Coronavirus disease 2019 (COVID-19) is an epidemic viral disease caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite the excessive number of neurological articles that have investigated the effect of COVID-19 on the brain from the neurological point of view, very few studies have investigated the impact of COVID-19 on the cerebral microstructure and function of the brain. The aim of this study was to summarize the results of the existing studies on cerebral microstructural changes in COVID-19 patients, specifically the use of quantitative volumetric analysis, blood oxygen level dependent (BOLD), and diffusion tensor imaging (DTI). We searched PubMed/MEDLINE, ScienceDirect, Semantic Scholar, and Google Scholar from December 2020 to April 2022. A well-constructed search strategy was used to identify the articles for review. Seven research articles have met this study's inclusion and exclusion criteria, which have applied neuroimaging tools such as quantitative volumetric analysis, BOLD, and DTI to investigate cerebral microstructure changes in COVID-19 patients. A significant effect of COVID-19 was found in the brain such as hypoperfusion of cerebral blood flow, increased gray matter (GM) volume, and reduced cortical thickness. The insula and thalamic radiation were the most frequent GM region and white matter tract, respectively, that are involved in SARS-CoV-2. COVID-19 was found to be associated with changes in cerebral microstructures. These abnormalities in brain areas might lead to be associated with behaviors, mental and neurological alterations that need to be considered carefully in future studies.
It is well known that stress can increase the risk of heart attack and stroke although the exact way it does this is unknown. This information is particularly more relevant in a post COVID-19 era where healthcare workers are increasingly facing more stressful working conditions. Thus, it is important to look into alternative methods to deal with stress including meditation and yoga which have shown potential.
Dural arteriovenous fistulas (DAVFs) are direct communication between the dural arterial and venous systems. They are more common in adults. In children, they are relatively rare. Hydrocephalus is a common problem in pediatrics with a variety of causes. However, very few cases of hydrocephalus as a complication of DAVF have been reported in the literature. This case describes an 8-month-old male child with a large DAVF at the torcular herophili who presented with regression of milestones and hydrocephalus. Magnetic resonance imaging (MRI) on admission showed triventricular hydrocephalus and a massively dilated torcular with a compressed fourth ventricle. Angiography confirmed the presence of a DAVF at the torcula with arterial feeders from the posterior circulation. Endovascular embolization was performed with >80% embolization of the fistula with no complications. Control MRI immediately postoperative was acceptable. No cerebrospinal fluid (CSF) diversion was performed. At a 3-month follow-up, the child had attained all developmental milestones for age. MRI showed normal CSF dynamics and a further reduction in the size of the torcula. Despite being rare, DAVFs should be considered as a possible cause of pediatric hydrocephalus, and treating them can lead to a resolution of the mechanisms inducing hydrocephalus. CSF shunting should be reserved for those cases with persistent hydrocephalus and raised intracranial pressure despite endovascular treatment.