MicroRNAs (miRNAs) are key regulators of myelination and cognitive functions, with miR-219 being particularly important for the differentiation and maturation of oligodendrocyte precursor cells (OPCs). However, its role in myelin damage and cognitive dysfunction during acute cerebral ischemia is not well understood. In this study, we used the MCAO/R rat model to investigate the mechanistic involvement of miR-219. Our results show that miR-219 alleviates cognitive dysfunction induced by MCAO/R. The agonist group showed a reduced time to locate the platform in the water maze, while the antagonist group showed an increased time compared to the solvent control. Additionally, miR-219 reduced myelin damage, as demonstrated by Luxol Fast Blue (LFB) staining, which indicated substantial hippocampal demyelination repair in the agonist group, whereas the antagonist group exhibited aggravated demyelination. Electron microscopy revealed enhanced myelin sheath regeneration and increased thickness in the agonist group, while the antagonist group displayed fewer and thinner myelin sheaths. Furthermore, miR-219 regulated OPC maturation, with more CNPase-positive cells in the agonist group and fewer in the antagonist group than the solvent control. In NG2 staining, the agonist group had fewer positive cells, while the antagonist group had more. miR-219 also decreased Lingo-1 expression, leading to reduced levels of AKT, RhoA, and mTOR in the downstream signaling pathway. These findings suggest that activating the miR-219–Lingo-1 signaling pathway during ischemia-reperfusion could offer a potential therapeutic approach for improving myelin damage and alleviating cognitive dysfunction in cerebral ischemia.
扫码关注我们
求助内容:
应助结果提醒方式:
