首页 > 最新文献

2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)最新文献

英文 中文
Impact of timing and frequency offsets on multicarrier waveform candidates for 5G 时序和频率偏移对5G候选多载波波形的影响
Pub Date : 2015-05-04 DOI: 10.1109/DSP-SPE.2015.7369549
A. Aminjavaheri, Arman Farhang, Ahmad Rezazadehreyhani, B. Farhang-Boroujeny
This paper presents a study of the candidate waveforms for 5G when they are subject to timing and carrier frequency offset. These waveforms are: orthogonal frequency division multiplexing (OFDM), generalized frequency division multiplexing (GFDM), universal filtered multicarrier (UFMC), circular filter bank multicarrier (C-FBMC), and linear filter bank multicarrier (FBMC). We are particularly interested in multiple access interference (MAI) when a number of users transmit their signals to a base station in an asynchronous or a quasi-synchronous manner. We identify the source of MAI in these waveforms and present some numerical analysis that confirm our findings. The goal of this study is to answer the following question, “Which one of the 5G candidate waveforms has more relaxed synchronization requirements?”.
本文介绍了受定时和载波频率偏移影响的5G候选波形的研究。这些波形是:正交频分复用(OFDM)、广义频分复用(GFDM)、通用滤波多载波(UFMC)、圆形滤波器组多载波(C-FBMC)和线性滤波器组多载波(FBMC)。当多个用户以异步或准同步方式向基站发送信号时,我们对多址干扰(MAI)特别感兴趣。我们在这些波形中确定了MAI的来源,并提出了一些数值分析来证实我们的发现。本研究的目的是回答以下问题:“5G候选波形中哪一种具有更宽松的同步要求?”
{"title":"Impact of timing and frequency offsets on multicarrier waveform candidates for 5G","authors":"A. Aminjavaheri, Arman Farhang, Ahmad Rezazadehreyhani, B. Farhang-Boroujeny","doi":"10.1109/DSP-SPE.2015.7369549","DOIUrl":"https://doi.org/10.1109/DSP-SPE.2015.7369549","url":null,"abstract":"This paper presents a study of the candidate waveforms for 5G when they are subject to timing and carrier frequency offset. These waveforms are: orthogonal frequency division multiplexing (OFDM), generalized frequency division multiplexing (GFDM), universal filtered multicarrier (UFMC), circular filter bank multicarrier (C-FBMC), and linear filter bank multicarrier (FBMC). We are particularly interested in multiple access interference (MAI) when a number of users transmit their signals to a base station in an asynchronous or a quasi-synchronous manner. We identify the source of MAI in these waveforms and present some numerical analysis that confirm our findings. The goal of this study is to answer the following question, “Which one of the 5G candidate waveforms has more relaxed synchronization requirements?”.","PeriodicalId":91992,"journal":{"name":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","volume":"11 1","pages":"178-183"},"PeriodicalIF":0.0,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88484454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 106
Meta learning of bounds on the Bayes classifier error 元学习对贝叶斯分类器误差的限制
Pub Date : 2015-04-27 DOI: 10.1109/DSP-SPE.2015.7369520
Kevin R. Moon, V. Delouille, A. Hero
Meta learning uses information from base learners (e.g. classifiers or estimators) as well as information about the learning problem to improve upon the performance of a single base learner. For example, the Bayes error rate of a given feature space, if known, can be used to aid in choosing a classifier, as well as in feature selection and model selection for the base classifiers and the meta classifier. Recent work in the field of f-divergence functional estimation has led to the development of simple and rapidly converging estimators that can be used to estimate various bounds on the Bayes error. We estimate multiple bounds on the Bayes error using an estimator that applies meta learning to slowly converging plug-in estimators to obtain the parametric convergence rate. We compare the estimated bounds empirically on simulated data and then estimate the tighter bounds on features extracted from an image patch analysis of sunspot continuum and magnetogram images.
元学习使用来自基础学习器的信息(例如分类器或估计器)以及关于学习问题的信息来改进单个基础学习器的性能。例如,如果已知给定特征空间的贝叶斯错误率,则可以用于帮助选择分类器,以及用于基本分类器和元分类器的特征选择和模型选择。最近在f散度函数估计领域的工作导致了简单和快速收敛的估计器的发展,这些估计器可用于估计贝叶斯误差的各种界限。我们使用一个将元学习应用于缓慢收敛的插件估计器的估计器来估计贝叶斯误差的多个边界,以获得参数收敛率。我们对模拟数据进行了经验比较,然后对从太阳黑子连续体和磁图图像的图像斑块分析中提取的特征估计了更严格的边界。
{"title":"Meta learning of bounds on the Bayes classifier error","authors":"Kevin R. Moon, V. Delouille, A. Hero","doi":"10.1109/DSP-SPE.2015.7369520","DOIUrl":"https://doi.org/10.1109/DSP-SPE.2015.7369520","url":null,"abstract":"Meta learning uses information from base learners (e.g. classifiers or estimators) as well as information about the learning problem to improve upon the performance of a single base learner. For example, the Bayes error rate of a given feature space, if known, can be used to aid in choosing a classifier, as well as in feature selection and model selection for the base classifiers and the meta classifier. Recent work in the field of f-divergence functional estimation has led to the development of simple and rapidly converging estimators that can be used to estimate various bounds on the Bayes error. We estimate multiple bounds on the Bayes error using an estimator that applies meta learning to slowly converging plug-in estimators to obtain the parametric convergence rate. We compare the estimated bounds empirically on simulated data and then estimate the tighter bounds on features extracted from an image patch analysis of sunspot continuum and magnetogram images.","PeriodicalId":91992,"journal":{"name":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","volume":"61 1","pages":"13-18"},"PeriodicalIF":0.0,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79319977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Approximate regularization paths for nuclear norm minimization using singular value bounds 使用奇异值界的核范数最小化的近似正则化路径
Pub Date : 2015-04-20 DOI: 10.1109/DSP-SPE.2015.7369551
N. Blomberg, C. Rojas, B. Wahlberg
The widely used nuclear norm heuristic for rank minimization problems introduces a regularization parameter which is difficult to tune. We have recently proposed a method to approximate the regularization path, i.e., the optimal solution as a function of the parameter, which requires solving the problem only for a sparse set of points. In this paper, we extend the algorithm to provide error bounds for the singular values of the approximation. We exemplify the algorithms on large scale benchmark examples in model order reduction. Here, the order of a dynamical system is reduced by means of constrained minimization of the nuclear norm of a Hankel matrix.
广泛应用于秩最小化问题的核范数启发式引入了一个难以调整的正则化参数。我们最近提出了一种近似正则化路径的方法,即最优解作为参数的函数,该方法只需要对稀疏的点集求解问题。在本文中,我们扩展了该算法,为近似的奇异值提供了误差界。我们在模型降阶的大规模基准示例上对算法进行了验证。在这里,通过汉克尔矩阵核范数的约束最小化来降低动力系统的阶数。
{"title":"Approximate regularization paths for nuclear norm minimization using singular value bounds","authors":"N. Blomberg, C. Rojas, B. Wahlberg","doi":"10.1109/DSP-SPE.2015.7369551","DOIUrl":"https://doi.org/10.1109/DSP-SPE.2015.7369551","url":null,"abstract":"The widely used nuclear norm heuristic for rank minimization problems introduces a regularization parameter which is difficult to tune. We have recently proposed a method to approximate the regularization path, i.e., the optimal solution as a function of the parameter, which requires solving the problem only for a sparse set of points. In this paper, we extend the algorithm to provide error bounds for the singular values of the approximation. We exemplify the algorithms on large scale benchmark examples in model order reduction. Here, the order of a dynamical system is reduced by means of constrained minimization of the nuclear norm of a Hankel matrix.","PeriodicalId":91992,"journal":{"name":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","volume":"30 1","pages":"190-195"},"PeriodicalIF":0.0,"publicationDate":"2015-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91401342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Optimal non-coherent data detection for massive SIMO wireless systems: A polynomial complexity solution 大规模SIMO无线系统的最优非相干数据检测:一个多项式复杂度解
Pub Date : 2014-11-24 DOI: 10.1109/DSP-SPE.2015.7369548
Haider Ali Jasim Alshamary, T. Al-Naffouri, A. Zaib, Weiyu Xu
This paper considers the joint maximum likelihood (ML) channel estimation and data detection problem for massive SIMO (single input multiple output) wireless systems. We propose efficient algorithms achieving the exact ML non-coherent data detection, for both constant-modulus constellations and nonconstant-modulus constellations. Despite a large number of unknown channel coefficients in massive SIMO systems, we show that the expected computational complexity is linear in the number of receive antennas and polynomial in channel coherence time. To the best of our knowledge, our algorithms are the first efficient algorithms to achieve the exact joint ML channel estimation and data detection performance for massive SIMO systems with general constellations. Simulation results show our algorithms achieve considerable performance gains at a low computational complexity.
研究了大规模单输入多输出无线系统的联合最大似然信道估计和数据检测问题。我们提出了有效的算法来实现精确的ML非相干数据检测,用于恒模星座和非恒模星座。尽管在大规模SIMO系统中存在大量未知的信道系数,但我们表明预期的计算复杂度在接收天线数量上是线性的,在信道相干时间上是多项式的。据我们所知,我们的算法是第一个有效的算法,可以实现具有一般星座的大规模SIMO系统的精确联合ML信道估计和数据检测性能。仿真结果表明,我们的算法在较低的计算复杂度下取得了相当大的性能提升。
{"title":"Optimal non-coherent data detection for massive SIMO wireless systems: A polynomial complexity solution","authors":"Haider Ali Jasim Alshamary, T. Al-Naffouri, A. Zaib, Weiyu Xu","doi":"10.1109/DSP-SPE.2015.7369548","DOIUrl":"https://doi.org/10.1109/DSP-SPE.2015.7369548","url":null,"abstract":"This paper considers the joint maximum likelihood (ML) channel estimation and data detection problem for massive SIMO (single input multiple output) wireless systems. We propose efficient algorithms achieving the exact ML non-coherent data detection, for both constant-modulus constellations and nonconstant-modulus constellations. Despite a large number of unknown channel coefficients in massive SIMO systems, we show that the expected computational complexity is linear in the number of receive antennas and polynomial in channel coherence time. To the best of our knowledge, our algorithms are the first efficient algorithms to achieve the exact joint ML channel estimation and data detection performance for massive SIMO systems with general constellations. Simulation results show our algorithms achieve considerable performance gains at a low computational complexity.","PeriodicalId":91992,"journal":{"name":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","volume":"99 1","pages":"172-177"},"PeriodicalIF":0.0,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86494720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
期刊
2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1