本研究旨在描述神经退行性疾病和血管疾病随时间推移而发生的变化,并评估这些变化如何与老年人财务和健康素养的下降相吻合。数据来自 319 名社区生活的老年人,他们在基线时没有痴呆症,每年接受一次扫盲评估,每两年接受一次 3-Tesla 神经影像扫描。财务和健康素养评估由 32 个项目组成。使用了神经退行性疾病和脑血管疾病的两个体内神经影像标记,即海马体积和动脉硬化的 ARTS 标记。多变量线性混合效应模型估算了财务和健康素养、海马体积和 ARTS 评分的同时变化。在平均 7 年的随访中,这些老年人的财务和健康素养显著下降,海马体积显著缩小,ARTS 评分显著上升。海马体萎缩速度越快的人,读写能力下降的速度也越快。同样,ARTS 下降越快的人,识字率下降也越快。然而,海马体萎缩速度与识字率下降之间的相关性要强于ARTS进展与识字率下降之间的相关性。这些研究结果表明,神经退行性变以及脑血管疾病(在较小程度上)与老年财务和健康素养的下降存在相关性。
{"title":"Differential correlations of changes in in vivo neuroimaging markers of hippocampal volume and arteriolosclerosis with declining financial and health literacy in old age.","authors":"Lei Yu, Tianhao Wang, Alifiya Kapasi, Melissa Lamar, Gary Mottola, Konstantinos Arfanakis, David A Bennett, Patricia A Boyle","doi":"10.1007/s11682-024-00945-z","DOIUrl":"10.1007/s11682-024-00945-z","url":null,"abstract":"<p><p>Financial and health literacy is essential for older adults to navigate complex decision processes in late life. However, the neurobiological basis of age-related decline in financial and health literacy is poorly understood. This study aimed to characterize progression of neurodegenerative and vascular conditions over time, and to assess how these changes coincide with declining financial and health literacy in old age. Data came from 319 community-living older adults who were free of dementia at baseline, and underwent annual literacy assessments, as well as biennial 3-Tesla neuroimaging scans. Financial and health literacy was assessed using a battery of 32 items. Two in vivo neuroimaging markers of neurodegenerative and cerebrovascular conditions were used, i.e., hippocampal volume and the ARTS marker of arteriolosclerosis. A multivariate linear mixed effects model estimated the simultaneous changes in financial and health literacy, hippocampal volume, and the ARTS score. Over a mean of 7 years of follow-up, these older adults experienced a significant decline in financial and health literacy, a significant reduction in hippocampal volume, and a significant progression in ARTS score. Individuals with faster hippocampal atrophy had faster decline in literacy. Similarly, those with faster progression in ARTS also had faster decline in literacy. The correlation between the rates of hippocampal atrophy and declining literacy, however, was stronger than the correlation between the progression of ARTS with declining literacy. These findings suggest that neurodegeneration and, to a lesser extent, cerebrovascular conditions are correlated with declining financial and health literacy in old age.</p>","PeriodicalId":9192,"journal":{"name":"Brain Imaging and Behavior","volume":" ","pages":"1515-1523"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680459/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study explored potential associations of bacterial overgrowth in the small intestine, as detected based on levels of hydrogen and methane in breath after lactulose consumption, with cortical thickness and resting-state functional connectivity in different brain regions. Prospective comparison of 35 patients with Parkinson's disease (PD) involving mild cognitive impairment, 35 patients with PD with normal cognitive function and 17 healthy controls showed the largest level of hydrogen alone and the largest combined level of hydrogen and methane in patients with mild cognitive impairment. The comparison also revealed a significant negative correlation between those levels and thickness of the right insular cortex. Mild cognitive patients showed different functional connectivity between the right insula and cognition-related brain networks from normal cognitive patients. Our results suggest that bacterial overgrowth in the small intestine may contribute to cortical thinning and alterations in resting-state functional connectivity in PD involving mild cognitive impairment. These insights support and deepen previous observations implicating the gut-brain axis in the neurological disorder.
{"title":"Association of bacterial overgrowth in the small intestine with cortical thickness and functional connectivity in Parkinson's disease involving mild cognitive impairment.","authors":"Qian Zhou, Baiyuan Yang, Yongyun Zhu, Fang Wang, Yuchao Tai, Zhaochao Liu, Jieyu Chen, Chunyu Liang, Hongju Yang, Ailan Pang, Xinglong Yang","doi":"10.1007/s11682-024-00948-w","DOIUrl":"10.1007/s11682-024-00948-w","url":null,"abstract":"<p><p>This study explored potential associations of bacterial overgrowth in the small intestine, as detected based on levels of hydrogen and methane in breath after lactulose consumption, with cortical thickness and resting-state functional connectivity in different brain regions. Prospective comparison of 35 patients with Parkinson's disease (PD) involving mild cognitive impairment, 35 patients with PD with normal cognitive function and 17 healthy controls showed the largest level of hydrogen alone and the largest combined level of hydrogen and methane in patients with mild cognitive impairment. The comparison also revealed a significant negative correlation between those levels and thickness of the right insular cortex. Mild cognitive patients showed different functional connectivity between the right insula and cognition-related brain networks from normal cognitive patients. Our results suggest that bacterial overgrowth in the small intestine may contribute to cortical thinning and alterations in resting-state functional connectivity in PD involving mild cognitive impairment. These insights support and deepen previous observations implicating the gut-brain axis in the neurological disorder.</p>","PeriodicalId":9192,"journal":{"name":"Brain Imaging and Behavior","volume":" ","pages":"1509-1514"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To explore the cortical microstructural alterations in Parkinson's disease (PD) at different stages. 149 PD patients and 76 healthy controls were included. PD patients were divided into early stage PD (EPD) (Hoehn-Yahr stage ≤ 2) and moderate-to-late stage PD (MLPD) (Hoehn-Yahr stage ≥ 2.5) according to their Hoehn-Yahr stages. All participants underwent two-shell diffusion MRI and the images were fitted to Neurite Orientation Dispersion and Density Imaging (NODDI) model to obtain the neurite density index (NDI) and orientation dispersion index (ODI) to reflect the cortical microstructure. We used gray matter-based spatial statistics method to compare the voxel-wise cortical NODDI metrics between groups. Partial correlation was used to correlate the NODDI metrics and global composite outcome in PD patients. Compared with healthy controls, EPD patients showed lower ODI in widespread regions, covering bilateral frontal, temporal, parietal and occipital cortices, as well as regional lower NDI in bilateral cingulate and frontal lobes. Compared with healthy controls, MLPD patients showed lower ODI and NDI in more widespread regions. Compared with EPD patients, MLPD patients showed lower ODI in bilateral temporal, parietal and occipital cortices, where the ODI values were negatively correlated with global composite outcome in PD patients. PD patients showed widespread cortical microstructural degeneration, characterized by reduced neurite density and orientation dispersion, and the cortical neuritic microstructure exhibit progressive degeneration during the progression of PD.
{"title":"Cortical microstructural alterations in different stages of Parkinson's disease.","authors":"Xueqin Bai, Tao Guo, Xiaojun Guan, Cheng Zhou, Jingjing Wu, Haoting Wu, Xiaocao Liu, Chengqing Wu, Jingwen Chen, Jiaqi Wen, Jianmei Qin, Sijia Tan, Xiaojie DuanMu, Luyan Gu, Ting Gao, Peiyu Huang, Baorong Zhang, Xiaojun Xu, Xiangwu Zheng, Minming Zhang","doi":"10.1007/s11682-024-00931-5","DOIUrl":"10.1007/s11682-024-00931-5","url":null,"abstract":"<p><p>To explore the cortical microstructural alterations in Parkinson's disease (PD) at different stages. 149 PD patients and 76 healthy controls were included. PD patients were divided into early stage PD (EPD) (Hoehn-Yahr stage ≤ 2) and moderate-to-late stage PD (MLPD) (Hoehn-Yahr stage ≥ 2.5) according to their Hoehn-Yahr stages. All participants underwent two-shell diffusion MRI and the images were fitted to Neurite Orientation Dispersion and Density Imaging (NODDI) model to obtain the neurite density index (NDI) and orientation dispersion index (ODI) to reflect the cortical microstructure. We used gray matter-based spatial statistics method to compare the voxel-wise cortical NODDI metrics between groups. Partial correlation was used to correlate the NODDI metrics and global composite outcome in PD patients. Compared with healthy controls, EPD patients showed lower ODI in widespread regions, covering bilateral frontal, temporal, parietal and occipital cortices, as well as regional lower NDI in bilateral cingulate and frontal lobes. Compared with healthy controls, MLPD patients showed lower ODI and NDI in more widespread regions. Compared with EPD patients, MLPD patients showed lower ODI in bilateral temporal, parietal and occipital cortices, where the ODI values were negatively correlated with global composite outcome in PD patients. PD patients showed widespread cortical microstructural degeneration, characterized by reduced neurite density and orientation dispersion, and the cortical neuritic microstructure exhibit progressive degeneration during the progression of PD.</p>","PeriodicalId":9192,"journal":{"name":"Brain Imaging and Behavior","volume":" ","pages":"1438-1447"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-07DOI: 10.1007/s11682-024-00933-3
Jie Song, Han Yang, Hailang Yan, Qian Lu, Lei Guo, Hui Zheng, Tianjiao Zhang, Bin Lin, Zhiyong Zhao, Chuan He, Ying Shen
Subjective cognitive decline (SCD) marks the initial stage in Alzheimer's disease continuum. Nonetheless, current research findings regarding brain structural changes in the SCD are inconsistent. In this study, 37 SCD patients, 28 mild cognitive impairment (MCI) patients, and 42 healthy controls (HC) were recruited to investigate structural alterations. Morphological and microstructural differences among the three groups were analyzed based on T1- and diffusion-weighted images, correlating them with neuropsychological assessments. Additionally, classification analysis was performed by using support vector machines (SVM) categorize participants into three groups based on MRI features. Both SCD and MCI showed decreased volume in left inferior parietal lobe (IPL) compared to HC, while SCD showed altered morphologies in the right inferior temporal gyrus (ITG), right insula and right amygdala, and microstructures in fiber tracts of the right ITG, lateral occipital cortex (LOC) and insula relative to MCI. Moreover, the volume in the left IPL, right LOC, right amygdala and diffusivity value in fiber tracts of right LOC were significantly correlated with cognitive functions across all subjects. The classification models achieved an accuracy of > 0.7 (AUC = 0.8) in distinguishing the three groups. Our findings suggest that SCD and MCI share similar atrophy in the IPL but show more differences in morphological and microstructural features of cortical-subcortical areas.
{"title":"Structural disruption in subjective cognitive decline and mild cognitive impairment.","authors":"Jie Song, Han Yang, Hailang Yan, Qian Lu, Lei Guo, Hui Zheng, Tianjiao Zhang, Bin Lin, Zhiyong Zhao, Chuan He, Ying Shen","doi":"10.1007/s11682-024-00933-3","DOIUrl":"10.1007/s11682-024-00933-3","url":null,"abstract":"<p><p>Subjective cognitive decline (SCD) marks the initial stage in Alzheimer's disease continuum. Nonetheless, current research findings regarding brain structural changes in the SCD are inconsistent. In this study, 37 SCD patients, 28 mild cognitive impairment (MCI) patients, and 42 healthy controls (HC) were recruited to investigate structural alterations. Morphological and microstructural differences among the three groups were analyzed based on T1- and diffusion-weighted images, correlating them with neuropsychological assessments. Additionally, classification analysis was performed by using support vector machines (SVM) categorize participants into three groups based on MRI features. Both SCD and MCI showed decreased volume in left inferior parietal lobe (IPL) compared to HC, while SCD showed altered morphologies in the right inferior temporal gyrus (ITG), right insula and right amygdala, and microstructures in fiber tracts of the right ITG, lateral occipital cortex (LOC) and insula relative to MCI. Moreover, the volume in the left IPL, right LOC, right amygdala and diffusivity value in fiber tracts of right LOC were significantly correlated with cognitive functions across all subjects. The classification models achieved an accuracy of > 0.7 (AUC = 0.8) in distinguishing the three groups. Our findings suggest that SCD and MCI share similar atrophy in the IPL but show more differences in morphological and microstructural features of cortical-subcortical areas.</p>","PeriodicalId":9192,"journal":{"name":"Brain Imaging and Behavior","volume":" ","pages":"1536-1548"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-30DOI: 10.1007/s11682-024-00935-1
Siti Maisarah Nasir, Noorazrul Yahya, Hanani Abdul Manan
This study systematically reviews the available evidence on resting-state functional magnetic resonance imaging (rs-fMRI) related to neurological symptoms and cognitive declines in COVID-19 patients. We followed PRISMA guidelines and looked up the PubMed, and Scopus databases for articles search on COVID-19 patients with neurological impairments, and functional connectivity alteration using rs-fMRI technique. Articles published between January 1, 2020, and May 31, 2024, are included in this study. The Quality Assessment Tool for Observational Prospective and Cross-Sectional Studies from the National Heart, Lung, and Blood Institute (NHLBI) was used to assess the quality of papers. A total of 15 articles met the inclusion criteria. The result reveals that the most prevalent neurological impairment associated with COVID-19 was cognitive decline, encompassing issues in attention, memory, processing speed, executive functions, language, and visuospatial ability. The brain connectivity results reveal that two brain areas were functionally altered; the prefrontal cortex and parahippocampus. The functional connectivity mainly increased in the frontal, temporal, and anterior piriform cortex, and reduced in the cerebellum, superior orbitofrontal cortex, and middle temporal gyrus, which also correlated with cognitive decline. The findings of neurological symptoms indicate one study reported a Disorder of Consciousness (DoC), and four studies reported COVID-19 patients with olfactory dysfunction. The present study concludes that COVID-19 can alter brain functional connectivity and offers significant insight into how COVID-19 affects the neuronal foundation of cognitive decline and other neurological impairments.
{"title":"Functional brain alterations in COVID-19 patients using resting-state fMRI: a systematic review.","authors":"Siti Maisarah Nasir, Noorazrul Yahya, Hanani Abdul Manan","doi":"10.1007/s11682-024-00935-1","DOIUrl":"10.1007/s11682-024-00935-1","url":null,"abstract":"<p><p>This study systematically reviews the available evidence on resting-state functional magnetic resonance imaging (rs-fMRI) related to neurological symptoms and cognitive declines in COVID-19 patients. We followed PRISMA guidelines and looked up the PubMed, and Scopus databases for articles search on COVID-19 patients with neurological impairments, and functional connectivity alteration using rs-fMRI technique. Articles published between January 1, 2020, and May 31, 2024, are included in this study. The Quality Assessment Tool for Observational Prospective and Cross-Sectional Studies from the National Heart, Lung, and Blood Institute (NHLBI) was used to assess the quality of papers. A total of 15 articles met the inclusion criteria. The result reveals that the most prevalent neurological impairment associated with COVID-19 was cognitive decline, encompassing issues in attention, memory, processing speed, executive functions, language, and visuospatial ability. The brain connectivity results reveal that two brain areas were functionally altered; the prefrontal cortex and parahippocampus. The functional connectivity mainly increased in the frontal, temporal, and anterior piriform cortex, and reduced in the cerebellum, superior orbitofrontal cortex, and middle temporal gyrus, which also correlated with cognitive decline. The findings of neurological symptoms indicate one study reported a Disorder of Consciousness (DoC), and four studies reported COVID-19 patients with olfactory dysfunction. The present study concludes that COVID-19 can alter brain functional connectivity and offers significant insight into how COVID-19 affects the neuronal foundation of cognitive decline and other neurological impairments.</p>","PeriodicalId":9192,"journal":{"name":"Brain Imaging and Behavior","volume":" ","pages":"1582-1601"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-09DOI: 10.1007/s11682-024-00919-1
Zheng Zhang
Ischemic stroke is a leading neurological cause of severe disabilities and death in the world and has a major negative impact on patients' quality of life. However, the neural mechanism of spontaneous fluctuating neuronal activity remains unclear. This meta-analysis explored brain activity during resting state in patients with ischemic stroke including 22 studies of regional homogeneity, amplitude of low-frequency fluctuation, and fractional amplitude of low-frequency fluctuation (692 patients with ischemic stroke, 620 healthy controls, age range 35-80 years, 41% female, 175 foci). Results showed decreased regional activity in the bilateral caudate and thalamus and increased regional activity in the left superior occipital gyrus and left default mode network (precuneus/posterior cingulate cortex). Meta-analysis of the amplitude of low-frequency fluctuation studies showed that increased activity in the left inferior frontal gyrus was reduced across the progression from acute to chronic phases. These findings may indicate that disruption of the subcortical areas and default mode network could be one of the core functional abnormalities in ischemic stroke. Altered brain activity in the inferior frontal gyrus could be the imaging indicator of brain recovery/plasticity after stroke damage, which offers potential insight into developing prediction models and therapeutic strategies for ischemic stroke rehabilitation and recovery.
{"title":"Resting-state functional abnormalities in ischemic stroke: a meta-analysis of fMRI studies.","authors":"Zheng Zhang","doi":"10.1007/s11682-024-00919-1","DOIUrl":"10.1007/s11682-024-00919-1","url":null,"abstract":"<p><p>Ischemic stroke is a leading neurological cause of severe disabilities and death in the world and has a major negative impact on patients' quality of life. However, the neural mechanism of spontaneous fluctuating neuronal activity remains unclear. This meta-analysis explored brain activity during resting state in patients with ischemic stroke including 22 studies of regional homogeneity, amplitude of low-frequency fluctuation, and fractional amplitude of low-frequency fluctuation (692 patients with ischemic stroke, 620 healthy controls, age range 35-80 years, 41% female, 175 foci). Results showed decreased regional activity in the bilateral caudate and thalamus and increased regional activity in the left superior occipital gyrus and left default mode network (precuneus/posterior cingulate cortex). Meta-analysis of the amplitude of low-frequency fluctuation studies showed that increased activity in the left inferior frontal gyrus was reduced across the progression from acute to chronic phases. These findings may indicate that disruption of the subcortical areas and default mode network could be one of the core functional abnormalities in ischemic stroke. Altered brain activity in the inferior frontal gyrus could be the imaging indicator of brain recovery/plasticity after stroke damage, which offers potential insight into developing prediction models and therapeutic strategies for ischemic stroke rehabilitation and recovery.</p>","PeriodicalId":9192,"journal":{"name":"Brain Imaging and Behavior","volume":" ","pages":"1569-1581"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}