首页 > 最新文献

Bulletin of Geosciences最新文献

英文 中文
First remains of Diplocynodon cf. ratelii from the early Miocene sites of Ahníkov (Most Basin, Czech Republic) Ahníkov中新世早期遗址发现的第一具双齿龙化石(捷克大部分盆地)
IF 1.9 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2021-02-07 DOI: 10.3140/BULL.GEOSCI.1803
M. Chroust, M. Mazuch, M. Ivanov, B. Ekrt, Àngel H. Luján
{"title":"First remains of Diplocynodon cf. ratelii from the early Miocene sites of Ahníkov (Most Basin, Czech Republic)","authors":"M. Chroust, M. Mazuch, M. Ivanov, B. Ekrt, Àngel H. Luján","doi":"10.3140/BULL.GEOSCI.1803","DOIUrl":"https://doi.org/10.3140/BULL.GEOSCI.1803","url":null,"abstract":"","PeriodicalId":9332,"journal":{"name":"Bulletin of Geosciences","volume":"1 1","pages":"123-138"},"PeriodicalIF":1.9,"publicationDate":"2021-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48278093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Early Miocene small mammals from MWQ1/2001 Turtle Joint (Mokrá-Quarry, South Moravia, Czech Republic): biostratigraphical and palaeoecological considerations MWQ1/2001龟节(Mokrá-Quarry,南摩拉维亚,捷克共和国)早中新世小型哺乳动物:生物地层和古生态学的考虑
IF 1.9 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2021-01-10 DOI: 10.3140/BULL.GEOSCI.1801
I. Bonilla-Salomón, S. Čermák, Àngel H. Luján, I. Horáček, M. Ivanov, M. Sabol
Mokra-Quarry (South Moravia, Czech Republic) represents a unique fossil site with an extraordinary abundance and diversity of vertebrate fossil remains. Most research on Mokra-Quarry localities was focused on herpetofauna. Despite its relevance, the mammal fauna has not been yet studied in detail. In this work, the small mammals from one of the karstic fissures, Mokra´-Western Quarry (1/2001 Turtle Joint), are thoroughly described for the first time, including eight different taxa: Prolagus schnaitheimensis, Prolagus cf. vasconinensis, Rhinolophus cf. cluzeli, Rhinolophus cf. grivensis, Galerix sp., Aliveria aff. luteyni, Megacricetodon sp., and Melissiodon dominans. The Megacricetodon finds represent one of the first appearances of this cricetid in Central Europe and sheds light on the early evolution of the genus. Moreover, the small mammal assemblage confirms an early Miocene age (Burdigalian, MN4) for MWQ1/2001. The paleoenvironment inferred shows a dry karst landscape, with patches of woodlands and open steppe, together with marshy areas.
莫克拉采石场(捷克共和国南摩拉维亚)是一个独特的化石遗址,脊椎动物化石遗迹丰富多样。对莫克拉采石场地区的大多数研究都集中在疱疹病毒上。尽管哺乳动物区系具有相关性,但尚未对其进行详细研究。在这项工作中,首次全面描述了来自其中一个岩溶裂隙Mokra´-West Quarry(1/2001 Turtle Joint)的小型哺乳动物,包括八个不同的分类群:Prolagus schnaithimensis、Prolagus cf.vasconinensis、Rhinolophus cf.cluzeli、Rhinolphus cf.grivensis、Galerix sp.、Aliveria aff。luteyni、Megacricetodon sp.和Melissiodon dominans。巨型环齿龙的发现代表了这种环齿龙在中欧的首次出现,并揭示了该属的早期进化。此外,小型哺乳动物组合证实了MWQ1/2001的中新世早期(Burdigalian,MN4)。推断出的古环境显示出干燥的喀斯特景观,有成片的林地和开阔的草原,还有沼泽地。
{"title":"Early Miocene small mammals from MWQ1/2001 Turtle Joint (Mokrá-Quarry, South Moravia, Czech Republic): biostratigraphical and palaeoecological considerations","authors":"I. Bonilla-Salomón, S. Čermák, Àngel H. Luján, I. Horáček, M. Ivanov, M. Sabol","doi":"10.3140/BULL.GEOSCI.1801","DOIUrl":"https://doi.org/10.3140/BULL.GEOSCI.1801","url":null,"abstract":"Mokra-Quarry (South Moravia, Czech Republic) represents a unique fossil site with an extraordinary abundance and diversity of vertebrate fossil remains. Most research on Mokra-Quarry localities was focused on herpetofauna. Despite its relevance, the mammal fauna has not been yet studied in detail. In this work, the small mammals from one of the karstic fissures, Mokra´-Western Quarry (1/2001 Turtle Joint), are thoroughly described for the first time, including eight different taxa: Prolagus schnaitheimensis, Prolagus cf. vasconinensis, Rhinolophus cf. cluzeli, Rhinolophus cf. grivensis, Galerix sp., Aliveria aff. luteyni, Megacricetodon sp., and Melissiodon dominans. The Megacricetodon finds represent one of the first appearances of this cricetid in Central Europe and sheds light on the early evolution of the genus. Moreover, the small mammal assemblage confirms an early Miocene age (Burdigalian, MN4) for MWQ1/2001. The paleoenvironment inferred shows a dry karst landscape, with patches of woodlands and open steppe, together with marshy areas.","PeriodicalId":9332,"journal":{"name":"Bulletin of Geosciences","volume":"96 1","pages":"99-122"},"PeriodicalIF":1.9,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43764444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Sequential, multi-taxon encrustation of an orthoceratid cephalopod by stalked blastozoan echinoderms in the middle Silurian (Wenlock Series) of southeastern Indiana, USA 美国印第安纳州东南部志留纪中期(Wenlock系列)有柄囊胚棘皮动物的直角纲头足类连续多分类壳化
IF 1.9 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2021-01-10 DOI: 10.3140/BULL.GEOSCI.1814
J. Thomka, T. Bantel
An orthoceratid cephalopod serving as a substratum for rare encrustation relationships is herein described from the middle Silurian (Wenlock Series, Sheinwoodian Stage) Massie Formation of southeastern Indiana, USA. The partial orthoconic cephalopod phragmocone is preserved as a flattened internal mold with some remnant shell material. The more damaged (presumably upward­facing) side is encrusted by the thecal attachment structure of a trematocystinid holocystitid diploporitan (probably Paulicystis ), which is, in turn, encrusted by a dendritic attachment structure attributable to the hemicosmitid rhombiferan Caryocrinites . This represents an unusual form of multigenerational encrustation by blastozoan pelmatozoans; an encrustation that did not culminate in overgrowth of the cephalopod substratum. More importantly, this occurrence demonstrates preferential use of echinoderm remains as settling sites for later encrusting echinoderms, despite class­level taxonomic differences, and represents an additional example of utilization of a discrete macrofossil – and a rarely reported example of a coeval echinoderm attachment structure – as a substratum for Caryocrinites attachment. Collectively, this material indicates that pelmatozoan encrustation of bioclasts in otherwise softground substrates is controlled by more complex factors than mere occurrence of available biomineralized material. •
本文描述了美国印第安纳州东南部志留纪中期(Wenlock系列,Sheinwood阶)Massie组的一种正角头足类动物,它是罕见外壳关系的基质。受损程度更严重(可能是朝上)的一侧被双孢吸虫的鞘附着结构所包裹,而双孢吸虫又被半锇菱形Caryocrinites的树突附着结构所包围。这代表了裂殖虫-球粒虫多代结壳的一种不同寻常的形式;头足类底层过度生长的结垢。更重要的是,这一事件表明,尽管存在阶级层面的分类学差异,但棘皮动物遗骸优先被用作后来被包裹的棘皮动物的定居地,并代表了一个利用离散大型化石——也是一个很少报道的同时代棘皮动物附着结构——作为Caryocrinites附着基质的又一个例子。总的来说,这种材料表明,在其他软土基质中,生物碎屑的Pelmatozoa结垢是由更复杂的因素控制的,而不仅仅是可用生物矿化材料的出现。•
{"title":"Sequential, multi-taxon encrustation of an orthoceratid cephalopod by stalked blastozoan echinoderms in the middle Silurian (Wenlock Series) of southeastern Indiana, USA","authors":"J. Thomka, T. Bantel","doi":"10.3140/BULL.GEOSCI.1814","DOIUrl":"https://doi.org/10.3140/BULL.GEOSCI.1814","url":null,"abstract":"An orthoceratid cephalopod serving as a substratum for rare encrustation relationships is herein described from the middle Silurian (Wenlock Series, Sheinwoodian Stage) Massie Formation of southeastern Indiana, USA. The partial orthoconic cephalopod phragmocone is preserved as a flattened internal mold with some remnant shell material. The more damaged (presumably upward­facing) side is encrusted by the thecal attachment structure of a trematocystinid holocystitid diploporitan (probably Paulicystis ), which is, in turn, encrusted by a dendritic attachment structure attributable to the hemicosmitid rhombiferan Caryocrinites . This represents an unusual form of multigenerational encrustation by blastozoan pelmatozoans; an encrustation that did not culminate in overgrowth of the cephalopod substratum. More importantly, this occurrence demonstrates preferential use of echinoderm remains as settling sites for later encrusting echinoderms, despite class­level taxonomic differences, and represents an additional example of utilization of a discrete macrofossil – and a rarely reported example of a coeval echinoderm attachment structure – as a substratum for Caryocrinites attachment. Collectively, this material indicates that pelmatozoan encrustation of bioclasts in otherwise softground substrates is controlled by more complex factors than mere occurrence of available biomineralized material. •","PeriodicalId":9332,"journal":{"name":"Bulletin of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44822442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Five dispersed medullosalean male organs, one species? Late Pennsylvanian Sydney Coalfield, Canada 五种分散的髓质动物雄性器官,一种?宾夕法尼亚晚期,悉尼煤田,加拿大
IF 1.9 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2021-01-10 DOI: 10.3140/BULL.GEOSCI.1789
E. Zodrow, J. Pšenička
{"title":"Five dispersed medullosalean male organs, one species? Late Pennsylvanian Sydney Coalfield, Canada","authors":"E. Zodrow, J. Pšenička","doi":"10.3140/BULL.GEOSCI.1789","DOIUrl":"https://doi.org/10.3140/BULL.GEOSCI.1789","url":null,"abstract":"","PeriodicalId":9332,"journal":{"name":"Bulletin of Geosciences","volume":"1 1","pages":"29-51"},"PeriodicalIF":1.9,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47294803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Diggers, gliders and runners: The squirrels from the Ribesalbes-Alcora Basin (East of Spain) 挖掘者,滑翔机和跑步者:来自Ribesalbes-Alcora盆地的松鼠(西班牙东部)
IF 1.9 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2021-01-10 DOI: 10.3140/BULL.GEOSCI.1805
V. Crespo, A. Fagoaga, F. Ruiz-Sánchez, P. Montoya
{"title":"Diggers, gliders and runners: The squirrels from the Ribesalbes-Alcora Basin (East of Spain)","authors":"V. Crespo, A. Fagoaga, F. Ruiz-Sánchez, P. Montoya","doi":"10.3140/BULL.GEOSCI.1805","DOIUrl":"https://doi.org/10.3140/BULL.GEOSCI.1805","url":null,"abstract":"","PeriodicalId":9332,"journal":{"name":"Bulletin of Geosciences","volume":"1 1","pages":"83-97"},"PeriodicalIF":1.9,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47632526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Beginning of the Miocene Climatic Optimum in Central Europe in sediment archive of the Most Basin, Czech Republic 捷克共和国Most盆地沉积物档案中中欧中新世气候最佳期的开始
IF 1.9 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2021-01-10 DOI: 10.3140/BULL.GEOSCI.1794
T. Grygar, K. Mach, M. Koubová, Mathieu Martinez, K. Hron, K. Fačevicová
represents a time of global warming within the persistent Cenozoic cooling (Zachos et al. 2001). The MCO brought thermophilic vertebrate species into central Europe (Böhme 2003), and was terminated by an abrupt return to global cooling. In spite of considerable research efforts, climate evolution in the pre-MCO and early MCO periods has not been fully understood. The southern polar ice cap (Antarctic Ice Sheet, AIS) was considerably reduced during the MCO (Gasson et al. 2016, Levy et al. 2016), perhaps due to a coincidence of particular paleogeographic (Gasson et al. 2016) and orbital settings (De Vleeschouwer et al. 2017), and possibly acting in coincidence with long carbon cycles (Liebrand et al. 2016, Valero et al. 2016). The global pre-MCO climate could also have responded to some specific, yet unidentified trigger(s). A volcanic hypothesis was proposed (Courtillot & Renne 2003), tested, rejected based on a critical discussion on Ar-Ar dating precision (Barry et al. 2010, Armstrong McKay et al. 2015), and finally revoked after new dating and upon addressing all uncertainties of the Miocene time scales (Kasbohm & Schoene 2018). An increase in atmospheric CO2 was assumed to have been the MCO trigger; evidence for this was searched for in
代表了在持续的新生代冷却中全球变暖的时期(Zachos等,2001)。MCO将嗜热脊椎动物物种带入中欧(Böhme 2003),并因全球突然变冷而终止。尽管进行了大量的研究工作,但对前MCO期和早期MCO期的气候演变尚未完全了解。南极冰盖(Antarctic ice Sheet, AIS)在MCO期间大幅减少(Gasson et al. 2016, Levy et al. 2016),这可能是由于特定古地理(Gasson et al. 2016)和轨道设置(De Vleeschouwer et al. 2017)的巧合,也可能与长碳循环(Liebrand et al. 2016, Valero et al. 2016)的巧合。全球前mco气候也可能对某些具体的、尚未确定的触发因素作出反应。一个火山假说被提出(Courtillot & Renne 2003),经过检验,基于对Ar-Ar测年精度的批判性讨论而被拒绝(Barry et al. 2010, Armstrong McKay et al. 2015),并在新的测年和解决中新世时间尺度的所有不确定性后最终被撤销(Kasbohm & Schoene 2018)。大气中二氧化碳的增加被认为是MCO的触发因素;这方面的证据在
{"title":"Beginning of the Miocene Climatic Optimum in Central Europe in sediment archive of the Most Basin, Czech Republic","authors":"T. Grygar, K. Mach, M. Koubová, Mathieu Martinez, K. Hron, K. Fačevicová","doi":"10.3140/BULL.GEOSCI.1794","DOIUrl":"https://doi.org/10.3140/BULL.GEOSCI.1794","url":null,"abstract":"represents a time of global warming within the persistent Cenozoic cooling (Zachos et al. 2001). The MCO brought thermophilic vertebrate species into central Europe (Böhme 2003), and was terminated by an abrupt return to global cooling. In spite of considerable research efforts, climate evolution in the pre-MCO and early MCO periods has not been fully understood. The southern polar ice cap (Antarctic Ice Sheet, AIS) was considerably reduced during the MCO (Gasson et al. 2016, Levy et al. 2016), perhaps due to a coincidence of particular paleogeographic (Gasson et al. 2016) and orbital settings (De Vleeschouwer et al. 2017), and possibly acting in coincidence with long carbon cycles (Liebrand et al. 2016, Valero et al. 2016). The global pre-MCO climate could also have responded to some specific, yet unidentified trigger(s). A volcanic hypothesis was proposed (Courtillot & Renne 2003), tested, rejected based on a critical discussion on Ar-Ar dating precision (Barry et al. 2010, Armstrong McKay et al. 2015), and finally revoked after new dating and upon addressing all uncertainties of the Miocene time scales (Kasbohm & Schoene 2018). An increase in atmospheric CO2 was assumed to have been the MCO trigger; evidence for this was searched for in","PeriodicalId":9332,"journal":{"name":"Bulletin of Geosciences","volume":"1 1","pages":"61-81"},"PeriodicalIF":1.9,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46169949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Systematics of pterobranchs from the Cambrian Period Burgess Shales of Canada and the early evolution of graptolites 加拿大Burgess Shales寒武纪翼支系统学与笔石早期演化
IF 1.9 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2020-11-16 DOI: 10.3140/bull.geosci.1797
Greta M. Ramírez-Guerrero, C. Cameron
o nial pterobranch hemichordates mostly known by their tubes, preserved in the fossil record since the Cambrian Period. Graptolites differ from their sister group Cephalo­ discida, by the presence of a stolon system that supports a colonial lifestyle, the presence of a larval prosicula, and the anatomy of the zooids. Although zooids with preserved morphological details are essentially unknown among fossil graptolites, zooid anatomy is well known from the extant species Rhabdopleura (Mitchell et al. 2013, Maletz & Beli 2018). The subclass comprises the orders Dendroidea, which includes the benthic organisms with an encrusting to erect, bushy morphology formed by irregular branching, as well as the derived, planktic Graptoloidea (Maletz 2014b, Maletz & Cameron 2016). Due to poor fossil preservation, taphonomic processes, and similarities in morphology between taxonomic groups, identification of the specimens is difficult and sometimes mistakenly done, especially in Cambrian forms. The useful criteria to define a graptolite, when the soft­tissue material is not available, include an organic tubarium with fusellar structures surrounded by secondary cortical tissue, and the stolon system (Mitchell et al. 2013). Even when these characteristics are preserved, scanning electron microscopy is frequently used to obtain the most details from the specimens; otherwise, mostly outlines of organic­walled fossils are available for determination (Maletz et al. 2005, LoDuca et al. 2015a). An example of misidentified pterobranchs is the genus Yuknessia, which was originally regarded as an alga (Walcott 1919), but is now recognized as one of the earliest known pterobranchs from the Cambrian Series 3, based on the SEM identification of fuselli in two species (Steiner & Maletz 2012, LoDuca et al. 2015a). Like Yuknessia, a closer look at other taxa may establish a pterobranch affinity (e.g., Dalyia racemata and Malongitubus; Maletz & Steiner 2015, Hu et al. 2018. See Maletz & Beli 2018 for further discussion). We refer to these early forms simply as pterobranchs, based on their organic tubes with fusellar structures, because it is nearly impossible to classify them as cephalodiscids or graptolites. The pterobranch fossil record from the early and middle Cambrian is less complete compared to the Ordovician and Silurian periods (Rickards & Durman 2006), making difficult our understanding of the origin and early evolution of graptolites. It is known that early graptolites
o一年一次的翼展半鞘翅目动物,大多以其管而闻名,自寒武纪以来一直保存在化石记录中。Graptolites与它们的姐妹类群Cephalo­discida的不同之处在于,存在支持殖民生活方式的匍匐茎系统,存在幼虫procilla,以及动物的解剖结构。尽管在笔石化石中,具有保存的形态细节的类动物基本上是未知的,但现存物种Rhabdopleura的类动物解剖结构是众所周知的(Mitchell等人,2013,Maletz&Beli,2018)。该亚类包括树状总目,包括由不规则分支形成的从外壳到直立、浓密形态的底栖生物,以及衍生的浮游Graptoloidea(Maletz 2014b,Maletz&Cameron 2016)。由于化石保存不善、埋藏过程以及分类群之间形态学上的相似性,标本的鉴定很困难,有时甚至会出错,尤其是在寒武纪的标本中。当软组织材料不可用时,定义笔石的有用标准包括具有被次级皮层组织包围的融合器结构的有机管和匍匐茎系统(Mitchell等人,2013)。即使这些特征得到了保留,扫描电子显微镜也经常被用来从标本中获得最详细的信息;否则,大多数有机壁化石的轮廓都可以确定(Maletz等人,2005年,LoDuca等人,2015a)。一个被误认的翼龙属是Yuknessia属,它最初被认为是一种藻类(Walcott 1919),但根据对两个物种中fuselli的SEM鉴定,现在被认为是寒武纪系列3中已知最早的翼龙之一(Steiner和Maletz 2012,LoDuca等人2015a)。与Yuknessia一样,更仔细地观察其他分类群可能会建立翼展亲缘关系(例如,Dalyia racemata和Malongitubus;Maletz和Steiner 2015,Hu等人2018。请参阅Maletz和Beli 2018以了解更多讨论)。我们将这些早期的形态简单地称为翼支,基于它们具有融合器结构的有机管,因为几乎不可能将它们归类为头盘类或笔石类。与奥陶纪和志留纪相比,寒武纪早期和中期的翼龙化石记录不太完整(Rickards&Durman 2006),这使得我们很难理解笔石的起源和早期进化。众所周知,早期的笔石
{"title":"Systematics of pterobranchs from the Cambrian Period Burgess Shales of Canada and the early evolution of graptolites","authors":"Greta M. Ramírez-Guerrero, C. Cameron","doi":"10.3140/bull.geosci.1797","DOIUrl":"https://doi.org/10.3140/bull.geosci.1797","url":null,"abstract":"o nial pterobranch hemichordates mostly known by their tubes, preserved in the fossil record since the Cambrian Period. Graptolites differ from their sister group Cephalo­ discida, by the presence of a stolon system that supports a colonial lifestyle, the presence of a larval prosicula, and the anatomy of the zooids. Although zooids with preserved morphological details are essentially unknown among fossil graptolites, zooid anatomy is well known from the extant species Rhabdopleura (Mitchell et al. 2013, Maletz & Beli 2018). The subclass comprises the orders Dendroidea, which includes the benthic organisms with an encrusting to erect, bushy morphology formed by irregular branching, as well as the derived, planktic Graptoloidea (Maletz 2014b, Maletz & Cameron 2016). Due to poor fossil preservation, taphonomic processes, and similarities in morphology between taxonomic groups, identification of the specimens is difficult and sometimes mistakenly done, especially in Cambrian forms. The useful criteria to define a graptolite, when the soft­tissue material is not available, include an organic tubarium with fusellar structures surrounded by secondary cortical tissue, and the stolon system (Mitchell et al. 2013). Even when these characteristics are preserved, scanning electron microscopy is frequently used to obtain the most details from the specimens; otherwise, mostly outlines of organic­walled fossils are available for determination (Maletz et al. 2005, LoDuca et al. 2015a). An example of misidentified pterobranchs is the genus Yuknessia, which was originally regarded as an alga (Walcott 1919), but is now recognized as one of the earliest known pterobranchs from the Cambrian Series 3, based on the SEM identification of fuselli in two species (Steiner & Maletz 2012, LoDuca et al. 2015a). Like Yuknessia, a closer look at other taxa may establish a pterobranch affinity (e.g., Dalyia racemata and Malongitubus; Maletz & Steiner 2015, Hu et al. 2018. See Maletz & Beli 2018 for further discussion). We refer to these early forms simply as pterobranchs, based on their organic tubes with fusellar structures, because it is nearly impossible to classify them as cephalodiscids or graptolites. The pterobranch fossil record from the early and middle Cambrian is less complete compared to the Ordovician and Silurian periods (Rickards & Durman 2006), making difficult our understanding of the origin and early evolution of graptolites. It is known that early graptolites","PeriodicalId":9332,"journal":{"name":"Bulletin of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48682876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Skeletal remains with otoliths in situ of the Miocene croaker Trewasciaena cf. kokeni (Teleostei, Sciaenidae) from the Pannonian of the Vienna Basin 维也纳盆地Pannonian中新世黄花鱼Trewasciaena c . kokeni (Teleostei, Sciaenidae)的骨骼化石和原位耳石
IF 1.9 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2020-11-16 DOI: 10.3140/bull.geosci.1813
T. Přikryl, R. Brzobohatý, G. Carnevale
{"title":"Skeletal remains with otoliths in situ of the Miocene croaker Trewasciaena cf. kokeni (Teleostei, Sciaenidae) from the Pannonian of the Vienna Basin","authors":"T. Přikryl, R. Brzobohatý, G. Carnevale","doi":"10.3140/bull.geosci.1813","DOIUrl":"https://doi.org/10.3140/bull.geosci.1813","url":null,"abstract":"","PeriodicalId":9332,"journal":{"name":"Bulletin of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47104719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Latest Ordovician-earliest Silurian chitinozoans from the Puna region, north-western Argentina (Western Gondwana) 阿根廷西北部普纳地区最新奥陶世-最早志留纪几丁质动物(西冈瓦纳)
IF 1.9 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2020-11-15 DOI: 10.3140/bull.geosci.1769
G. Puente, F. Paris
Lower Palaeozoic basins of Western Gondwana (Robin et al. 2004), because of its geographical extent and fossil record. The southern end of this basin is located in north-western Argentina and its outcrops are exposed in the geological provinces of Puna, Cordillera Oriental, Sierras Subandinas and Sistema de Santa Bárbara (Fig. 1A) (Ramos 1999). In the eastern and central part of the basin, the Upper Ordovician is classically represented by the “Zapla Glacial Horizon” (Schlagintweit 1943) of late Hirnantian age (Monaldi & Boso 1987, de la Puente & Rubinstein 2013, Benedetto et al. 2015), which is locally called the Mecoyita Formation (Turner 1960) or Caspalá Formation (Starck 1995). This glacial horizon is deposited above the Ocloyic regional discordance, which separates it from the Lower and Middle Ordovician strata. The Zapla Glacial Horizon includes three facies associations: massive matrix-rich diamictites, finely stratified diamictites, and graded sandy and conglomerate beds covering the diamictites facies (Astini 2008). It is overlain by transgressive deposits of the Silurian Lipeón Formation (Turner 1960). In the eastern part of the basin, chitinozoan assemblages document a late Hirnantian age for the glacial deposits and support a basal Silurian age assignment for the strata representing the postglacial sequences in a condensed section (de la Puente et al. 2012, de la Puente & Rubinstein 2013, Benedetto et al. 2015). In the central part of the basin, chitinozoan assemblages document a Hirnantian age for the glacial deposits and a Telychian age for the postglacial sequences (Rubinstein et al. 2016). Within the Lower Palaeozoic deposits of western Puna region, in the western part of the basin, no direct sedimentological evidence for glaciation has been found.
西冈瓦纳下古生代盆地(Robin et al. 2004),由于其地理范围和化石记录。该盆地的南端位于阿根廷西北部,其露头在Puna、Cordillera Oriental、Sierras Subandinas和Sistema de Santa Bárbara等地质省(图1A) (Ramos 1999)。在盆地东部和中部,上奥灰统的典型代表是Hirnantian晚期的“Zapla冰川层”(Schlagintweit 1943) (Monaldi & Boso 1987, de la Puente & Rubinstein 2013, Benedetto et al. 2015),在当地被称为Mecoyita组(Turner 1960)或caspal组(Starck 1995)。这一冰川层位沉积在冰相区域不协调面之上,将其与下奥陶统和中奥陶统地层分开。扎普拉冰川层包括三种相组合:块状富含基质的二晶岩,精细分层的二晶岩,以及覆盖二晶岩相的分级砂质和砾岩层(Astini 2008)。它被志留系Lipeón组的海侵沉积覆盖(Turner 1960)。在盆地东部,几丁虫组合记录了冰川沉积的晚Hirnantian时代,并支持了浓缩剖面中代表冰川后序列的地层的基础志留纪时代(de la Puente et al. 2012, de la Puente & Rubinstein 2013, Benedetto et al. 2015)。在盆地中部,几丁虫组合记录了冰川沉积物的希尔南提时代和冰川后序列的特利奇时代(Rubinstein et al. 2016)。在盆地西部的西普纳地区下古生代沉积中,没有发现冰川作用的直接沉积证据。
{"title":"Latest Ordovician-earliest Silurian chitinozoans from the Puna region, north-western Argentina (Western Gondwana)","authors":"G. Puente, F. Paris","doi":"10.3140/bull.geosci.1769","DOIUrl":"https://doi.org/10.3140/bull.geosci.1769","url":null,"abstract":"Lower Palaeozoic basins of Western Gondwana (Robin et al. 2004), because of its geographical extent and fossil record. The southern end of this basin is located in north-western Argentina and its outcrops are exposed in the geological provinces of Puna, Cordillera Oriental, Sierras Subandinas and Sistema de Santa Bárbara (Fig. 1A) (Ramos 1999). In the eastern and central part of the basin, the Upper Ordovician is classically represented by the “Zapla Glacial Horizon” (Schlagintweit 1943) of late Hirnantian age (Monaldi & Boso 1987, de la Puente & Rubinstein 2013, Benedetto et al. 2015), which is locally called the Mecoyita Formation (Turner 1960) or Caspalá Formation (Starck 1995). This glacial horizon is deposited above the Ocloyic regional discordance, which separates it from the Lower and Middle Ordovician strata. The Zapla Glacial Horizon includes three facies associations: massive matrix-rich diamictites, finely stratified diamictites, and graded sandy and conglomerate beds covering the diamictites facies (Astini 2008). It is overlain by transgressive deposits of the Silurian Lipeón Formation (Turner 1960). In the eastern part of the basin, chitinozoan assemblages document a late Hirnantian age for the glacial deposits and support a basal Silurian age assignment for the strata representing the postglacial sequences in a condensed section (de la Puente et al. 2012, de la Puente & Rubinstein 2013, Benedetto et al. 2015). In the central part of the basin, chitinozoan assemblages document a Hirnantian age for the glacial deposits and a Telychian age for the postglacial sequences (Rubinstein et al. 2016). Within the Lower Palaeozoic deposits of western Puna region, in the western part of the basin, no direct sedimentological evidence for glaciation has been found.","PeriodicalId":9332,"journal":{"name":"Bulletin of Geosciences","volume":"1 1","pages":"391-418"},"PeriodicalIF":1.9,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48348557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Frasnian-Famennian (Upper Devonian) transition in the northern hemisphere (NE Laurussia and NE Siberia) - an overview 北半球(俄罗斯东北部和西伯利亚东北部)的弗拉斯-法门尼亚(上泥盆世)过渡——概述
IF 1.9 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2020-11-15 DOI: 10.3140/bull.geosci.1791
Andrey V. Zhuravlev, E. Sokiran
Gereke, m. & Schindler, e. 2012. “Time­Specific Facies” and biological crises — The Kellwasser Event interval near the Frasnian/Famennian boundary (Late Devonian). Palaeogeography, Palaeoclimatology, Palaeoecology 367– 368, 19–29. DOI 10.1016/j.palaeo.2011.11.024 Gholamalian, h. 2007. Conodont biostratigraphy of the Frasnian­ Famennian boundary in the Esfahan and Tabas areas, Central Iran. Geological Quarterly 51(4), 453–476. hallam, a. & wiGnall, P.b. 1999. Mass extinctions and sea­ level changes. Earth-Science Reviews 48(4), 217–250. DOI 10.1016/S0012­8252(99)00055­0 hladil, j. 2002. Geophysical records of dispersed weathering products on the Frasnian carbonate platform and early Famennian ramps in Moravia, Czech Republic: proxies for eustasy and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 181(1–3), 213–250. DOI 10.1016/S0031­0182(01)00480­1 huanG, c., joachimSki, m.m. & GonG, y. 2018. Did climate changes trigger the Late Devonian Kellwasser Crisis? Evidence from a high-resolution conodont δOPO4 record from South China. Earth and Planetary Science Letters 495, 174–184. DOI 10.1016/j.epsl.2018.05.016 iZokh, o.P., iZokh, n.G., Ponomarchuk, v.a. & Semenova, d.v. 2009. Carbon and oxygen isotopes in the Frasnian­Famennian section of the Kuznetsk Basin (southern West Siberia). Geologiya i Geofizika (Russian Geology and Geophysics) 50(7), 786–795. DOI 10.1016/j.rgg.2008.12.007 joachimSki, m.m., oStertaG­henninG, c., PancoSt, r.d., StrauSS, h., freeman, k.h., littke, r., SinninGhe damSté, j.S. & racki, G. 2001. Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian­Famennian boundary (Kowala – Holy Cross Mountains/Poland). Chemical Geology 175, 109–131. DOI 10.1016/S0009­2541(00)00365­X kiSelev, a.i., yarmolyuk, v.v., eGorov, k.n., chernyShov, r.a. & nikiforov, a.v. 2006. Middle Paleozoic Basic Magmatism of the Northwestern Vilyui Rift: Composition, Sources, and Geodynamics. Petrology 14(6), 588–608. DOI 10.1134/S0869591106060051 kRavchińsky, v.a. 2012. Paleozoic large igneous provinces of northern Eurasia: Correlation with mass extinction events. Global and Planetary Change 86–87, 31–36. DOI 10.1016/j.gloplacha.2012.01.007 kRawczyński, w., Piechota, a., soBstel, M., sokiRan, e. & filiPiak, P. 2004. Faunistyczne i środowiskowe zmiany na granicy fran­famen w profilu geologicznym Kamenki (Centralne Pole Dewońskie, Rosja), p. 38. In XIX Konferencja Paleobiologów i Biostratygrafów PTG, Wrocław 16–18.09. 2004. krylova, a.k. 1955. Spiriferids of the Devonian of the Volga­Ural region. Trudy Vsesoûznogo Neftânogo NaučnoIssledovatel’skogo Geologorazvedočnogo Instituta, Novaâ Seriâ 88, 297–331. [in Russian] krylova, a.k. 1959. The Upper Devonian of Stolb Island in the Lena River mouth. Doklady AN SSSR 124(1), 162–164. [in Russian] krylova, a.k. 1962. Stratigrafia i brachiopody devona Sibirskoy platformy [Stratigraphy and brachiopods of the Devonian of Siberian Platform]. 108pp. Tr. VNIGRI, 200
Gereke,m.&Schindler,e.2012。“特定时间相”和生物危机——Frasnian/Famenian边界附近的Kellwasser事件间隔(晚泥盆纪)。古地理学,古气候学,古生态学367-368,19-29。DOI 10.1016/j.palaeo.2011.11.024 Gholamalian,h.2007。伊朗中部伊斯法罕和塔巴斯地区Frasnian­Famennian边界的牙形石生物地层学。《地质季刊》51(4),453–476。hallam,a.&wiGnall,P.b.1999。大规模灭绝和海平面变化。《地球科学评论》48(4),217-250。DOI 10.1016/S0012­8252(99)00055­0 hladil,j.2002。捷克共和国摩拉维亚Frasnian碳酸盐岩平台和早期法门尼亚斜坡上分散风化产物的地球物理记录:海平面上升和古气候的代表。古地理学,古气候学,古生态学181(1-3),213–250。DOI 10.1016/S0031­0182(01)00480­1 huanG,c.,joachimSki,m.m.&GonG,y.2018。气候变化是否引发了晚泥盆纪的凯尔瓦瑟危机?华南高分辨率牙形石δOPO4记录的证据。《地球与行星科学快报》495174-184。DOI 10.1016/j.epsl.2018.05.016 iZokh,o.P.,iZokh,n.G.,Ponomarchuk,v.a.和Semenova,d.v.2009。库兹涅茨克盆地(西西伯利亚南部)Frasnian­Famennian段的碳和氧同位素。Geologiya i Geofizika(俄罗斯地质学和地球物理学)50(7),786–795。DOI 10.1016/j.rg.2008.12.007 joachimSki,m.m.,oStertaG­henninG,c.,PancoSt,r.d.,StrauSS,h.,freeman,k.h.,littke,r.,SinninGhe damSté,j.S.&racki,G.2001。Frasnian­Famennian边界(Kowala–圣十字山脉/波兰)的水柱缺氧、生产力提高以及随之而来的δ13C和δ34S变化。化学地质学175109–131。DOI 10.1016/S0009­2541(00)00365­X kiSelev,a.i.,yarmolyuk,v.v.,eGorov,k.n.,chernyShov,r.a.&nikiforov,a.v.2006。西北Vilyui裂谷的中古生代基性岩浆作用:成分、来源和地球动力学。岩石学14(6),588-608。DOI 10.1134/S089591106060051 kRavchińsky,2012年第1版。欧亚大陆北部古生代大型火成岩区:与大规模灭绝事件的相关性。全球和行星变化86–87,31–36。DOI 10.1016/j.gloplacha.12.01.007 kRawczyński,w.,Piechota,a.,soBstel,M.,sokiRan,e.&filiPiak,P.2004。Faunistyczne iśrodowiskowe zmianny na granicy fran­famen w profilu geologicoznym Kamenki(Rosja,Centralne Pole Dewońskie),第38页。在19 Konferencja Paleobiologów i Biostratygrafów PTG,弗罗茨瓦夫16–18.09。2004年,克里洛娃,又名1955年。伏尔加-乌拉尔地区泥盆纪的螺旋体。Trudy Vsesoûznogo Neftânogo NaučnoIssledovatel’skogo Geologorazvedočnogo Instituta,NovaâSeriâ88297–331。[俄语]克里洛娃,又名1959年。Lena河口Stolb岛的上泥盆纪。Doklady AN SSSR 124(1),162–164。克里洛娃,1962年。Stratigrafia i腕足类devona Sibirskoy platformy[西伯利亚地台泥盆纪的地层学和腕足类]。108页。Tr.VNIGRI,200。戈斯托普特基兹达特,列宁格勒。【俄语】laSh,G.G.2017。《美国纽约州西部Frasnian-Famennian过渡的多因素分析》,古地理学,古气候学,古生态学473,108–122。DOI 10.1016/j.palaeo.2017.02.032 ljaSchenko,a.i.1959。Atlas brahiopod i strategrafiâdevonskih otloženij centralnyh州Russkoj Platformy。第451页。莫斯科Gostoptehizdat。[俄文]马,X.P.,贝克尔,r.t.,李,h.,孙,2006年。华南陆架早、中期Frasnian腕足动物群及周转情况。波兰古生物学学报51(4),789–812。马,龚,陈,拉奇,陈,廖,2016。华南晚泥盆纪Frasnian-Famennian事件——物种灭绝的模式和原因、海平面变化和同位素变化。古地理学,古气候学,古生态学448,224–244。DOI 10.1016/j.palaeo.2015.10.2047 ma,X.P.,孙,y.l.,郝,w.c.,廖,w.h.2002。在中国湖南中部的Frasnian-Famennian边界上,软体珊瑚和腕足类。波兰古生物学学报47(2),373–396。mcGhee,G.r.2013。当侵略土地失败时。泥盆纪灭绝的遗产。336页,哥伦比亚大学出版社,纽约。DOI 10.7312/columbia/9780231160575.0001.0001 mclaren,d.j.,norriS,a.w.&mcGreGor,d.c.1962。加拿大化石插图,加拿大西部泥盆纪。加拿大地质调查局,矿产和技术调查部,第62–4号文件,35页,DOI 10.4095/101136 435 Andrey V.Zhuravlev和Elena V.Sokiran•Frasnian–北半球的Famennian过渡
{"title":"Frasnian-Famennian (Upper Devonian) transition in the northern hemisphere (NE Laurussia and NE Siberia) - an overview","authors":"Andrey V. Zhuravlev, E. Sokiran","doi":"10.3140/bull.geosci.1791","DOIUrl":"https://doi.org/10.3140/bull.geosci.1791","url":null,"abstract":"Gereke, m. & Schindler, e. 2012. “Time­Specific Facies” and biological crises — The Kellwasser Event interval near the Frasnian/Famennian boundary (Late Devonian). Palaeogeography, Palaeoclimatology, Palaeoecology 367– 368, 19–29. DOI 10.1016/j.palaeo.2011.11.024 Gholamalian, h. 2007. Conodont biostratigraphy of the Frasnian­ Famennian boundary in the Esfahan and Tabas areas, Central Iran. Geological Quarterly 51(4), 453–476. hallam, a. & wiGnall, P.b. 1999. Mass extinctions and sea­ level changes. Earth-Science Reviews 48(4), 217–250. DOI 10.1016/S0012­8252(99)00055­0 hladil, j. 2002. Geophysical records of dispersed weathering products on the Frasnian carbonate platform and early Famennian ramps in Moravia, Czech Republic: proxies for eustasy and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 181(1–3), 213–250. DOI 10.1016/S0031­0182(01)00480­1 huanG, c., joachimSki, m.m. & GonG, y. 2018. Did climate changes trigger the Late Devonian Kellwasser Crisis? Evidence from a high-resolution conodont δOPO4 record from South China. Earth and Planetary Science Letters 495, 174–184. DOI 10.1016/j.epsl.2018.05.016 iZokh, o.P., iZokh, n.G., Ponomarchuk, v.a. & Semenova, d.v. 2009. Carbon and oxygen isotopes in the Frasnian­Famennian section of the Kuznetsk Basin (southern West Siberia). Geologiya i Geofizika (Russian Geology and Geophysics) 50(7), 786–795. DOI 10.1016/j.rgg.2008.12.007 joachimSki, m.m., oStertaG­henninG, c., PancoSt, r.d., StrauSS, h., freeman, k.h., littke, r., SinninGhe damSté, j.S. & racki, G. 2001. Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian­Famennian boundary (Kowala – Holy Cross Mountains/Poland). Chemical Geology 175, 109–131. DOI 10.1016/S0009­2541(00)00365­X kiSelev, a.i., yarmolyuk, v.v., eGorov, k.n., chernyShov, r.a. & nikiforov, a.v. 2006. Middle Paleozoic Basic Magmatism of the Northwestern Vilyui Rift: Composition, Sources, and Geodynamics. Petrology 14(6), 588–608. DOI 10.1134/S0869591106060051 kRavchińsky, v.a. 2012. Paleozoic large igneous provinces of northern Eurasia: Correlation with mass extinction events. Global and Planetary Change 86–87, 31–36. DOI 10.1016/j.gloplacha.2012.01.007 kRawczyński, w., Piechota, a., soBstel, M., sokiRan, e. & filiPiak, P. 2004. Faunistyczne i środowiskowe zmiany na granicy fran­famen w profilu geologicznym Kamenki (Centralne Pole Dewońskie, Rosja), p. 38. In XIX Konferencja Paleobiologów i Biostratygrafów PTG, Wrocław 16–18.09. 2004. krylova, a.k. 1955. Spiriferids of the Devonian of the Volga­Ural region. Trudy Vsesoûznogo Neftânogo NaučnoIssledovatel’skogo Geologorazvedočnogo Instituta, Novaâ Seriâ 88, 297–331. [in Russian] krylova, a.k. 1959. The Upper Devonian of Stolb Island in the Lena River mouth. Doklady AN SSSR 124(1), 162–164. [in Russian] krylova, a.k. 1962. Stratigrafia i brachiopody devona Sibirskoy platformy [Stratigraphy and brachiopods of the Devonian of Siberian Platform]. 108pp. Tr. VNIGRI, 200","PeriodicalId":9332,"journal":{"name":"Bulletin of Geosciences","volume":"1 1","pages":"419-439"},"PeriodicalIF":1.9,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41887160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Bulletin of Geosciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1