Gino Castillo, Lizbeth Fustamante, Ana D. Delgado-Kamiche, Rogger P. Camen-Orozco, Taryn Clark, Edson Bernal, Jemima Morales-Alvarez, Maria Ferrufino, Javier Mamani-Palomino, Javier A. Bustos, Hector H. Garcia, Cesar M. Gavidia, Robert H. Gilman, Manuela Verastegui, Cysticercosis Working Group in Peru
Despite being a leading cause of acquired seizures in endemic regions, the pathological mechanisms of neurocysticercosis are still poorly understood. This study aims to investigate the impact of anthelmintic treatment on neuropathological features in a rat model of neurocysticercosis. Rats were intracranially infected with Taenia solium oncospheres and treated with albendazole + praziquantel (ABZ), oxfendazole + praziquantel (OXF), or untreated placebo (UT) for 7 days. Following the last dose of treatment, brain tissues were evaluated at 24 h and 2 months. We performed neuropathological assessment for cyst damage, perilesional brain inflammation, presence of axonal spheroids, and spongy changes. Both treatments showed comparable efficacy in cyst damage and inflammation. The presence of spongy change correlated with spheroids counts and were not affected by anthelmintic treatment. Compared to white matter, gray matter showed greater spongy change (91.7% vs. 21.4%, p < 0.0001), higher spheroids count (45.2 vs. 0.2, p = 0.0001), and increased inflammation (72.0% vs. 21.4%, p = 0.003). In this rat model, anthelmintic treatment destroyed brain parasitic cysts at the cost of local inflammation similar to what is described in human neurocysticercosis. Axonal spheroids and spongy changes as markers of damage were topographically correlated, and not affected by anthelmintic treatment.
{"title":"Understanding the pathogenic mechanisms and therapeutic effects in neurocysticercosis","authors":"Gino Castillo, Lizbeth Fustamante, Ana D. Delgado-Kamiche, Rogger P. Camen-Orozco, Taryn Clark, Edson Bernal, Jemima Morales-Alvarez, Maria Ferrufino, Javier Mamani-Palomino, Javier A. Bustos, Hector H. Garcia, Cesar M. Gavidia, Robert H. Gilman, Manuela Verastegui, Cysticercosis Working Group in Peru","doi":"10.1111/bpa.13237","DOIUrl":"10.1111/bpa.13237","url":null,"abstract":"<p>Despite being a leading cause of acquired seizures in endemic regions, the pathological mechanisms of neurocysticercosis are still poorly understood. This study aims to investigate the impact of anthelmintic treatment on neuropathological features in a rat model of neurocysticercosis. Rats were intracranially infected with <i>Taenia solium</i> oncospheres and treated with albendazole + praziquantel (ABZ), oxfendazole + praziquantel (OXF), or untreated placebo (UT) for 7 days. Following the last dose of treatment, brain tissues were evaluated at 24 h and 2 months. We performed neuropathological assessment for cyst damage, perilesional brain inflammation, presence of axonal spheroids, and spongy changes. Both treatments showed comparable efficacy in cyst damage and inflammation. The presence of spongy change correlated with spheroids counts and were not affected by anthelmintic treatment. Compared to white matter, gray matter showed greater spongy change (91.7% vs. 21.4%, <i>p</i> < 0.0001), higher spheroids count (45.2 vs. 0.2, <i>p</i> = 0.0001), and increased inflammation (72.0% vs. 21.4%, <i>p</i> = 0.003). In this rat model, <i>anthelmintic treatment destroyed</i> brain parasitic cysts at the cost of local inflammation similar to what is described in human neurocysticercosis. Axonal spheroids and spongy changes as markers of damage were topographically correlated, and not affected by anthelmintic treatment.</p>","PeriodicalId":9290,"journal":{"name":"Brain Pathology","volume":"34 5","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bpa.13237","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139429263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mihai Ruscu, Bogdan Capitanescu, Paul Rupek, Thomas Dandekar, Eugen Radu, Dirk M. Hermann, Aurel Popa-Wagner
The developmental origins of the brain's response to injury can play an important role in recovery after a brain lesion. In this study, we investigated whether the ischemic young adult brain can re-express brain plasticity genes that were active during early postnatal development. Differentially expressed genes in the cortex of juvenile post-natal day 3 and the peri-infarcted cortical areas of young, 3-month-old post-stroke rats were identified using fixed-effects modeling within an empirical Bayes framework through condition-specific comparison. To further analyze potential biological processes, upregulated and downregulated genes were assessed for enrichment using GSEA software. The genes showing the highest expression changes were subsequently verified through RT-PCR. Our findings indicate that the adult brain partially recapitulates the gene expression profile observed in the juvenile brain but fails to upregulate many genes and pathways necessary for brain plasticity. Of the upregulated genes in post-stroke brains, specific roles have not been assigned to Apobec1, Cenpf, Ect2, Folr2, Glipr1, Myo1f, and Pttg1. New genes that failed to upregulate in the adult post-stroke brain include Bex4, Cd24, Klhl1/Mrp2, Trim67, and St8sia2. Among the upregulated pathways, the largest change was observed in the KEGG pathway “One carbon pool of folate,” which is necessary for cellular proliferation, followed by the KEGG pathway “Antifolate resistance,” whose genes mainly encode the family of ABC transporters responsible for the efflux of drugs that have entered the brain. We also noted three less-described downregulated KEGG pathways in experimental models: glycolipid biosynthesis, oxytocin, and cortisol pathways, which could be relevant as therapeutic targets. The limited brain plasticity of the adult brain is illustrated through molecular and histological analysis of the axonal growth factor, KIF4. Collectively, these results strongly suggest that further research is needed to decipher the complex genetic mechanisms that prevent the re-expression of brain plasticity-associated genes in the adult brain.
{"title":"The post-stroke young adult brain has limited capacity to re-express the gene expression patterns seen during early postnatal brain development","authors":"Mihai Ruscu, Bogdan Capitanescu, Paul Rupek, Thomas Dandekar, Eugen Radu, Dirk M. Hermann, Aurel Popa-Wagner","doi":"10.1111/bpa.13232","DOIUrl":"10.1111/bpa.13232","url":null,"abstract":"<p>The developmental origins of the brain's response to injury can play an important role in recovery after a brain lesion. In this study, we investigated whether the ischemic young adult brain can re-express brain plasticity genes that were active during early postnatal development. Differentially expressed genes in the cortex of juvenile post-natal day 3 and the peri-infarcted cortical areas of young, 3-month-old post-stroke rats were identified using fixed-effects modeling within an empirical Bayes framework through condition-specific comparison. To further analyze potential biological processes, upregulated and downregulated genes were assessed for enrichment using GSEA software. The genes showing the highest expression changes were subsequently verified through RT-PCR. Our findings indicate that the adult brain partially recapitulates the gene expression profile observed in the juvenile brain but fails to upregulate many genes and pathways necessary for brain plasticity. Of the upregulated genes in post-stroke brains, specific roles have not been assigned to <i>Apobec1, Cenpf</i>, <i>Ect2</i>, <i>Folr2</i>, <i>Glipr1</i>, <i>Myo1f</i>, <i>and Pttg1</i>. New genes that failed to upregulate in the adult post-stroke brain include <i>Bex4</i>, <i>Cd24</i>, <i>Klhl1</i>/<i>Mrp2</i>, <i>Trim67</i>, <i>and St8sia2</i>. Among the upregulated pathways, the largest change was observed in the KEGG pathway “One carbon pool of folate,” which is necessary for cellular proliferation, followed by the KEGG pathway “Antifolate resistance,” whose genes mainly encode the family of ABC transporters responsible for the efflux of drugs that have entered the brain. We also noted three less-described downregulated KEGG pathways in experimental models: glycolipid biosynthesis, oxytocin, and cortisol pathways, which could be relevant as therapeutic targets. The limited brain plasticity of the adult brain is illustrated through molecular and histological analysis of the axonal growth factor, KIF4. Collectively, these results strongly suggest that further research is needed to decipher the complex genetic mechanisms that prevent the re-expression of brain plasticity-associated genes in the adult brain.</p>","PeriodicalId":9290,"journal":{"name":"Brain Pathology","volume":"34 5","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bpa.13232","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Teresia Kling, Sandra Ferreyra Vega, Medha Suman, Anna Dénes, Anna Lipatnikova, Stina Lagerström, Thomas Olsson Bontell, Asgeir Store Jakola, Helena Carén
The 2021 World Health Organization (WHO) grading system of isocitrate dehydrogenase (IDH)-mutant astrocytomas relies on histological features and the presence of homozygous deletion of the cyclin-dependent kinase inhibitor 2A and 2B (CDKN2A/B). DNA methylation profiling has become highly relevant in the diagnosis of central nervous system (CNS) tumors including gliomas, and it has been incorporated into routine clinical diagnostics in some countries. In this study, we, therefore, examined the value of DNA methylation-based classification for prognostication of patients with IDH-mutant astrocytomas. We analyzed histopathological diagnoses, genome-wide DNA methylation array data, and chromosomal copy number alteration profiles from a cohort of 385 adult-type IDH-mutant astrocytomas, including a local cohort of 127 cases and 258 cases from public repositories. Prognosis based on WHO 2021 CNS criteria (histological grade and CDKN2A/B homozygous deletion status), other relevant chromosomal/gene alterations in IDH-mutant astrocytomas and DNA methylation-based subclassification according to the molecular neuropathology classifier were assessed. We demonstrate that DNA methylation-based classification of IDH-mutant astrocytomas can be used to predict outcome of the patients equally well as WHO 2021 CNS criteria. In addition, methylation-based subclassification enabled the identification of IDH-mutant astrocytoma patients with poor survival among patients with grade 3 tumors and patients with grade 4 tumors with a more favorable outcome. In conclusion, DNA methylation-based subclassification adds prognostic information for IDH-mutant astrocytomas that can further refine the current WHO 2021 grading scheme for these patients.
{"title":"Refinement of prognostication for IDH-mutant astrocytomas using DNA methylation-based classification","authors":"Teresia Kling, Sandra Ferreyra Vega, Medha Suman, Anna Dénes, Anna Lipatnikova, Stina Lagerström, Thomas Olsson Bontell, Asgeir Store Jakola, Helena Carén","doi":"10.1111/bpa.13233","DOIUrl":"10.1111/bpa.13233","url":null,"abstract":"<p>The 2021 World Health Organization (WHO) grading system of isocitrate dehydrogenase (<i>IDH</i>)-mutant astrocytomas relies on histological features and the presence of homozygous deletion of the cyclin-dependent kinase inhibitor 2A and 2B (<i>CDKN2A/B</i>). DNA methylation profiling has become highly relevant in the diagnosis of central nervous system (CNS) tumors including gliomas, and it has been incorporated into routine clinical diagnostics in some countries. In this study, we, therefore, examined the value of DNA methylation-based classification for prognostication of patients with <i>IDH</i>-mutant astrocytomas. We analyzed histopathological diagnoses, genome-wide DNA methylation array data, and chromosomal copy number alteration profiles from a cohort of 385 adult-type <i>IDH</i>-mutant astrocytomas, including a local cohort of 127 cases and 258 cases from public repositories. Prognosis based on WHO 2021 CNS criteria (histological grade and <i>CDKN2A/B</i> homozygous deletion status), other relevant chromosomal/gene alterations in <i>IDH</i>-mutant astrocytomas and DNA methylation-based subclassification according to the molecular neuropathology classifier were assessed. We demonstrate that DNA methylation-based classification of <i>IDH</i>-mutant astrocytomas can be used to predict outcome of the patients equally well as WHO 2021 CNS criteria. In addition, methylation-based subclassification enabled the identification of <i>IDH</i>-mutant astrocytoma patients with poor survival among patients with grade 3 tumors and patients with grade 4 tumors with a more favorable outcome. In conclusion, DNA methylation-based subclassification adds prognostic information for <i>IDH</i>-mutant astrocytomas that can further refine the current WHO 2021 grading scheme for these patients.</p>","PeriodicalId":9290,"journal":{"name":"Brain Pathology","volume":"34 5","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bpa.13233","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139085954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura R. Nementzik, Kyrah M. Thumbadoo, Helen C. Murray, David Gordon, Shu Yang, Ian P. Blair, Clinton Turner, Richard L. M. Faull, Maurice A. Curtis, Catriona McLean, Garth A. Nicholson, Molly E. V. Swanson, Emma L. Scotter
Mutations in the UBQLN2 gene cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The neuropathology of such UBQLN2-linked cases of ALS/FTD is characterised by aggregates of the ubiquilin 2 protein in addition to aggregates of the transactive response DNA-binding protein of 43 kDa (TDP-43). ALS and FTD without UBQLN2 mutations are also characterised by TDP-43 aggregates, that may or may not colocalise with wildtype ubiquilin 2. Despite this, the relative contributions of TDP-43 and ubiquilin 2 to disease pathogenesis remain largely under-characterised, as does their relative deposition as aggregates across the central nervous system (CNS). Here we conducted multiplex immunohistochemistry of three UBQLN2 p.T487I-linked ALS/FTD cases, three non-UBQLN2-linked (sporadic) ALS cases, and 8 non-neurodegenerative disease controls, covering 40 CNS regions. We then quantified ubiquilin 2 aggregates, TDP-43 aggregates and aggregates containing both proteins in regions of interest to determine how UBQLN2-linked and non-UBQLN2-linked proteinopathy differ. We find that ubiquilin 2 aggregates that are negative for TDP-43 are predominantly small and punctate and are abundant in the hippocampal formation, spinal cord, all tested regions of neocortex, medulla and substantia nigra in UBQLN2-linked ALS/FTD but not sporadic ALS. Curiously, the striatum harboured small punctate ubiquilin 2 aggregates in all cases examined, while large diffuse striatal ubiquilin 2 aggregates were specific to UBQLN2-linked ALS/FTD. Overall, ubiquilin 2 is mainly deposited in clinically unaffected regions throughout the CNS such that symptomology in UBQLN2-linked cases maps best to the aggregation of TDP-43.
{"title":"Distribution of ubiquilin 2 and TDP-43 aggregates throughout the CNS in UBQLN2 p.T487I-linked amyotrophic lateral sclerosis and frontotemporal dementia","authors":"Laura R. Nementzik, Kyrah M. Thumbadoo, Helen C. Murray, David Gordon, Shu Yang, Ian P. Blair, Clinton Turner, Richard L. M. Faull, Maurice A. Curtis, Catriona McLean, Garth A. Nicholson, Molly E. V. Swanson, Emma L. Scotter","doi":"10.1111/bpa.13230","DOIUrl":"10.1111/bpa.13230","url":null,"abstract":"<p>Mutations in the <i>UBQLN2</i> gene cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The neuropathology of such <i>UBQLN2</i>-linked cases of ALS/FTD is characterised by aggregates of the ubiquilin 2 protein in addition to aggregates of the transactive response DNA-binding protein of 43 kDa (TDP-43). ALS and FTD without <i>UBQLN2</i> mutations are also characterised by TDP-43 aggregates, that may or may not colocalise with wildtype ubiquilin 2. Despite this, the relative contributions of TDP-43 and ubiquilin 2 to disease pathogenesis remain largely under-characterised, as does their relative deposition as aggregates across the central nervous system (CNS). Here we conducted multiplex immunohistochemistry of three <i>UBQLN2</i> p.T487I-linked ALS/FTD cases, three non-<i>UBQLN2</i>-linked (sporadic) ALS cases, and 8 non-neurodegenerative disease controls, covering 40 CNS regions. We then quantified ubiquilin 2 aggregates, TDP-43 aggregates and aggregates containing both proteins in regions of interest to determine how <i>UBQLN2</i>-linked and non-<i>UBQLN2</i>-linked proteinopathy differ. We find that ubiquilin 2 aggregates that are negative for TDP-43 are predominantly small and punctate and are abundant in the hippocampal formation, spinal cord, all tested regions of neocortex, medulla and substantia nigra in <i>UBQLN2</i>-linked ALS/FTD but not sporadic ALS. Curiously, the striatum harboured small punctate ubiquilin 2 aggregates in all cases examined, while large diffuse striatal ubiquilin 2 aggregates were specific to <i>UBQLN2</i>-linked ALS/FTD. Overall, ubiquilin 2 is mainly deposited in clinically unaffected regions throughout the CNS such that symptomology in <i>UBQLN2</i>-linked cases maps best to the aggregation of TDP-43.</p>","PeriodicalId":9290,"journal":{"name":"Brain Pathology","volume":"34 3","pages":""},"PeriodicalIF":6.4,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bpa.13230","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138796964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Each year hundreds of reviewers contribute their expertise to peer review, a process that contributes critically to the quality of the Brain Pathology. The editors at Brain Pathology would like to extend their gratitude to those who have provided their time and energy to review manuscripts for our journal over the last year. We are well aware that our journal can only exist thanks to your concerted efforts to provide concise, accurate, and thoughtful reviews. Below is a list of all of you who completed at least one review, and agreed to have your name published. We also thank those reviewers who choose not to have their names published.
{"title":"Acknowledgement to Reviewers","authors":"","doi":"10.1111/bpa.13220","DOIUrl":"https://doi.org/10.1111/bpa.13220","url":null,"abstract":"<p>Each year hundreds of reviewers contribute their expertise to peer review, a process that contributes critically to the quality of the Brain Pathology. The editors at Brain Pathology would like to extend their gratitude to those who have provided their time and energy to review manuscripts for our journal over the last year. We are well aware that our journal can only exist thanks to your concerted efforts to provide concise, accurate, and thoughtful reviews. Below is a list of all of you who completed at least one review, and agreed to have your name published. We also thank those reviewers who choose not to have their names published.</p><p>Ahrendsen, Jared</p><p>Alexandrescu, Sanda</p><p>Auer, Roland</p><p>Ayton, Scott</p><p>Battini, Jean-Luc</p><p>Bieniek, Kevin</p><p>Bockmayr, Michael</p><p>Cai, Jinquan</p><p>Carare, Roxana</p><p>Cullell, N</p><p>Del Bigio, Marc</p><p>Dudek, Ed</p><p>Englert, Benjamin</p><p>Evelson, Pablo</p><p>Falkenburger, Björn</p><p>Ferrer, Isidre</p><p>Gilani, Ahmed</p><p>Giustetto, Maurizio</p><p>Glatzel, Markus</p><p>Gu, Yan</p><p>Guo, Jifeng</p><p>Guzman, Samuel</p><p>Han, Lei</p><p>Hawkins, Cynthia</p><p>Herms, Jochen</p><p>Highley, Robin</p><p>Horbinski, Craig</p><p>Irwin, David</p><p>Joseph, Jeffrey</p><p>Joutel, Anne</p><p>Kovacs, Gabor</p><p>Lammens, Martin</p><p>Langdon, Kristopher</p><p>Leske, Henning</p><p>Levine, Adrian</p><p>Li, Jianrong</p><p>Liu, Ying</p><p>Marklund, Niklas</p><p>Mechtler, Karl</p><p>Meinhardt, Jenny</p><p>Munoz, David</p><p>Nasrallah, MacLean</p><p>Nicolas, Gael</p><p>Nordin, Angelica</p><p>Piao, Yueshan</p><p>Pittella, José</p><p>Popa-Wagner, Aurel</p><p>Priller, Josef</p><p>Puig, Berta</p><p>Reimann, Jens</p><p>Rosi, Susanna</p><p>Rozemuller, Annemieke</p><p>Rushing, Elisabeth</p><p>Saleeb, Rola</p><p>Satomi, Kaishi</p><p>Schulz-Schaeffer, Walter J</p><p>Sepulveda-Falla, Diego</p><p>Shelkovnikova, Tatyana A</p><p>Springer, Wolfdieter</p><p>Tan, Jieqiong</p><p>Troakes, Claire</p><p>Vazquez-Manrique, Rafael</p><p>Vinters, Harry</p><p>Wakabayashi, Koichi</p><p>Wang, Yanjiang</p><p>Wang, Yu</p><p>Xu, Yuqiao</p><p>Yao, Yu</p><p>Zhao, Junli</p><p>Zheng, Danfeng</p><p>Zimmermann, Marina</p>","PeriodicalId":9290,"journal":{"name":"Brain Pathology","volume":"34 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bpa.13220","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138564797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>A 63-year-old woman presented with a 2-month history of a rugged surface on the left parietal scalp. She reported slight pain when pressing the skin over the irregular area. Computed tomography (CT) showed mottling and small patchy destruction of the left parietal bone. Cranial contrast magnetic resonance imaging (MRI) revealed a homogeneously-enhanced, en plaque mass, measuring 59 × 22 mm. The MRI also showed that the mass had infiltrated the parietal bone, and the dural tail sign was present (Figure 1). Blood tests ruled out anemia (hemoglobin 10.6 g/dL), hypercalcemia (serum calcium: 2.25 mmol/L), and renal insufficiency (serum creatinine: 54 μmol/L). She denied having headaches, vomiting, epileptic seizures, and paresthesia. No other lesions were found during physical examination or imaging studies. On the basis of the radiological features of the lesion, en plaque meningioma was highly suspected, and the patient was advised to undergo tumor resection. Intraoperatively, the tumor was located in the epidural space and was completely resected via a left-sided parietal approach. The invaded bone was excised, and titanium mesh was used to restore the cranial bone defect. Postoperatively, the patient had no neurological deficits and was discharged on postoperative day 5 (Box 1).</p><p>Hematoxylin and eosin (H&E) staining showed a large number of cells with eccentrically located nuclei and prominent large nucleoli resembling plasma cells in the parietal lobe mass (Figure 2A). Immunohistochemical staining revealed tumor cells positive for cluster of differentiation (CD) 56 (Figure 2B), multiple myeloma oncogene 1 (MuM-1) (Figure 2C), lambda immunoglobulin light chains (Figure 2D), CD79a, but negative for side-to-side kappa immunoglobulin light chains (Figure 2E). The Ki-67 proliferation index was 15% (Figure 2F). In situ hybridization for Epstein–Barr virus encoded RNA was negative. Additionally, the tumor was negative for CD138, CD38, CD19, CD30, and cyclin D1 with immunohistochemical staining.</p><p>Plasma cell neoplasm.</p><p>The unexpected pathological diagnosis prompted a referral to hematology. In the hematology department, our patient underwent further evaluation, including urinalysis for Bence-Jones protein, PET, and bone marrow examination. The results of immunoglobulin testing were normal, and bone marrow examination revealed that the plasma cell percentage was 8.5%. Postoperative PET/CT revealed postoperative changes after resection of the left parietal tumor; no significant increase in glucose metabolism was observed in the whole-body images. All of above supported the diagnosis of plasmacytoma.</p><p>According to the International Consensus Classification of mature lymphoid neoplasms, plasmacytoma is defined as a localized neoplasm of clonal plasma cells without evidence of multiple myeloma. The diagnostic criteria are as follows: (1) biopsy-proven clonal plasma cell neoplasm of bone or extramedullary site; (2) no clonal B cells;
{"title":"A 63-year-old woman with parietal scalp surface rugged","authors":"Zhiwei Shen, Siqi Tao","doi":"10.1111/bpa.13224","DOIUrl":"10.1111/bpa.13224","url":null,"abstract":"<p>A 63-year-old woman presented with a 2-month history of a rugged surface on the left parietal scalp. She reported slight pain when pressing the skin over the irregular area. Computed tomography (CT) showed mottling and small patchy destruction of the left parietal bone. Cranial contrast magnetic resonance imaging (MRI) revealed a homogeneously-enhanced, en plaque mass, measuring 59 × 22 mm. The MRI also showed that the mass had infiltrated the parietal bone, and the dural tail sign was present (Figure 1). Blood tests ruled out anemia (hemoglobin 10.6 g/dL), hypercalcemia (serum calcium: 2.25 mmol/L), and renal insufficiency (serum creatinine: 54 μmol/L). She denied having headaches, vomiting, epileptic seizures, and paresthesia. No other lesions were found during physical examination or imaging studies. On the basis of the radiological features of the lesion, en plaque meningioma was highly suspected, and the patient was advised to undergo tumor resection. Intraoperatively, the tumor was located in the epidural space and was completely resected via a left-sided parietal approach. The invaded bone was excised, and titanium mesh was used to restore the cranial bone defect. Postoperatively, the patient had no neurological deficits and was discharged on postoperative day 5 (Box 1).</p><p>Hematoxylin and eosin (H&E) staining showed a large number of cells with eccentrically located nuclei and prominent large nucleoli resembling plasma cells in the parietal lobe mass (Figure 2A). Immunohistochemical staining revealed tumor cells positive for cluster of differentiation (CD) 56 (Figure 2B), multiple myeloma oncogene 1 (MuM-1) (Figure 2C), lambda immunoglobulin light chains (Figure 2D), CD79a, but negative for side-to-side kappa immunoglobulin light chains (Figure 2E). The Ki-67 proliferation index was 15% (Figure 2F). In situ hybridization for Epstein–Barr virus encoded RNA was negative. Additionally, the tumor was negative for CD138, CD38, CD19, CD30, and cyclin D1 with immunohistochemical staining.</p><p>Plasma cell neoplasm.</p><p>The unexpected pathological diagnosis prompted a referral to hematology. In the hematology department, our patient underwent further evaluation, including urinalysis for Bence-Jones protein, PET, and bone marrow examination. The results of immunoglobulin testing were normal, and bone marrow examination revealed that the plasma cell percentage was 8.5%. Postoperative PET/CT revealed postoperative changes after resection of the left parietal tumor; no significant increase in glucose metabolism was observed in the whole-body images. All of above supported the diagnosis of plasmacytoma.</p><p>According to the International Consensus Classification of mature lymphoid neoplasms, plasmacytoma is defined as a localized neoplasm of clonal plasma cells without evidence of multiple myeloma. The diagnostic criteria are as follows: (1) biopsy-proven clonal plasma cell neoplasm of bone or extramedullary site; (2) no clonal B cells;","PeriodicalId":9290,"journal":{"name":"Brain Pathology","volume":"34 2","pages":""},"PeriodicalIF":6.4,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bpa.13224","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138497903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Schmid, Jannik Sehring, Attila Németh, Patrick N. Harter, Katharina J. Weber, Abishaa Vengadeswaran, Holger Storf, Christian Seidemann, Kapil Karki, Patrick Fischer, Hildegard Dohmen, Carmen Selignow, Andreas von Deimling, Stefan Grau, Uwe Schröder, Karl H. Plate, Marco Stein, Eberhard Uhl, Till Acker, Daniel Amsel
The current state-of-the-art analysis of central nervous system (CNS) tumors through DNA methylation profiling relies on the tumor classifier developed by Capper and colleagues, which centrally harnesses DNA methylation data provided by users. Here, we present a distributed-computing-based approach for CNS tumor classification that achieves a comparable performance to centralized systems while safeguarding privacy. We utilize the t-distributed neighborhood embedding (t-SNE) model for dimensionality reduction and visualization of tumor classification results in two-dimensional graphs in a distributed approach across multiple sites (DistSNE). DistSNE provides an intuitive web interface (https://gin-tsne.med.uni-giessen.de) for user-friendly local data management and federated methylome-based tumor classification calculations for multiple collaborators in a DataSHIELD environment. The freely accessible web interface supports convenient data upload, result review, and summary report generation. Importantly, increasing sample size as achieved through distributed access to additional datasets allows DistSNE to improve cluster analysis and enhance predictive power. Collectively, DistSNE enables a simple and fast classification of CNS tumors using large-scale methylation data from distributed sources, while maintaining the privacy and allowing easy and flexible network expansion to other institutes. This approach holds great potential for advancing human brain tumor classification and fostering collaborative precision medicine in neuro-oncology.
{"title":"DistSNE: Distributed computing and online visualization of DNA methylation-based central nervous system tumor classification","authors":"Kai Schmid, Jannik Sehring, Attila Németh, Patrick N. Harter, Katharina J. Weber, Abishaa Vengadeswaran, Holger Storf, Christian Seidemann, Kapil Karki, Patrick Fischer, Hildegard Dohmen, Carmen Selignow, Andreas von Deimling, Stefan Grau, Uwe Schröder, Karl H. Plate, Marco Stein, Eberhard Uhl, Till Acker, Daniel Amsel","doi":"10.1111/bpa.13228","DOIUrl":"10.1111/bpa.13228","url":null,"abstract":"<p>The current state-of-the-art analysis of central nervous system (CNS) tumors through DNA methylation profiling relies on the tumor classifier developed by Capper and colleagues, which centrally harnesses DNA methylation data provided by users. Here, we present a distributed-computing-based approach for CNS tumor classification that achieves a comparable performance to centralized systems while safeguarding privacy. We utilize the t-distributed neighborhood embedding (t-SNE) model for dimensionality reduction and visualization of tumor classification results in two-dimensional graphs in a distributed approach across multiple sites (DistSNE). DistSNE provides an intuitive web interface (https://gin-tsne.med.uni-giessen.de) for user-friendly local data management and federated methylome-based tumor classification calculations for multiple collaborators in a DataSHIELD environment. The freely accessible web interface supports convenient data upload, result review, and summary report generation. Importantly, increasing sample size as achieved through distributed access to additional datasets allows DistSNE to improve cluster analysis and enhance predictive power. Collectively, DistSNE enables a simple and fast classification of CNS tumors using large-scale methylation data from distributed sources, while maintaining the privacy and allowing easy and flexible network expansion to other institutes. This approach holds great potential for advancing human brain tumor classification and fostering collaborative precision medicine in neuro-oncology.</p>","PeriodicalId":9290,"journal":{"name":"Brain Pathology","volume":"34 3","pages":""},"PeriodicalIF":6.4,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bpa.13228","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138443960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paula Merino-Serrais, Sergio Plaza-Alonso, Farida Hellal, Susana Valero-Freitag, Asta Kastanauskaite, Nikolaus Plesnila, Javier DeFelipe
Significant progress has been made with regard to understanding how the adult brain responds after a stroke. However, a large number of patients continue to suffer lifelong disabilities without adequate treatment. In the present study, we have analyzed possible microanatomical alterations in the contralesional hippocampus from the ischemic stroke mouse model tMCAo 12–14 weeks after transient middle cerebral artery occlusion. After individually injecting Lucifer yellow into pyramidal neurons from the CA1 field of the hippocampus, we performed a detailed three-dimensional analysis of the neuronal complexity, dendritic spine density, and morphology. We found that, in both apical (stratum radiatum) and basal (stratum oriens) arbors, CA1 pyramidal neurons in the contralesional hippocampus of tMCAo mice have a significantly higher neuronal complexity, as well as reduced spine density and alterations in spine volume and spine length. Our results show that when the ipsilateral hippocampus is dramatically damaged, the contralesional hippocampus exhibits several statistically significant selective alterations. However, these alterations are not as significant as expected, which may help to explain the recovery of hippocampal function after stroke. Further anatomical and physiological studies are necessary to better understand the modifications in the “intact” contralesional lesioned brain regions, which are probably fundamental to recover functions after stroke.
{"title":"Structural changes of CA1 pyramidal neurons after stroke in the contralesional hippocampus","authors":"Paula Merino-Serrais, Sergio Plaza-Alonso, Farida Hellal, Susana Valero-Freitag, Asta Kastanauskaite, Nikolaus Plesnila, Javier DeFelipe","doi":"10.1111/bpa.13222","DOIUrl":"10.1111/bpa.13222","url":null,"abstract":"<p>Significant progress has been made with regard to understanding how the adult brain responds after a stroke. However, a large number of patients continue to suffer lifelong disabilities without adequate treatment. In the present study, we have analyzed possible microanatomical alterations in the contralesional hippocampus from the ischemic stroke mouse model tMCAo 12–14 weeks after transient middle cerebral artery occlusion. After individually injecting Lucifer yellow into pyramidal neurons from the CA1 field of the hippocampus, we performed a detailed three-dimensional analysis of the neuronal complexity, dendritic spine density, and morphology. We found that, in both apical (<i>stratum radiatum</i>) and basal (<i>stratum oriens</i>) arbors, CA1 pyramidal neurons in the contralesional hippocampus of tMCAo mice have a significantly higher neuronal complexity, as well as reduced spine density and alterations in spine volume and spine length. Our results show that when the ipsilateral hippocampus is dramatically damaged, the contralesional hippocampus exhibits several statistically significant selective alterations. However, these alterations are not as significant as expected, which may help to explain the recovery of hippocampal function after stroke. Further anatomical and physiological studies are necessary to better understand the modifications in the “intact” contralesional lesioned brain regions, which are probably fundamental to recover functions after stroke.</p>","PeriodicalId":9290,"journal":{"name":"Brain Pathology","volume":"34 3","pages":""},"PeriodicalIF":6.4,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bpa.13222","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138443963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Cao, Pan Liu, Hongfei Bian, Sixuan Jin, Jiaqi Liu, Ning Yu, Huan Cui, Fengrun Sun, Xiaojing Qian, Wenying Qiu, Chao Ma
Adult hippocampal neurogenesis (AHN), essential for the plasticity of hippocampal structure and function, may be disrupted in Alzheimer‘s disease (AD). However, the relationship between the changes in AHN and AD-related pathology in humans remains uncertain. By utilizing advanced immunostaining techniques, we could identify multiple biomarkers representing different stages of AHN in postmortem human hippocampal tissue that exhibited various AD-related neuropathological changes. In this study, we observed a significant presence of neurogenic cells in the hippocampus's dentate gyrus (DG) region in 30 individuals, including 14 individuals diagnosed with AD-related neuropathological changes and the remaining 16 individuals without any neurological diseases. Further investigation revealed that patients with AD exhibited pronounced astrogliosis and reduced neurogenesis. Specifically, the number of neuroblasts, immature and early mature granule cells decreased significantly as AD advanced. Although the number of neural stem cells (NSCs) remained unchanged in AD patients compared with mentally healthy individuals, they tended to be more quiescent state regulated by Notch and bone morphogenetic protein (BMP) signaling pathways. These abnormalities were strongly associated with the neuropathological alterations in AD patients. These research findings provide potential insights into the underlying mechanisms that underpin the pathogenesis of AD.
{"title":"Reduced neurogenesis in human hippocampus with Alzheimer's disease","authors":"Yan Cao, Pan Liu, Hongfei Bian, Sixuan Jin, Jiaqi Liu, Ning Yu, Huan Cui, Fengrun Sun, Xiaojing Qian, Wenying Qiu, Chao Ma","doi":"10.1111/bpa.13225","DOIUrl":"10.1111/bpa.13225","url":null,"abstract":"<p>Adult hippocampal neurogenesis (AHN), essential for the plasticity of hippocampal structure and function, may be disrupted in Alzheimer‘s disease (AD). However, the relationship between the changes in AHN and AD-related pathology in humans remains uncertain. By utilizing advanced immunostaining techniques, we could identify multiple biomarkers representing different stages of AHN in postmortem human hippocampal tissue that exhibited various AD-related neuropathological changes. In this study, we observed a significant presence of neurogenic cells in the hippocampus's dentate gyrus (DG) region in 30 individuals, including 14 individuals diagnosed with AD-related neuropathological changes and the remaining 16 individuals without any neurological diseases. Further investigation revealed that patients with AD exhibited pronounced astrogliosis and reduced neurogenesis. Specifically, the number of neuroblasts, immature and early mature granule cells decreased significantly as AD advanced. Although the number of neural stem cells (NSCs) remained unchanged in AD patients compared with mentally healthy individuals, they tended to be more quiescent state regulated by Notch and bone morphogenetic protein (BMP) signaling pathways. These abnormalities were strongly associated with the neuropathological alterations in AD patients. These research findings provide potential insights into the underlying mechanisms that underpin the pathogenesis of AD.</p>","PeriodicalId":9290,"journal":{"name":"Brain Pathology","volume":"34 3","pages":""},"PeriodicalIF":6.4,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bpa.13225","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138443962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}