首页 > 最新文献

Mathematical foundations of computing最新文献

英文 中文
Some structures of submatrices in solution to the paire of matrix equations $ AX = C $, $ XB = D $ 矩阵方程对$ AX = C $, $ XB = D $的若干解的子矩阵结构
Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022023
Radja Belkhiri, Sihem Guerarra

The optimization problems involving local unitary and local contraction matrices and some Hermitian structures have been concedered in this paper. We establish a set of explicit formulas for calculating the maximal and minimal values of the ranks and inertias of the matrices begin{document}$ X_{1}X_{1}^{ast}-P_{1} $end{document}, begin{document}$ X_{2}X_{2}^{ast}-P_{1} $end{document}, begin{document}$ X_{3}X_{3}^{ast}-P_{2} $end{document} and begin{document}$ X_{4}X_{4}^{ast }-P_{2} $end{document}, with respect to begin{document}$ X_{1} $end{document}, begin{document}$ X_{2} $end{document}, begin{document}$ X_{3} $end{document} and begin{document}$ X_{4} $end{document} respectively, where begin{document}$ P_{1}in mathbb{C} ^{n_{1}times n_{1}} $end{document}, begin{document}$ P_{2}in mathbb{C} ^{n_{2}times n_{2}} $end{document} are given, begin{document}$ X_{1} $end{document}, begin{document}$ X_{2} $end{document}, begin{document}$ X_{3} $end{document} and begin{document}$ X_{4} $end{document} are submatrices in a general common solution begin{document}$ X $end{document} to the paire of matrix equations begin{document}$ AX = C $end{document}, begin{document}$ XB = D. $end{document}

The optimization problems involving local unitary and local contraction matrices and some Hermitian structures have been concedered in this paper. We establish a set of explicit formulas for calculating the maximal and minimal values of the ranks and inertias of the matrices begin{document}$ X_{1}X_{1}^{ast}-P_{1} $end{document}, begin{document}$ X_{2}X_{2}^{ast}-P_{1} $end{document}, begin{document}$ X_{3}X_{3}^{ast}-P_{2} $end{document} and begin{document}$ X_{4}X_{4}^{ast }-P_{2} $end{document}, with respect to begin{document}$ X_{1} $end{document}, begin{document}$ X_{2} $end{document}, begin{document}$ X_{3} $end{document} and begin{document}$ X_{4} $end{document} respectively, where begin{document}$ P_{1}in mathbb{C} ^{n_{1}times n_{1}} $end{document}, begin{document}$ P_{2}in mathbb{C} ^{n_{2}times n_{2}} $end{document} are given, begin{document}$ X_{1} $end{document}, begin{document}$ X_{2} $end{document}, begin{document}$ X_{3} $end{document} and begin{document}$ X_{4} $end{document} are submatrices in a general common solution begin{document}$ X $end{document} to the paire of matrix equations begin{document}$ AX = C $end{document}, begin{document}$ XB = D. $end{document}
{"title":"Some structures of submatrices in solution to the paire of matrix equations $ AX = C $, $ XB = D $","authors":"Radja Belkhiri, Sihem Guerarra","doi":"10.3934/mfc.2022023","DOIUrl":"https://doi.org/10.3934/mfc.2022023","url":null,"abstract":"<p style='text-indent:20px;'>The optimization problems involving local unitary and local contraction matrices and some Hermitian structures have been concedered in this paper. We establish a set of explicit formulas for calculating the maximal and minimal values of the ranks and inertias of the matrices <inline-formula><tex-math id=\"M3\">begin{document}$ X_{1}X_{1}^{ast}-P_{1} $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M4\">begin{document}$ X_{2}X_{2}^{ast}-P_{1} $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M5\">begin{document}$ X_{3}X_{3}^{ast}-P_{2} $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M6\">begin{document}$ X_{4}X_{4}^{ast }-P_{2} $end{document}</tex-math></inline-formula>, with respect to <inline-formula><tex-math id=\"M7\">begin{document}$ X_{1} $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M8\">begin{document}$ X_{2} $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M9\">begin{document}$ X_{3} $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M10\">begin{document}$ X_{4} $end{document}</tex-math></inline-formula> respectively, where <inline-formula><tex-math id=\"M11\">begin{document}$ P_{1}in mathbb{C} ^{n_{1}times n_{1}} $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M12\">begin{document}$ P_{2}in mathbb{C} ^{n_{2}times n_{2}} $end{document}</tex-math></inline-formula> are given, <inline-formula><tex-math id=\"M13\">begin{document}$ X_{1} $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M14\">begin{document}$ X_{2} $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M15\">begin{document}$ X_{3} $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M16\">begin{document}$ X_{4} $end{document}</tex-math></inline-formula> are submatrices in a general common solution <inline-formula><tex-math id=\"M17\">begin{document}$ X $end{document}</tex-math></inline-formula> to the paire of matrix equations <inline-formula><tex-math id=\"M18\">begin{document}$ AX = C $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M19\">begin{document}$ XB = D. $end{document}</tex-math></inline-formula></p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"89 1","pages":"231-252"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88200490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dunkl analouge of Sz$ acute{a} $sz Schurer Beta bivariate operators Sz$ acute{a} $ Sz Schurer Beta二元算子的Dunkl模拟
Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022037
V. Mishra, Mohd Raiz, N. Rao

The motive of this research article is to introduce a sequence of Szbegin{document}$ acute{a}sz $end{document} Schurer Beta bivariate operators in terms of generalization exponential functions and their approximation properties. Further, preliminaries results and definitions are presented. Moreover, we study existence of convergence with the aid of Korovkin theorem and order of approximation via usual modulus of continuity, Peetre's K-functional, Lipschitz maximal functional. Lastly, approximation properties of these sequences of operators are studied in Bbegin{document}$ ddot{o} $end{document}gel space via mixed modulus of continuity.

The motive of this research article is to introduce a sequence of Szbegin{document}$ acute{a}sz $end{document} Schurer Beta bivariate operators in terms of generalization exponential functions and their approximation properties. Further, preliminaries results and definitions are presented. Moreover, we study existence of convergence with the aid of Korovkin theorem and order of approximation via usual modulus of continuity, Peetre's K-functional, Lipschitz maximal functional. Lastly, approximation properties of these sequences of operators are studied in Bbegin{document}$ ddot{o} $end{document}gel space via mixed modulus of continuity.
{"title":"Dunkl analouge of Sz$ acute{a} $sz Schurer Beta bivariate operators","authors":"V. Mishra, Mohd Raiz, N. Rao","doi":"10.3934/mfc.2022037","DOIUrl":"https://doi.org/10.3934/mfc.2022037","url":null,"abstract":"<p style='text-indent:20px;'>The motive of this research article is to introduce a sequence of Sz<inline-formula><tex-math id=\"M2\">begin{document}$ acute{a}sz $end{document}</tex-math></inline-formula> Schurer Beta bivariate operators in terms of generalization exponential functions and their approximation properties. Further, preliminaries results and definitions are presented. Moreover, we study existence of convergence with the aid of Korovkin theorem and order of approximation via usual modulus of continuity, Peetre's K-functional, Lipschitz maximal functional. Lastly, approximation properties of these sequences of operators are studied in B<inline-formula><tex-math id=\"M3\">begin{document}$ ddot{o} $end{document}</tex-math></inline-formula>gel space via mixed modulus of continuity.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"4 1","pages":"651-669"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78307449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Expression recognition method combining convolutional features and Transformer 结合卷积特征和Transformer的表情识别方法
Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022018
Xiaoning Zhu, Zhongyi Li, Jian Sun
Expression recognition has been an important research direction in the field of psychology, which can be used in traffic, medical, security, and criminal investigation by expressing human feelings through the muscles in the corners of the mouth, eyes, and face. Most of the existing research work uses convolutional neural networks (CNN) to recognize face images and thus classify expressions, which does achieve good results, but CNN do not have enough ability to extract global features. The Transformer has advantages for global feature extraction, but the Transformer is more computationally intensive and requires a large amount of training data. So, in this paper, we use the hierarchical Transformer, namely Swin Transformer, for the expression recognition task, and its computational power will be greatly reduced. At the same time, it is fused with a CNN model to propose a network architecture that combines the Transformer and CNN, and to the best of our knowledge, we are the first to combine the Swin Transformer with CNN and use it in an expression recognition task. We then evaluate the proposed method on some publicly available expression datasets and can obtain competitive results.
表情识别是心理学领域的一个重要研究方向,通过嘴角、眼角、面部的肌肉来表达人类的情感,可以应用于交通、医疗、安全、刑事侦查等领域。现有的研究工作大多使用卷积神经网络(CNN)对人脸图像进行识别,从而对表情进行分类,确实取得了很好的效果,但CNN对全局特征的提取能力还不够。Transformer在全局特征提取方面具有优势,但Transformer的计算量更大,需要大量的训练数据。因此,在本文中,我们使用分层变压器,即Swin变压器,来完成表达式识别任务,将大大降低其计算能力。同时,将其与CNN模型融合,提出了一种结合了Transformer和CNN的网络架构,据我们所知,我们是第一个将Swin Transformer与CNN结合起来,并将其用于表情识别任务。然后,我们在一些公开可用的表达数据集上评估了所提出的方法,并获得了具有竞争力的结果。
{"title":"Expression recognition method combining convolutional features and Transformer","authors":"Xiaoning Zhu, Zhongyi Li, Jian Sun","doi":"10.3934/mfc.2022018","DOIUrl":"https://doi.org/10.3934/mfc.2022018","url":null,"abstract":"Expression recognition has been an important research direction in the field of psychology, which can be used in traffic, medical, security, and criminal investigation by expressing human feelings through the muscles in the corners of the mouth, eyes, and face. Most of the existing research work uses convolutional neural networks (CNN) to recognize face images and thus classify expressions, which does achieve good results, but CNN do not have enough ability to extract global features. The Transformer has advantages for global feature extraction, but the Transformer is more computationally intensive and requires a large amount of training data. So, in this paper, we use the hierarchical Transformer, namely Swin Transformer, for the expression recognition task, and its computational power will be greatly reduced. At the same time, it is fused with a CNN model to propose a network architecture that combines the Transformer and CNN, and to the best of our knowledge, we are the first to combine the Swin Transformer with CNN and use it in an expression recognition task. We then evaluate the proposed method on some publicly available expression datasets and can obtain competitive results.","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"284 1","pages":"203-217"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86744988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
On Szász-Durrmeyer type modification using Gould Hopper polynomials 基于Gould Hopper多项式的Szász-Durrmeyer类型修正
Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022011
Karunesh Singh, P. Agrawal
In the present article, we study a generalization of Szász operators by Gould-Hopper polynomials. First, we obtain an estimate of error of the rate of convergence by these operators in terms of first order and second order moduli of continuity. Then, we derive a Voronovkaya-type theorem for these operators. Lastly, we derive Grüss-Voronovskaya type approximation theorem and Grüss-Voronovskaya type asymptotic result in quantitative form.
在本文中,我们研究了用Gould-Hopper多项式对Szász算子的推广。首先,我们用连续性的一阶模和二阶模得到了这些算子收敛速率的误差估计。然后,我们导出了这些算子的voronovkaya型定理。最后,导出了定量形式的gr ss- voronovskaya型逼近定理和gr ss- voronovskaya型渐近结果。
{"title":"On Szász-Durrmeyer type modification using Gould Hopper polynomials","authors":"Karunesh Singh, P. Agrawal","doi":"10.3934/mfc.2022011","DOIUrl":"https://doi.org/10.3934/mfc.2022011","url":null,"abstract":"In the present article, we study a generalization of Szász operators by Gould-Hopper polynomials. First, we obtain an estimate of error of the rate of convergence by these operators in terms of first order and second order moduli of continuity. Then, we derive a Voronovkaya-type theorem for these operators. Lastly, we derive Grüss-Voronovskaya type approximation theorem and Grüss-Voronovskaya type asymptotic result in quantitative form.","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"87 1","pages":"123-135"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84420470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Rates of weighted statistical convergence for a generalization of positive linear operators 正线性算子泛化的加权统计收敛率
Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022059
Reyhan Canatan Ilbey, O. Dogru
{"title":"Rates of weighted statistical convergence for a generalization of positive linear operators","authors":"Reyhan Canatan Ilbey, O. Dogru","doi":"10.3934/mfc.2022059","DOIUrl":"https://doi.org/10.3934/mfc.2022059","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"100 1","pages":"427-438"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76257438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On approximation of unbounded functions by certain modified Bernstein operators 若干修正Bernstein算子对无界函数的逼近
Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/mfc.2023014
R. Păltănea
{"title":"On approximation of unbounded functions by certain modified Bernstein operators","authors":"R. Păltănea","doi":"10.3934/mfc.2023014","DOIUrl":"https://doi.org/10.3934/mfc.2023014","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"5 1","pages":"512-519"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79628158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized Ismail-Durrmeyer type operators involving Sheffer polynomials 涉及Sheffer多项式的广义Ismail-Durrmeyer型算子
Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022064
P. Agrawal, Sompal Singh
{"title":"Generalized Ismail-Durrmeyer type operators involving Sheffer polynomials","authors":"P. Agrawal, Sompal Singh","doi":"10.3934/mfc.2022064","DOIUrl":"https://doi.org/10.3934/mfc.2022064","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70219305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smoothing piecewise linear activation functions based on mollified square root functions 基于平方根函数平滑分段线性激活函数
Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/mfc.2023032
Tony Yuxiang Pan, Guangyu Yang, Junli Zhao, Jieyu Ding
{"title":"Smoothing piecewise linear activation functions based on mollified square root functions","authors":"Tony Yuxiang Pan, Guangyu Yang, Junli Zhao, Jieyu Ding","doi":"10.3934/mfc.2023032","DOIUrl":"https://doi.org/10.3934/mfc.2023032","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70220845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Error analysis of classification learning algorithms based on LUMs loss 基于lum损失的分类学习算法误差分析
Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022028
Xuqing He, Hongwei Sun

In this paper, we study the learning performance of regularized large-margin unified machines (LUMs) for classification problem. The hypothesis space is taken to be a reproducing kernel Hilbert space begin{document}$ {mathcal H}_K $end{document}, and the penalty term is denoted by the norm of the function in begin{document}$ {mathcal H}_K $end{document}. Since the LUM loss functions are differentiable and convex, so the data piling phenomena can be avoided when dealing with the high-dimension low-sample size data. The error analysis of this classification learning machine mainly lies upon the comparison theorem [3] which ensures that the excess classification error can be bounded by the excess generalization error. Under a mild source condition which shows that the minimizer begin{document}$ f_V $end{document} of the generalization error can be approximated by the hypothesis space begin{document}$ {mathcal H}_K $end{document}, and by a leave one out variant technique proposed in [13], satisfying error bound and learning rate about the mean of excess classification error are deduced.

In this paper, we study the learning performance of regularized large-margin unified machines (LUMs) for classification problem. The hypothesis space is taken to be a reproducing kernel Hilbert space begin{document}$ {mathcal H}_K $end{document}, and the penalty term is denoted by the norm of the function in begin{document}$ {mathcal H}_K $end{document}. Since the LUM loss functions are differentiable and convex, so the data piling phenomena can be avoided when dealing with the high-dimension low-sample size data. The error analysis of this classification learning machine mainly lies upon the comparison theorem [3] which ensures that the excess classification error can be bounded by the excess generalization error. Under a mild source condition which shows that the minimizer begin{document}$ f_V $end{document} of the generalization error can be approximated by the hypothesis space begin{document}$ {mathcal H}_K $end{document}, and by a leave one out variant technique proposed in [13], satisfying error bound and learning rate about the mean of excess classification error are deduced.
{"title":"Error analysis of classification learning algorithms based on LUMs loss","authors":"Xuqing He, Hongwei Sun","doi":"10.3934/mfc.2022028","DOIUrl":"https://doi.org/10.3934/mfc.2022028","url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we study the learning performance of regularized large-margin unified machines (LUMs) for classification problem. The hypothesis space is taken to be a reproducing kernel Hilbert space <inline-formula><tex-math id=\"M1\">begin{document}$ {mathcal H}_K $end{document}</tex-math></inline-formula>, and the penalty term is denoted by the norm of the function in <inline-formula><tex-math id=\"M2\">begin{document}$ {mathcal H}_K $end{document}</tex-math></inline-formula>. Since the LUM loss functions are differentiable and convex, so the data piling phenomena can be avoided when dealing with the high-dimension low-sample size data. The error analysis of this classification learning machine mainly lies upon the comparison theorem [<xref ref-type=\"bibr\" rid=\"b3\">3</xref>] which ensures that the excess classification error can be bounded by the excess generalization error. Under a mild source condition which shows that the minimizer <inline-formula><tex-math id=\"M3\">begin{document}$ f_V $end{document}</tex-math></inline-formula> of the generalization error can be approximated by the hypothesis space <inline-formula><tex-math id=\"M4\">begin{document}$ {mathcal H}_K $end{document}</tex-math></inline-formula>, and by a leave one out variant technique proposed in [<xref ref-type=\"bibr\" rid=\"b13\">13</xref>], satisfying error bound and learning rate about the mean of excess classification error are deduced.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"78 1","pages":"616-624"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87095307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The family of $ lambda $-Bernstein-Durrmeyer operators based on certain parameters 基于某些参数的$ lambda $-Bernstein-Durrmeyer算子族
Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022038
Ram Pratap

The primary goal of this paper is to present the generalization of begin{document}$ lambda $end{document}-Bernstein operators with the assistance of a sequence of operators proposed by Mache and Zhou [24]. For these operators, I establish some approximation results using second-order modulus of continuity, Lipschitz space, Ditzian-Totik modulus of smoothness, and Voronovskaya type asymptotic results. I also indicate some graphical comparisons of my operators among existing operators for better presentation and justification using Matlab.

The primary goal of this paper is to present the generalization of begin{document}$ lambda $end{document}-Bernstein operators with the assistance of a sequence of operators proposed by Mache and Zhou [24]. For these operators, I establish some approximation results using second-order modulus of continuity, Lipschitz space, Ditzian-Totik modulus of smoothness, and Voronovskaya type asymptotic results. I also indicate some graphical comparisons of my operators among existing operators for better presentation and justification using Matlab.
{"title":"The family of $ lambda $-Bernstein-Durrmeyer operators based on certain parameters","authors":"Ram Pratap","doi":"10.3934/mfc.2022038","DOIUrl":"https://doi.org/10.3934/mfc.2022038","url":null,"abstract":"<p style='text-indent:20px;'>The primary goal of this paper is to present the generalization of <inline-formula><tex-math id=\"M2\">begin{document}$ lambda $end{document}</tex-math></inline-formula>-Bernstein operators with the assistance of a sequence of operators proposed by Mache and Zhou [<xref ref-type=\"bibr\" rid=\"b24\">24</xref>]. For these operators, I establish some approximation results using second-order modulus of continuity, Lipschitz space, Ditzian-Totik modulus of smoothness, and Voronovskaya type asymptotic results. I also indicate some graphical comparisons of my operators among existing operators for better presentation and justification using Matlab.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"10 1","pages":"546-557"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74024602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mathematical foundations of computing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1