首页 > 最新文献

Biology Open最新文献

英文 中文
Air-liquid interface culture combined with differentiation factors reproducing intestinal cell structure formation in vitro. 气液界面培养联合分化因子体外再生肠细胞结构的研究。
IF 1.8 4区 生物学 Q3 BIOLOGY Pub Date : 2025-01-15 Epub Date: 2025-01-20 DOI: 10.1242/bio.061612
Isamu Ogawa, Takaaki Nakai, Takahiro Iwao, Tamihide Matsunaga

Reproducing intestinal cells in vitro is important in pharmaceutical research and drug development. Caco-2 cells and human iPS cell-derived intestinal epithelial cells are widely used, but few evaluation systems can mimic the complex crypt-villus-like structure. We attempted to generate intestinal cells mimicking the three-dimensional structure from human iPS cells. After inducing the differentiation of iPS cells into intestinal organoids, these were dispersed into single cells and cultured two-dimensionally. An air-liquid interface culture was used, with CHIR99021, forskolin, and A-83-01 used as key compounds. Long-term culture was also performed by adding Wnt3a, Noggin, and RSPO1, which are frequently used in organoid culture. The air-liquid interface culture combined several compounds that successfully induced the formation of a crypt-villus-like structure, which grew rapidly at around day 6. The expression of pharmacokinetic genes such as CYP3A4 was also enhanced. The intestinal stem cells were efficiently maintained by the addition of Wnt3a, Noggin, and RSPO1. We were able to construct a crypt-villus-like structure on cell culture inserts, which is considered a very simple culture platform. This structure had characteristics extremely similar to living intestinal tissues and may have a superior homeostatic mechanism.

肠细胞体外再生在药物研究和药物开发中具有重要意义。Caco-2细胞和人类iPS细胞衍生的肠上皮细胞被广泛使用,但很少有评估系统能够模拟复杂的隐窝绒毛样结构。我们试图从人类iPS细胞中产生模拟三维结构的肠细胞。诱导iPS细胞向肠道类器官分化后,分散成单细胞,进行二维培养。采用气液界面培养,以CHIR99021、forskolin和A-83-01为主要化合物。同时加入类器官培养中常用的Wnt3a、Noggin和RSPO1进行长期培养。气液界面培养结合了几种化合物,成功地诱导了隐绒毛样结构的形成,该结构在第6天左右迅速生长。CYP3A4等药代动力学基因的表达也增强。添加Wnt3a、Noggin和RSPO1能有效维持肠道干细胞。我们能够在细胞培养插入物上构建类似隐窝绒毛的结构,这被认为是一个非常简单的培养平台。这种结构具有与活体肠道组织极其相似的特征,可能具有优越的体内平衡机制。
{"title":"Air-liquid interface culture combined with differentiation factors reproducing intestinal cell structure formation in vitro.","authors":"Isamu Ogawa, Takaaki Nakai, Takahiro Iwao, Tamihide Matsunaga","doi":"10.1242/bio.061612","DOIUrl":"10.1242/bio.061612","url":null,"abstract":"<p><p>Reproducing intestinal cells in vitro is important in pharmaceutical research and drug development. Caco-2 cells and human iPS cell-derived intestinal epithelial cells are widely used, but few evaluation systems can mimic the complex crypt-villus-like structure. We attempted to generate intestinal cells mimicking the three-dimensional structure from human iPS cells. After inducing the differentiation of iPS cells into intestinal organoids, these were dispersed into single cells and cultured two-dimensionally. An air-liquid interface culture was used, with CHIR99021, forskolin, and A-83-01 used as key compounds. Long-term culture was also performed by adding Wnt3a, Noggin, and RSPO1, which are frequently used in organoid culture. The air-liquid interface culture combined several compounds that successfully induced the formation of a crypt-villus-like structure, which grew rapidly at around day 6. The expression of pharmacokinetic genes such as CYP3A4 was also enhanced. The intestinal stem cells were efficiently maintained by the addition of Wnt3a, Noggin, and RSPO1. We were able to construct a crypt-villus-like structure on cell culture inserts, which is considered a very simple culture platform. This structure had characteristics extremely similar to living intestinal tissues and may have a superior homeostatic mechanism.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"14 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene expression and DNA methylation changes in response to hypoxia in toxicant-adapted Atlantic killifish (Fundulus heteroclitus). 适应毒物的大西洋鳉鱼(Fundulus heteroclitus)基因表达和DNA甲基化变化对缺氧的响应。
IF 1.8 4区 生物学 Q3 BIOLOGY Pub Date : 2025-01-15 Epub Date: 2025-01-06 DOI: 10.1242/bio.061801
Neelakanteswar Aluru, Yaamini R Venkataraman, Christopher S Murray, Veronica DePascuale

Coastal fish populations are threatened by multiple anthropogenic impacts, including the accumulation of industrial contaminants and the increasing frequency of hypoxia. Some populations of the Atlantic killifish (Fundulus heteroclitus), like those in New Bedford Harbor (NBH), Massachusetts, USA, have evolved a resistance to dioxin-like polychlorinated biphenyls (PCBs) that may influence their ability to cope with secondary stressors. To address this question, we compared hepatic gene expression and DNA methylation patterns in response to mild or severe hypoxia in killifish from NBH and Scorton Creek (SC), a reference population from a relatively pristine environment. We hypothesized that NBH fish would show altered responses to hypoxia due to trade-offs linked to toxicant resistance. Our results revealed substantial differences between populations. SC fish demonstrated dose-dependent changes in gene expression in response to hypoxia, while NBH fish exhibited a muted transcriptional response to severe hypoxia. Interestingly, NBH fish showed significant DNA methylation changes in response to hypoxia, while SC fish did not exhibit notable epigenetic alterations. These findings suggest that toxicant-adapted killifish may face trade-offs in their molecular response to environmental stress, potentially impacting their ability to survive severe hypoxia in coastal habitats. Further research is needed to elucidate the functional implications of these epigenetic modifications and their role in adaptive stress responses.

沿海鱼类种群受到多种人为影响的威胁,包括工业污染物的积累和缺氧频率的增加。一些大西洋鳉鱼(Fundulus heteroclitus)种群,如美国马萨诸塞州新贝德福德港(NBH)的种群,已经进化出对二恶英样多氯联苯(PCBs)的抗性,这可能会影响它们应对次生应激源的能力。为了解决这个问题,我们比较了来自NBH和Scorton Creek (SC)的鳉鱼(来自相对原始环境的参考种群)对轻度或重度缺氧的肝脏基因表达和DNA甲基化模式。我们假设NBH鱼由于与毒物抗性相关的权衡而表现出对缺氧的改变反应。我们的研究结果揭示了不同人群之间的巨大差异。SC鱼在缺氧条件下表现出剂量依赖性的基因表达变化,而NBH鱼在严重缺氧条件下表现出沉默的转录反应。有趣的是,NBH鱼在缺氧反应中表现出显著的DNA甲基化变化,而SC鱼没有表现出显著的表观遗传改变。这些发现表明,适应毒物的鳉鱼可能面临着对环境压力的分子反应的权衡,这可能会影响它们在沿海栖息地严重缺氧的生存能力。需要进一步的研究来阐明这些表观遗传修饰的功能含义及其在适应性应激反应中的作用。
{"title":"Gene expression and DNA methylation changes in response to hypoxia in toxicant-adapted Atlantic killifish (Fundulus heteroclitus).","authors":"Neelakanteswar Aluru, Yaamini R Venkataraman, Christopher S Murray, Veronica DePascuale","doi":"10.1242/bio.061801","DOIUrl":"10.1242/bio.061801","url":null,"abstract":"<p><p>Coastal fish populations are threatened by multiple anthropogenic impacts, including the accumulation of industrial contaminants and the increasing frequency of hypoxia. Some populations of the Atlantic killifish (Fundulus heteroclitus), like those in New Bedford Harbor (NBH), Massachusetts, USA, have evolved a resistance to dioxin-like polychlorinated biphenyls (PCBs) that may influence their ability to cope with secondary stressors. To address this question, we compared hepatic gene expression and DNA methylation patterns in response to mild or severe hypoxia in killifish from NBH and Scorton Creek (SC), a reference population from a relatively pristine environment. We hypothesized that NBH fish would show altered responses to hypoxia due to trade-offs linked to toxicant resistance. Our results revealed substantial differences between populations. SC fish demonstrated dose-dependent changes in gene expression in response to hypoxia, while NBH fish exhibited a muted transcriptional response to severe hypoxia. Interestingly, NBH fish showed significant DNA methylation changes in response to hypoxia, while SC fish did not exhibit notable epigenetic alterations. These findings suggest that toxicant-adapted killifish may face trade-offs in their molecular response to environmental stress, potentially impacting their ability to survive severe hypoxia in coastal habitats. Further research is needed to elucidate the functional implications of these epigenetic modifications and their role in adaptive stress responses.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"14 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A subpopulation of cortical neurons altered by mutations in the autism risk gene DDX3X.
IF 1.8 4区 生物学 Q3 BIOLOGY Pub Date : 2025-01-15 Epub Date: 2025-01-29 DOI: 10.1242/bio.061854
Michael A Flores, Marta Garcia-Forn, Alexa von Mueffling, Praise Ola, Yeaji Park, Andrea Boitnott, Silvia De Rubeis

Cell fate decisions during cortical development sculpt the identity of long-range connections that subserve complex behaviors. These decisions are largely dictated by mutually exclusive transcription factors, including CTIP2/Bcl11b for subcerebral projection neurons and BRN1/Pou3f3 for intra-telencephalic projection neurons. We have recently reported that the balance of cortical CTIP2-expressing neurons is altered in a mouse model of DDX3X syndrome, a female-biased neurodevelopmental disorder associated with intellectual disability, autism spectrum disorder, and significant motor challenges. Here, we studied the developmental dynamics of a subpopulation of cortical neurons co-expressing CTIP2 and BRN1. We found that CTIP2+BRN1+ neurons are born during early phases of neurogenesis like other CTIP2+ neurons, peak in expression during perinatal life, and persist in adult brains. We also found that CTIP2+BRN1+ neurons are excessive in number in prenatal and mature cortical motor areas of Ddx3x mutant mice, translating into altered laminar distribution of subcerebral projection neurons extending axons to the brainstem. These findings underscore the critical role of molecular specification during cortical development in health and disease.

{"title":"A subpopulation of cortical neurons altered by mutations in the autism risk gene DDX3X.","authors":"Michael A Flores, Marta Garcia-Forn, Alexa von Mueffling, Praise Ola, Yeaji Park, Andrea Boitnott, Silvia De Rubeis","doi":"10.1242/bio.061854","DOIUrl":"https://doi.org/10.1242/bio.061854","url":null,"abstract":"<p><p>Cell fate decisions during cortical development sculpt the identity of long-range connections that subserve complex behaviors. These decisions are largely dictated by mutually exclusive transcription factors, including CTIP2/Bcl11b for subcerebral projection neurons and BRN1/Pou3f3 for intra-telencephalic projection neurons. We have recently reported that the balance of cortical CTIP2-expressing neurons is altered in a mouse model of DDX3X syndrome, a female-biased neurodevelopmental disorder associated with intellectual disability, autism spectrum disorder, and significant motor challenges. Here, we studied the developmental dynamics of a subpopulation of cortical neurons co-expressing CTIP2 and BRN1. We found that CTIP2+BRN1+ neurons are born during early phases of neurogenesis like other CTIP2+ neurons, peak in expression during perinatal life, and persist in adult brains. We also found that CTIP2+BRN1+ neurons are excessive in number in prenatal and mature cortical motor areas of Ddx3x mutant mice, translating into altered laminar distribution of subcerebral projection neurons extending axons to the brainstem. These findings underscore the critical role of molecular specification during cortical development in health and disease.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"14 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Company of Biologists: celebrating 100 years. 生物学家公司:庆祝100周年。
IF 1.8 4区 生物学 Q3 BIOLOGY Pub Date : 2025-01-15 Epub Date: 2025-01-06 DOI: 10.1242/bio.061842
Sarah J Bray, Stephen J Royle, Holly A Shiels, Daniel St Johnston
{"title":"The Company of Biologists: celebrating 100 years.","authors":"Sarah J Bray, Stephen J Royle, Holly A Shiels, Daniel St Johnston","doi":"10.1242/bio.061842","DOIUrl":"10.1242/bio.061842","url":null,"abstract":"","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"14 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
α-catenin phosphorylation is elevated during mitosis to resist apical rounding and epithelial barrier leak. α-连环蛋白磷酸化在有丝分裂过程中升高,以抵抗顶圆和上皮屏障泄漏。
IF 1.8 4区 生物学 Q3 BIOLOGY Pub Date : 2025-01-15 Epub Date: 2025-01-08 DOI: 10.1242/bio.061726
Phuong M Le, Jeanne M Quinn, Annette S Flozak, Adam W T Steffeck, Che-Fan Huang, Cara J Gottardi

Epithelial cell cohesion and barrier function critically depend on α-catenin, an actin-binding protein and essential constituent of cadherin-catenin-based adherens junctions. α-catenin undergoes actomyosin force-dependent unfolding of both actin-binding and middle domains to strongly engage actin filaments and its various effectors; this mechanosensitivity is critical for adherens junction function. We previously showed that α-catenin is highly phosphorylated in an unstructured region that links the mechanosensitive middle and actin-binding domains (known as the P-linker region), but the cellular processes that promote α-catenin phosphorylation have remained elusive. Here, we leverage a previously published phospho-proteomic data set to show that the α-catenin P-linker region is maximally phosphorylated during mitosis. By reconstituting α-catenin CRISPR knockout MDCK cells with wild-type, phospho-mutant and phospho-mimic forms of α-catenin, we show that full phosphorylation restrains mitotic cell rounding in the apical direction, strengthening the interactions between dividing and non-dividing neighbors to limit epithelial barrier leak. As the major scaffold components of adherens junctions, tight junctions and desmosomes are also differentially phosphorylated during mitosis, we reason that epithelial cell division may be a tractable system to understand how junction complexes are coordinately regulated to sustain barrier function under tension-generating morphogenetic processes.

上皮细胞的内聚和屏障功能严重依赖于α-连环蛋白,它是一种肌动蛋白结合蛋白,是钙粘蛋白-连环蛋白为基础的粘附连接的重要组成部分。α-连环蛋白通过肌动蛋白力依赖性展开肌动蛋白结合和中间结构域,从而与肌动蛋白丝及其各种效应物紧密结合;这种机械敏感性对粘附体连接功能至关重要。我们之前的研究表明,α-catenin在连接机械敏感的中间区域和肌动蛋白结合区域(称为P-linker区域)的非结构化区域高度磷酸化,但促进α-catenin磷酸化的细胞过程仍然难以捉摸。在这里,我们利用先前发表的磷酸化蛋白质组学数据集来显示α-连环蛋白p连接子区域在有丝分裂期间磷酸化程度最高。通过用α-catenin野生型、磷酸化突变型和磷酸化模拟型重组CRISPR敲除α-catenin的MDCK细胞,我们发现完全磷酸化抑制了有丝分裂细胞在顶端方向的成圆,加强了分裂细胞和非分裂细胞之间的相互作用,以限制上皮屏障泄漏。作为粘附连接的主要支架成分,紧密连接和桥粒在有丝分裂过程中也会发生差异磷酸化,我们认为上皮细胞分裂可能是一个可处理的系统,可以理解在张力产生的形态发生过程中如何协调调节连接复合物以维持屏障功能。
{"title":"α-catenin phosphorylation is elevated during mitosis to resist apical rounding and epithelial barrier leak.","authors":"Phuong M Le, Jeanne M Quinn, Annette S Flozak, Adam W T Steffeck, Che-Fan Huang, Cara J Gottardi","doi":"10.1242/bio.061726","DOIUrl":"10.1242/bio.061726","url":null,"abstract":"<p><p>Epithelial cell cohesion and barrier function critically depend on α-catenin, an actin-binding protein and essential constituent of cadherin-catenin-based adherens junctions. α-catenin undergoes actomyosin force-dependent unfolding of both actin-binding and middle domains to strongly engage actin filaments and its various effectors; this mechanosensitivity is critical for adherens junction function. We previously showed that α-catenin is highly phosphorylated in an unstructured region that links the mechanosensitive middle and actin-binding domains (known as the P-linker region), but the cellular processes that promote α-catenin phosphorylation have remained elusive. Here, we leverage a previously published phospho-proteomic data set to show that the α-catenin P-linker region is maximally phosphorylated during mitosis. By reconstituting α-catenin CRISPR knockout MDCK cells with wild-type, phospho-mutant and phospho-mimic forms of α-catenin, we show that full phosphorylation restrains mitotic cell rounding in the apical direction, strengthening the interactions between dividing and non-dividing neighbors to limit epithelial barrier leak. As the major scaffold components of adherens junctions, tight junctions and desmosomes are also differentially phosphorylated during mitosis, we reason that epithelial cell division may be a tractable system to understand how junction complexes are coordinately regulated to sustain barrier function under tension-generating morphogenetic processes.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"14 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744050/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142944871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction: Overexpression of long non-coding RNA SBF2-AS1 promotes cell progression in esophageal squamous cell carcinoma (ESCC) by repressing miR-494 to up-regulate PFN2 expression. 长非编码 RNA SBF2-AS1 的过表达会抑制 miR-494 上调 PFN2 的表达,从而促进食管鳞状细胞癌(ESCC)的细胞进展。
IF 1.8 4区 生物学 Q3 BIOLOGY Pub Date : 2025-01-15 Epub Date: 2025-01-24 DOI: 10.1242/bio.048793
Qiu Zhang, Xixiang Pan, Dongyang You
{"title":"Retraction: Overexpression of long non-coding RNA SBF2-AS1 promotes cell progression in esophageal squamous cell carcinoma (ESCC) by repressing miR-494 to up-regulate PFN2 expression.","authors":"Qiu Zhang, Xixiang Pan, Dongyang You","doi":"10.1242/bio.048793","DOIUrl":"10.1242/bio.048793","url":null,"abstract":"","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37785547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular signalling protrusions enable dynamic distant contacts in spinal cord neurogenesis.
IF 1.8 4区 生物学 Q3 BIOLOGY Pub Date : 2025-01-15 Epub Date: 2025-01-21 DOI: 10.1242/bio.061765
Joshua Hawley, Robert Lea, Veronica Biga, Nancy Papalopulu, Cerys Manning

In the developing mouse ventral spinal cord, HES5, a transcription factor downstream of Notch signalling, is expressed as evenly spaced clusters of high HES5-expressing neural progenitor cells along the dorsoventral axis. While Notch signalling requires direct membrane contact for its activation, we have previously shown mathematically that contact needs to extend beyond neighbouring cells for the HES5 pattern to emerge. However, the presence of cellular structures that could enable such long-distance signalling was unclear. Here, we report that cellular protrusions are present all along the apicobasal axis of individual neural progenitor cells. Through live imaging, we show that these protrusions dynamically extend and retract reaching lengths of up to ∼20 µm, enough to extend membrane contact beyond adjacent cells. The Notch ligand DLL1 was found to colocalise with protrusions, further supporting the idea that Notch signalling can be transduced at a distance. The effect of protrusions on the HES5 pattern was tested by reducing the density of protrusions using the CDC42 inhibitor ML141, leading to a tendency to decrease the distance between high HES5 cell clusters. However, this tendency was not significant and leaves an open question about their role in the fine-grained organisation of neurogenesis.

{"title":"Cellular signalling protrusions enable dynamic distant contacts in spinal cord neurogenesis.","authors":"Joshua Hawley, Robert Lea, Veronica Biga, Nancy Papalopulu, Cerys Manning","doi":"10.1242/bio.061765","DOIUrl":"10.1242/bio.061765","url":null,"abstract":"<p><p>In the developing mouse ventral spinal cord, HES5, a transcription factor downstream of Notch signalling, is expressed as evenly spaced clusters of high HES5-expressing neural progenitor cells along the dorsoventral axis. While Notch signalling requires direct membrane contact for its activation, we have previously shown mathematically that contact needs to extend beyond neighbouring cells for the HES5 pattern to emerge. However, the presence of cellular structures that could enable such long-distance signalling was unclear. Here, we report that cellular protrusions are present all along the apicobasal axis of individual neural progenitor cells. Through live imaging, we show that these protrusions dynamically extend and retract reaching lengths of up to ∼20 µm, enough to extend membrane contact beyond adjacent cells. The Notch ligand DLL1 was found to colocalise with protrusions, further supporting the idea that Notch signalling can be transduced at a distance. The effect of protrusions on the HES5 pattern was tested by reducing the density of protrusions using the CDC42 inhibitor ML141, leading to a tendency to decrease the distance between high HES5 cell clusters. However, this tendency was not significant and leaves an open question about their role in the fine-grained organisation of neurogenesis.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"14 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789279/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiome transplants may not improve health and longevity in Drosophila melanogaster. 微生物组移植可能不会改善黑腹果蝇的健康和寿命。
IF 1.8 4区 生物学 Q3 BIOLOGY Pub Date : 2025-01-15 Epub Date: 2025-01-21 DOI: 10.1242/bio.061745
Benjamin H Levine, Jessica M Hoffman

The gut microbiome, which is composed of bacteria, viruses, and fungi, and is involved in multiple essential physiological processes, changes measurably as a person ages, and can be associated with negative health outcomes. Microbiome transplants have been proposed as a method to improve gut function and reduce or reverse multiple disorders, including age-related diseases. Here, we take advantage of the laboratory model organism, Drosophila melanogaster, to test the effects of transplanting the microbiome of a young fly into middle-aged flies, across multiple genetic backgrounds and both sexes, to test whether age-related lifespan could be increased, and late-life physical health declines mitigated. Our results suggest that, overall, microbiome transplants do not improve longevity and may even be detrimental in flies, and the health effects of microbiome transplants were minor, but sex- and genotype-dependent. This discovery supports previous evidence that axenic flies, those with no gut microbiome, live healthier and longer lives than their non-axenic counterparts. The results of this study suggest that, at least for fruit flies, microbiome transplants may not be a viable intervention to improve health and longevity, though more research is still warranted.

肠道微生物群由细菌、病毒和真菌组成,参与多种重要的生理过程,随着人的年龄增长而发生可测量的变化,并可能与负面的健康结果有关。微生物组移植被认为是改善肠道功能和减少或逆转多种疾病(包括与年龄有关的疾病)的一种方法。在这里,我们利用实验室模式生物——黑腹果蝇,来测试将一只年轻果蝇的微生物组移植到中年果蝇身上的效果,跨越多种遗传背景和性别,以测试与年龄相关的寿命是否会增加,晚年身体健康状况的下降是否会减轻。我们的研究结果表明,总体而言,微生物组移植不能提高果蝇的寿命,甚至可能对果蝇有害,并且微生物组移植对健康的影响很小,但依赖于性别和基因型。这一发现支持了先前的证据,即没有肠道微生物群的无菌果蝇比非无菌果蝇活得更健康、更长寿。这项研究的结果表明,至少对果蝇来说,微生物组移植可能不是一种改善健康和寿命的可行干预措施,尽管还需要进行更多的研究。
{"title":"Microbiome transplants may not improve health and longevity in Drosophila melanogaster.","authors":"Benjamin H Levine, Jessica M Hoffman","doi":"10.1242/bio.061745","DOIUrl":"10.1242/bio.061745","url":null,"abstract":"<p><p>The gut microbiome, which is composed of bacteria, viruses, and fungi, and is involved in multiple essential physiological processes, changes measurably as a person ages, and can be associated with negative health outcomes. Microbiome transplants have been proposed as a method to improve gut function and reduce or reverse multiple disorders, including age-related diseases. Here, we take advantage of the laboratory model organism, Drosophila melanogaster, to test the effects of transplanting the microbiome of a young fly into middle-aged flies, across multiple genetic backgrounds and both sexes, to test whether age-related lifespan could be increased, and late-life physical health declines mitigated. Our results suggest that, overall, microbiome transplants do not improve longevity and may even be detrimental in flies, and the health effects of microbiome transplants were minor, but sex- and genotype-dependent. This discovery supports previous evidence that axenic flies, those with no gut microbiome, live healthier and longer lives than their non-axenic counterparts. The results of this study suggest that, at least for fruit flies, microbiome transplants may not be a viable intervention to improve health and longevity, though more research is still warranted.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"14 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789278/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosome number alterations cause apoptosis and cellular hypertrophy in induced pluripotent stem cell models of embryonic epiblast cells.
IF 1.8 4区 生物学 Q3 BIOLOGY Pub Date : 2025-01-15 Epub Date: 2025-01-24 DOI: 10.1242/bio.061814
Althea Stella Anil Martis, Loshini Soundararajan, Pallavi Shetty, Syed Moin, Tejashree Vanje, Yogeshwaran Jai Sankar, Shagufta Parveen

Chromosomal aneuploidies are a major cause of developmental failure and pregnancy loss. To investigate the possible consequences of aneuploidy on early embryonic development in vitro, we focused on primed pluripotent stem cells that are relatable to the epiblast of post-implantation embryos in vivo. We used human induced pluripotent stem cells (iPSCs) as an epiblast model and altered chromosome numbers by treating with reversine, a small-molecule inhibitor of monopolar spindle 1 kinase (MSP1) that inactivates the spindle assembly checkpoint, which has been strongly implicated in chromosome mis-segregation and aneuploidy generation. Upon reversine treatment, we obtained cells with varied chromosomal content that retained pluripotency and potential to differentiate into cells of three germ lineages. However, these cells displayed lagging chromosomes, increased micronuclei content, high p53 expression and excessive apoptotic activity. Cell proliferation was not affected. Prolonged in vitro culture of these cells resulted in a selective pool of cells with supernumerary chromosomes, which exhibited cellular hypertrophy, enlarged nuclei, and overproduction of total RNAs and proteins. We conclude that increased DNA damage responses, apoptosis, and improper cellular mass and functions are possible mechanisms that contribute to abnormal epiblast development.

{"title":"Chromosome number alterations cause apoptosis and cellular hypertrophy in induced pluripotent stem cell models of embryonic epiblast cells.","authors":"Althea Stella Anil Martis, Loshini Soundararajan, Pallavi Shetty, Syed Moin, Tejashree Vanje, Yogeshwaran Jai Sankar, Shagufta Parveen","doi":"10.1242/bio.061814","DOIUrl":"10.1242/bio.061814","url":null,"abstract":"<p><p>Chromosomal aneuploidies are a major cause of developmental failure and pregnancy loss. To investigate the possible consequences of aneuploidy on early embryonic development in vitro, we focused on primed pluripotent stem cells that are relatable to the epiblast of post-implantation embryos in vivo. We used human induced pluripotent stem cells (iPSCs) as an epiblast model and altered chromosome numbers by treating with reversine, a small-molecule inhibitor of monopolar spindle 1 kinase (MSP1) that inactivates the spindle assembly checkpoint, which has been strongly implicated in chromosome mis-segregation and aneuploidy generation. Upon reversine treatment, we obtained cells with varied chromosomal content that retained pluripotency and potential to differentiate into cells of three germ lineages. However, these cells displayed lagging chromosomes, increased micronuclei content, high p53 expression and excessive apoptotic activity. Cell proliferation was not affected. Prolonged in vitro culture of these cells resulted in a selective pool of cells with supernumerary chromosomes, which exhibited cellular hypertrophy, enlarged nuclei, and overproduction of total RNAs and proteins. We conclude that increased DNA damage responses, apoptosis, and improper cellular mass and functions are possible mechanisms that contribute to abnormal epiblast development.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"14 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789280/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The fission yeast SUMO-targeted ubiquitin ligase Slx8 functionally associates with clustered centromeres and the silent mating-type region at the nuclear periphery. 裂变酵母sumo靶向的泛素连接酶Slx8与聚集的着丝粒和核周围的沉默交配型区域有功能关联。
IF 1.8 4区 生物学 Q3 BIOLOGY Pub Date : 2024-12-15 Epub Date: 2024-12-30 DOI: 10.1242/bio.061746
Shrena Chakraborty, Joanna Strachan, Kamila Schirmeisen, Laetitia Besse, Eve Mercier, Karine Fréon, Haidao Zhang, Ning Zhao, Elizabeth H Bayne, Sarah A E Lambert

The SUMO-targeted ubiquitin ligase (STUbL) family is involved in multiple cellular processes via a wide range of mechanisms to maintain genome stability. One of the evolutionarily conserved functions of STUbL is to promote changes in the nuclear positioning of DNA lesions, targeting them to the nuclear periphery. In Schizossacharomyces pombe, the STUbL Slx8 is a regulator of SUMOylated proteins and promotes replication stress tolerance by counteracting the toxicity of SUMO conjugates. In order to study the dynamic dialectic between ubiquitinylation and SUMOylation in the nuclear space of the S. pombe genome, we analyzed Slx8 localization. Unexpectedly, we did not detect replication stress-induced Slx8 foci. However, we discovered that Slx8 forms a single nuclear focus, enriched at the nuclear periphery, which marks both clustered centromeres at the spindle pole body and the silent mating-type region. The formation of this single Slx8 focus requires the E3 SUMO ligase Pli1, poly-SUMOylation and the histone methyl transferase Clr4 that is responsible for the heterochromatin histone mark H3-K9 methylation. Finally, we established that Slx8 promotes centromere clustering and gene silencing at heterochromatin domains. Altogether, our data highlight evolutionarily conserved and functional relationships between STUbL and heterochromatin domains to promote gene silencing and nuclear organization.

sumo靶向泛素连接酶(STUbL)家族通过广泛的机制参与多种细胞过程,以维持基因组的稳定性。STUbL的进化保守功能之一是促进DNA病变核定位的改变,将其靶向到核外周。在Schizossacharomyces pombe中,STUbL Slx8是SUMO化蛋白的调节剂,并通过抵消SUMO偶联物的毒性来促进复制应激耐受性。为了研究pombe基因组核空间中泛素化和sumo化之间的动态辩证关系,我们分析了Slx8的定位。出乎意料的是,我们没有检测到复制应激诱导的Slx8病灶。然而,我们发现Slx8形成一个单一的核焦点,在核外围富集,这标志着纺锤极体的聚集着丝粒和沉默的交配型区域。这个单一Slx8焦点的形成需要E3 SUMO连接酶Pli1、多聚sumoylation和负责异染色质组蛋白标记H3-K9甲基化的组蛋白甲基转移酶Clr4。最后,我们确定Slx8促进着丝粒聚集和异染色质结构域的基因沉默。总之,我们的数据强调了STUbL和异染色质结构域之间的进化保守和功能关系,以促进基因沉默和核组织。
{"title":"The fission yeast SUMO-targeted ubiquitin ligase Slx8 functionally associates with clustered centromeres and the silent mating-type region at the nuclear periphery.","authors":"Shrena Chakraborty, Joanna Strachan, Kamila Schirmeisen, Laetitia Besse, Eve Mercier, Karine Fréon, Haidao Zhang, Ning Zhao, Elizabeth H Bayne, Sarah A E Lambert","doi":"10.1242/bio.061746","DOIUrl":"10.1242/bio.061746","url":null,"abstract":"<p><p>The SUMO-targeted ubiquitin ligase (STUbL) family is involved in multiple cellular processes via a wide range of mechanisms to maintain genome stability. One of the evolutionarily conserved functions of STUbL is to promote changes in the nuclear positioning of DNA lesions, targeting them to the nuclear periphery. In Schizossacharomyces pombe, the STUbL Slx8 is a regulator of SUMOylated proteins and promotes replication stress tolerance by counteracting the toxicity of SUMO conjugates. In order to study the dynamic dialectic between ubiquitinylation and SUMOylation in the nuclear space of the S. pombe genome, we analyzed Slx8 localization. Unexpectedly, we did not detect replication stress-induced Slx8 foci. However, we discovered that Slx8 forms a single nuclear focus, enriched at the nuclear periphery, which marks both clustered centromeres at the spindle pole body and the silent mating-type region. The formation of this single Slx8 focus requires the E3 SUMO ligase Pli1, poly-SUMOylation and the histone methyl transferase Clr4 that is responsible for the heterochromatin histone mark H3-K9 methylation. Finally, we established that Slx8 promotes centromere clustering and gene silencing at heterochromatin domains. Altogether, our data highlight evolutionarily conserved and functional relationships between STUbL and heterochromatin domains to promote gene silencing and nuclear organization.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"13 12","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708773/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142944836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biology Open
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1