Pub Date : 2022-10-18DOI: 10.3390/analytics1020009
Manon Reusens, Michael Reusens, Marc Callens, S. vanden Broucke, B. Baesens
Microblogging websites such as Twitter have caused sentiment analysis research to increase in popularity over the last several decades. However, most studies focus on the English language, which leaves other languages underrepresented. Therefore, in this paper, we compare several modeling techniques for sentiment analysis using a new dataset containing Flemish tweets. The key contribution of our paper lies in its innovative experimental design: we compared different preprocessing techniques and vector representations to find the best-performing combination for a Flemish dataset. We compared models belonging to four different categories: lexicon-based methods, traditional machine-learning models, neural networks, and attention-based models. We found that more preprocessing leads to better results, but the best-performing vector representation approach depends on the model applied. Moreover, an immense gap was observed between the performances of the lexicon-based approaches and those of the other models. The traditional machine learning approaches and the neural networks produced similar results, but the attention-based model was the best-performing technique. Nevertheless, a tradeoff should be made between computational expenses and performance gains.
{"title":"Comparison of Different Modeling Techniques for Flemish Twitter Sentiment Analysis","authors":"Manon Reusens, Michael Reusens, Marc Callens, S. vanden Broucke, B. Baesens","doi":"10.3390/analytics1020009","DOIUrl":"https://doi.org/10.3390/analytics1020009","url":null,"abstract":"Microblogging websites such as Twitter have caused sentiment analysis research to increase in popularity over the last several decades. However, most studies focus on the English language, which leaves other languages underrepresented. Therefore, in this paper, we compare several modeling techniques for sentiment analysis using a new dataset containing Flemish tweets. The key contribution of our paper lies in its innovative experimental design: we compared different preprocessing techniques and vector representations to find the best-performing combination for a Flemish dataset. We compared models belonging to four different categories: lexicon-based methods, traditional machine-learning models, neural networks, and attention-based models. We found that more preprocessing leads to better results, but the best-performing vector representation approach depends on the model applied. Moreover, an immense gap was observed between the performances of the lexicon-based approaches and those of the other models. The traditional machine learning approaches and the neural networks produced similar results, but the attention-based model was the best-performing technique. Nevertheless, a tradeoff should be made between computational expenses and performance gains.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"249 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76779967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-02DOI: 10.3390/analytics1020008
M. Vuckovic, Johanna Schmidt
Interactive visual tools and related visualization technologies, built to support explorative data analysis, ultimately lead to sense making and knowledge discovery from large volumes of raw data. These processes namely rely on human visual perception and cognition, in which human analysts perceive external representations (system structure, dataset, integral data visualizations) and form respective internal representations (internal cognitive imprints of external systems) that enable deeper comprehension of the employed system and the underlying data features. These internal representations further evolve through continuous interaction with external representations. They also depend on the individual’s own cognitive pathways. Currently, there has been insufficient work on understanding how these internal cognitive mechanisms form and function. Hence, we aim to offer our own interpretations of such processes observed through our daily data exploration workflows. This is accomplished by following specific explorative data science tasks while working with diverse interactive visual systems and related notebook style environments that have different organizational structures and thus may entail different approaches to thinking and shaping sense making and knowledge generation. In this paper, we deliberate on the cognitive implications for human analysists when interacting with such a diverse organizational structure of tools and approaches when performing the essential steps of an explorative visual analysis.
{"title":"On Sense Making and the Generation of Knowledge in Visual Analytics","authors":"M. Vuckovic, Johanna Schmidt","doi":"10.3390/analytics1020008","DOIUrl":"https://doi.org/10.3390/analytics1020008","url":null,"abstract":"Interactive visual tools and related visualization technologies, built to support explorative data analysis, ultimately lead to sense making and knowledge discovery from large volumes of raw data. These processes namely rely on human visual perception and cognition, in which human analysts perceive external representations (system structure, dataset, integral data visualizations) and form respective internal representations (internal cognitive imprints of external systems) that enable deeper comprehension of the employed system and the underlying data features. These internal representations further evolve through continuous interaction with external representations. They also depend on the individual’s own cognitive pathways. Currently, there has been insufficient work on understanding how these internal cognitive mechanisms form and function. Hence, we aim to offer our own interpretations of such processes observed through our daily data exploration workflows. This is accomplished by following specific explorative data science tasks while working with diverse interactive visual systems and related notebook style environments that have different organizational structures and thus may entail different approaches to thinking and shaping sense making and knowledge generation. In this paper, we deliberate on the cognitive implications for human analysists when interacting with such a diverse organizational structure of tools and approaches when performing the essential steps of an explorative visual analysis.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"92 3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83920144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-23DOI: 10.3390/analytics1020007
Nirmalya Thakur
The exoskeleton technology has been rapidly advancing in the recent past due to its multitude of applications and diverse use cases in assisted living, military, healthcare, firefighting, and industry 4.0. The exoskeleton market is projected to increase by multiple times its current value within the next two years. Therefore, it is crucial to study the degree and trends of user interest, views, opinions, perspectives, attitudes, acceptance, feedback, engagement, buying behavior, and satisfaction, towards exoskeletons, for which the availability of Big Data of conversations about exoskeletons is necessary. The Internet of Everything style of today’s living, characterized by people spending more time on the internet than ever before, with a specific focus on social media platforms, holds the potential for the development of such a dataset by the mining of relevant social media conversations. Twitter, one such social media platform, is highly popular amongst all age groups, where the topics found in the conversation paradigms include emerging technologies such as exoskeletons. To address this research challenge, this work makes two scientific contributions to this field. First, it presents an open-access dataset of about 140,000 Tweets about exoskeletons that were posted in a 5-year period from 21 May 2017 to 21 May 2022. Second, based on a comprehensive review of the recent works in the fields of Big Data, Natural Language Processing, Information Retrieval, Data Mining, Pattern Recognition, and Artificial Intelligence that may be applied to relevant Twitter data for advancing research, innovation, and discovery in the field of exoskeleton research, a total of 100 Research Questions are presented for researchers to study, analyze, evaluate, ideate, and investigate based on this dataset.
{"title":"Twitter Big Data as a Resource for Exoskeleton Research: A Large-Scale Dataset of about 140,000 Tweets from 2017–2022 and 100 Research Questions","authors":"Nirmalya Thakur","doi":"10.3390/analytics1020007","DOIUrl":"https://doi.org/10.3390/analytics1020007","url":null,"abstract":"The exoskeleton technology has been rapidly advancing in the recent past due to its multitude of applications and diverse use cases in assisted living, military, healthcare, firefighting, and industry 4.0. The exoskeleton market is projected to increase by multiple times its current value within the next two years. Therefore, it is crucial to study the degree and trends of user interest, views, opinions, perspectives, attitudes, acceptance, feedback, engagement, buying behavior, and satisfaction, towards exoskeletons, for which the availability of Big Data of conversations about exoskeletons is necessary. The Internet of Everything style of today’s living, characterized by people spending more time on the internet than ever before, with a specific focus on social media platforms, holds the potential for the development of such a dataset by the mining of relevant social media conversations. Twitter, one such social media platform, is highly popular amongst all age groups, where the topics found in the conversation paradigms include emerging technologies such as exoskeletons. To address this research challenge, this work makes two scientific contributions to this field. First, it presents an open-access dataset of about 140,000 Tweets about exoskeletons that were posted in a 5-year period from 21 May 2017 to 21 May 2022. Second, based on a comprehensive review of the recent works in the fields of Big Data, Natural Language Processing, Information Retrieval, Data Mining, Pattern Recognition, and Artificial Intelligence that may be applied to relevant Twitter data for advancing research, innovation, and discovery in the field of exoskeleton research, a total of 100 Research Questions are presented for researchers to study, analyze, evaluate, ideate, and investigate based on this dataset.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91123191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-08DOI: 10.3390/analytics1010006
K. Pflughoeft, Grace Nemecek, Nikolaus T. Butz
Cell phone technology has advanced rapidly with the start of 5G being rolled out across the networks. To keep up with this demand, cell tower companies have responded by erecting numerous towers. Engineers and researchers analyze the network topography to make recommendations for cell tower locations. Cell tower companies evaluate these recommendations using a host of other factors. In this research, a model was developed to help a regional telecommunications company predict throughput for locations using competitive and demand factors. Model results represented a large improvement over internal key performance indicators.
{"title":"Prioritizing Cell Tower Site Recommendations outside U.S. Metropolitan Areas","authors":"K. Pflughoeft, Grace Nemecek, Nikolaus T. Butz","doi":"10.3390/analytics1010006","DOIUrl":"https://doi.org/10.3390/analytics1010006","url":null,"abstract":"Cell phone technology has advanced rapidly with the start of 5G being rolled out across the networks. To keep up with this demand, cell tower companies have responded by erecting numerous towers. Engineers and researchers analyze the network topography to make recommendations for cell tower locations. Cell tower companies evaluate these recommendations using a host of other factors. In this research, a model was developed to help a regional telecommunications company predict throughput for locations using competitive and demand factors. Model results represented a large improvement over internal key performance indicators.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"85 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75745731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-31DOI: 10.3390/analytics1010005
J. Aguilar-Ruiz
Since the envisioning of the concept of Artificial Intelligence in the 1950s, the interest in making machines emulate human behavior has increased, scientific dedication has grown, and, consequently, new concepts have appeared, with unequal success [...]
{"title":"Analytics—Systematic Computational Analysis of Data","authors":"J. Aguilar-Ruiz","doi":"10.3390/analytics1010005","DOIUrl":"https://doi.org/10.3390/analytics1010005","url":null,"abstract":"Since the envisioning of the concept of Artificial Intelligence in the 1950s, the interest in making machines emulate human behavior has increased, scientific dedication has grown, and, consequently, new concepts have appeared, with unequal success [...]","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"160 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85359464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-06DOI: 10.3390/analytics1010003
J. Lindgren
This research article develops a dynamic framework for the Walrasian pure exchange economy and thus extends the static Walrasian general equilibrium theory into a dynamic one with price adjustments. An evolution equation for the price vector is derived from dynamic programming considerations. The economy tries to move from disequilibrium to general equilibrium by minimizing certain cost functional. The cost functional measures transactions costs and the total expenditure of agents when they optimize individually. Price determination is directly related to a gradient search. The general equilibrium is shown to be stable in the sense of Lyapunov if price adjustments can be large, when needed. The conditional stability could be one reason for volatility clustering in financial time series.
{"title":"General Equilibrium with Price Adjustments—A Dynamic Programming Approach","authors":"J. Lindgren","doi":"10.3390/analytics1010003","DOIUrl":"https://doi.org/10.3390/analytics1010003","url":null,"abstract":"This research article develops a dynamic framework for the Walrasian pure exchange economy and thus extends the static Walrasian general equilibrium theory into a dynamic one with price adjustments. An evolution equation for the price vector is derived from dynamic programming considerations. The economy tries to move from disequilibrium to general equilibrium by minimizing certain cost functional. The cost functional measures transactions costs and the total expenditure of agents when they optimize individually. Price determination is directly related to a gradient search. The general equilibrium is shown to be stable in the sense of Lyapunov if price adjustments can be large, when needed. The conditional stability could be one reason for volatility clustering in financial time series.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89742718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-16DOI: 10.3390/analytics1010002
Wesley Bertoli, R. P. Oliveira, J. Achcar
This work introduces a straightforward framework for semiparametric non-linear models as an alternative to existing non-linear parametric models, whose interpretation primarily depends on biological or physical aspects that are not always available in every practical situation. The proposed methodology does not require intensive numerical methods to obtain estimates in non-linear contexts, which is attractive as such algorithms’ convergence strongly depends on assigning good initial values. Moreover, the proposed structure can be compared with standard polynomial approximations often used for explaining non-linear data behaviors. Approximate posterior inferences for the semiparametric model parameters were obtained from a fully Bayesian approach based on the Metropolis-within-Gibbs algorithm. The proposed structures were considered to analyze artificial and real datasets. Our results indicated that the semiparametric models outperform linear polynomial regression approximations to predict the behavior of response variables in non-linear settings.
{"title":"A New Semiparametric Regression Framework for Analyzing Non-Linear Data","authors":"Wesley Bertoli, R. P. Oliveira, J. Achcar","doi":"10.3390/analytics1010002","DOIUrl":"https://doi.org/10.3390/analytics1010002","url":null,"abstract":"This work introduces a straightforward framework for semiparametric non-linear models as an alternative to existing non-linear parametric models, whose interpretation primarily depends on biological or physical aspects that are not always available in every practical situation. The proposed methodology does not require intensive numerical methods to obtain estimates in non-linear contexts, which is attractive as such algorithms’ convergence strongly depends on assigning good initial values. Moreover, the proposed structure can be compared with standard polynomial approximations often used for explaining non-linear data behaviors. Approximate posterior inferences for the semiparametric model parameters were obtained from a fully Bayesian approach based on the Metropolis-within-Gibbs algorithm. The proposed structures were considered to analyze artificial and real datasets. Our results indicated that the semiparametric models outperform linear polynomial regression approximations to predict the behavior of response variables in non-linear settings.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88140149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-12DOI: 10.3390/analytics1010001
Samira Farivar, A. Golmohammadi, Alejandro Ramirez
Developing analytics capability has become one of the main priorities in organizations today. Despite the increasing use of analytics, the necessary conditions to obtain the expected benefits from such investment still need to be examined. Relying on information processing theory (OIPT), this study sheds some light on the requirements for properly utilizing analytics to receive the potential benefits in supply chain firms. Specifically, we study the role of supply chain process integration in developing analytics capability, and we further examine the role of analytics capability and employees’ analytics skills in improving firm performance. Survey data collected from 240 supply chain top- and middle-level managers show that supply chain process integration enhances firms’ analytics capability. However, analytics capability alone is not sufficient in improving firm performance; it must be complemented with employees’ analytics skills. These findings extend the current literature on supply chain analytics and provide guidance and insights to supply chain managers for their analytics capability investments.
{"title":"Analytics Capability and Firm Performance in Supply Chain Organizations: The Role of Employees’ Analytics Skills","authors":"Samira Farivar, A. Golmohammadi, Alejandro Ramirez","doi":"10.3390/analytics1010001","DOIUrl":"https://doi.org/10.3390/analytics1010001","url":null,"abstract":"Developing analytics capability has become one of the main priorities in organizations today. Despite the increasing use of analytics, the necessary conditions to obtain the expected benefits from such investment still need to be examined. Relying on information processing theory (OIPT), this study sheds some light on the requirements for properly utilizing analytics to receive the potential benefits in supply chain firms. Specifically, we study the role of supply chain process integration in developing analytics capability, and we further examine the role of analytics capability and employees’ analytics skills in improving firm performance. Survey data collected from 240 supply chain top- and middle-level managers show that supply chain process integration enhances firms’ analytics capability. However, analytics capability alone is not sufficient in improving firm performance; it must be complemented with employees’ analytics skills. These findings extend the current literature on supply chain analytics and provide guidance and insights to supply chain managers for their analytics capability investments.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"112 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74903210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1007/978-3-031-24094-2
{"title":"Big Data Analytics: 10th International Conference, BDA 2022, Hyderabad, India, December 19–22, 2022, Proceedings","authors":"","doi":"10.1007/978-3-031-24094-2","DOIUrl":"https://doi.org/10.1007/978-3-031-24094-2","url":null,"abstract":"","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"15 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50987399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonparametric Approach of Comparing Company Performance: A Grey Relational Analysis","authors":"Tihana Škrinjarić","doi":"10.1201/9781003175711-9","DOIUrl":"https://doi.org/10.1201/9781003175711-9","url":null,"abstract":"","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41319298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}