Pub Date : 2024-11-18DOI: 10.1186/s12915-024-02065-y
Paula Ávila-Fernández, Miguel Etayo-Escanilla, David Sánchez-Porras, Ricardo Fernández-Valadés, Fernando Campos, Ingrid Garzón, Víctor Carriel, Miguel Alaminos, Óscar Darío García-García, Jesús Chato-Astrain
Background: Tissue engineering techniques offer new strategies to understand complex processes in a controlled and reproducible system. In this study, we generated bilayered human tissue substitutes consisting of a cellular connective tissue with a suprajacent epithelium (full-thickness stromal-epithelial substitutes or SESS) and human tissue substitutes with an epithelial layer generated on top of an acellular biomaterial (epithelial substitutes or ESS). Both types of artificial tissues were studied at sequential time periods to analyze the maturation process of the extracellular matrix.
Results: Regarding epithelial layer, ESS cells showed active proliferation, positive expression of cytokeratin 5, and low expression of differentiation markers, whereas SESS epithelium showed higher differentiation levels, with a progressive positive expression of cytokeratin 10 and claudin. Stromal cells in SESS tended to accumulate and actively synthetize extracellular matrix components such as collagens and proteoglycans in the stromal area in direct contact with the epithelium (zone 1), whereas these components were very scarce in ESS. Regarding the basement membrane, ESS showed a partially differentiated structure containing fibronectin-1 and perlecan. However, SESS showed higher basement membrane differentiation, with positive expression of fibronectin 1, perlecan, nidogen 1, chondroitin-6-sulfate proteoglycans, agrin, and collagens types IV and VII, although this structure was negative for lumican. Finally, both ESS and SESS proved to be useful tools for studying metabolic pathway regulation, revealing differential activation and upregulation of the transforming growth factor-β pathway in ESS and SESS.
Conclusions: These results confirm the relevance of epithelial-stromal interaction for extracellular matrix development and differentiation, especially regarding basement membrane components, and suggest the usefulness of bilayered artificial tissue substitutes to reproduce ex vivo the extracellular matrix maturation and development process of human tissues.
{"title":"Spatiotemporal characterization of extracellular matrix maturation in human artificial stromal-epithelial tissue substitutes.","authors":"Paula Ávila-Fernández, Miguel Etayo-Escanilla, David Sánchez-Porras, Ricardo Fernández-Valadés, Fernando Campos, Ingrid Garzón, Víctor Carriel, Miguel Alaminos, Óscar Darío García-García, Jesús Chato-Astrain","doi":"10.1186/s12915-024-02065-y","DOIUrl":"10.1186/s12915-024-02065-y","url":null,"abstract":"<p><strong>Background: </strong>Tissue engineering techniques offer new strategies to understand complex processes in a controlled and reproducible system. In this study, we generated bilayered human tissue substitutes consisting of a cellular connective tissue with a suprajacent epithelium (full-thickness stromal-epithelial substitutes or SESS) and human tissue substitutes with an epithelial layer generated on top of an acellular biomaterial (epithelial substitutes or ESS). Both types of artificial tissues were studied at sequential time periods to analyze the maturation process of the extracellular matrix.</p><p><strong>Results: </strong>Regarding epithelial layer, ESS cells showed active proliferation, positive expression of cytokeratin 5, and low expression of differentiation markers, whereas SESS epithelium showed higher differentiation levels, with a progressive positive expression of cytokeratin 10 and claudin. Stromal cells in SESS tended to accumulate and actively synthetize extracellular matrix components such as collagens and proteoglycans in the stromal area in direct contact with the epithelium (zone 1), whereas these components were very scarce in ESS. Regarding the basement membrane, ESS showed a partially differentiated structure containing fibronectin-1 and perlecan. However, SESS showed higher basement membrane differentiation, with positive expression of fibronectin 1, perlecan, nidogen 1, chondroitin-6-sulfate proteoglycans, agrin, and collagens types IV and VII, although this structure was negative for lumican. Finally, both ESS and SESS proved to be useful tools for studying metabolic pathway regulation, revealing differential activation and upregulation of the transforming growth factor-β pathway in ESS and SESS.</p><p><strong>Conclusions: </strong>These results confirm the relevance of epithelial-stromal interaction for extracellular matrix development and differentiation, especially regarding basement membrane components, and suggest the usefulness of bilayered artificial tissue substitutes to reproduce ex vivo the extracellular matrix maturation and development process of human tissues.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"263"},"PeriodicalIF":4.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575135/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1186/s12915-024-02062-1
Shaoyu Zhong, Lu Zheng, Yi Wu, Shujin Sun, Qing Luo, Guanbin Song, Dongyuan Lü, Mian Long
Background: Liver organoid serves as an alternative model for liver pathophysiology in carbohydrate or lipid metabolism and xenobiotic metabolism transformation. Biomechanical cues including spaceflight mission can affect liver organoid construction and their related functions, but their underlying mechanisms are not fully understood yet. Here, a rotating cell culture device, namely Rotating Flat Chamber (RFC), was specifically designed for adhering cells or cell aggregated to elucidate the effects of altered gravity vector on HepaRG-derived liver organoids construction.
Results: The organoids so formed under RFC presented the fast growth rate and large projection area. Meanwhile, the expressions of two pluripotency markers of SOX9 and CD44 were enhanced. This finding was positively correlated with the increased YAP expression and nuclear translocation as well as the elevated α4β6-integrin expression. Inhibition of YAP expression and nuclear translocation decreased the expression of SOX9 and CD44 under RFC, thereby attenuating the pluripotency of HepaRG-derived liver organoids.
Conclusions: In conclusion, we proposed a novel liver organoid construction method using rotating culture, by which the pluripotency of liver organoids so constructed is mediated by α4β6-integrin and YAP translocation. This work furthered the understanding in how the gravity vector orientation affects the construction of liver organoids and the related mechanotransductive pathways.
{"title":"Rotating culture regulates the formation of HepaRG-derived liver organoids via YAP translocation.","authors":"Shaoyu Zhong, Lu Zheng, Yi Wu, Shujin Sun, Qing Luo, Guanbin Song, Dongyuan Lü, Mian Long","doi":"10.1186/s12915-024-02062-1","DOIUrl":"10.1186/s12915-024-02062-1","url":null,"abstract":"<p><strong>Background: </strong>Liver organoid serves as an alternative model for liver pathophysiology in carbohydrate or lipid metabolism and xenobiotic metabolism transformation. Biomechanical cues including spaceflight mission can affect liver organoid construction and their related functions, but their underlying mechanisms are not fully understood yet. Here, a rotating cell culture device, namely Rotating Flat Chamber (RFC), was specifically designed for adhering cells or cell aggregated to elucidate the effects of altered gravity vector on HepaRG-derived liver organoids construction.</p><p><strong>Results: </strong>The organoids so formed under RFC presented the fast growth rate and large projection area. Meanwhile, the expressions of two pluripotency markers of SOX9 and CD44 were enhanced. This finding was positively correlated with the increased YAP expression and nuclear translocation as well as the elevated α<sub>4</sub>β<sub>6</sub>-integrin expression. Inhibition of YAP expression and nuclear translocation decreased the expression of SOX9 and CD44 under RFC, thereby attenuating the pluripotency of HepaRG-derived liver organoids.</p><p><strong>Conclusions: </strong>In conclusion, we proposed a novel liver organoid construction method using rotating culture, by which the pluripotency of liver organoids so constructed is mediated by α<sub>4</sub>β<sub>6</sub>-integrin and YAP translocation. This work furthered the understanding in how the gravity vector orientation affects the construction of liver organoids and the related mechanotransductive pathways.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"262"},"PeriodicalIF":4.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568593/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1186/s12915-024-02063-0
Antoinette J Piaggio, Luke Gierus, Daniel R Taylor, Nick D Holmes, David J Will, Neil J Gemmell, Paul Q Thomas
Background: Invasive management strategies range from preventing new invasive species incursions to eliminating established populations, with all requiring effective monitoring to guide action. The use of DNA sampled from the environment (eDNA) is one such tool that provides the ability to surveille and monitor target invasive species through passive sampling. Technology being developed to eliminate invasive species includes genetic biocontrol in the form of gene drive. This approach would drive a trait through a population and could be used to eliminate or modify a target population. Once a gene drive organism is released into a population then monitoring changes in density of the target species and the spread of the drive in the population would be critical.
Results: In this paper, we use invasive Mus musculus as a model for development of an eDNA assay that detects wild-type M. musculus and gene drive M. musculus. We demonstrate successful development of an assay where environmental samples could be used to detect wild-type invasive M. musculus and the relative density of wild-type to gene drive M. musculus.
Conclusions: The development of a method that detects both wild-type M. musculus and a gene drive M. musculus (tCRISPR) from environmental samples expands the utility of environmental DNA. This method provides a tool that can immediately be deployed for invasive wild M. musculus management across the world. This is a proof-of-concept that a genetic biocontrol construct could be monitored using environmental samples.
背景:入侵管理策略从防止新的入侵物种入侵到消灭已建立的种群,所有策略都需要有效的监测来指导行动。使用从环境中提取的 DNA 样本(eDNA)就是这样一种工具,它能够通过被动取样来调查和监测目标入侵物种。正在开发的消灭入侵物种的技术包括基因驱动形式的遗传生物控制。这种方法将通过种群驱动一种性状,可用于消灭或改变目标种群。一旦基因驱动生物体被释放到一个种群中,那么监测目标物种密度的变化以及基因驱动在种群中的传播情况将至关重要:在本文中,我们以入侵麝为模型,开发了一种可检测野生型麝和基因驱动麝的 eDNA 检测方法。我们展示了一种检测方法的成功开发,在这种方法中,环境样本可用于检测野生型入侵蕈蚊以及野生型与基因驱动蕈蚊的相对密度:结论:从环境样本中检测野生型蕈蚊和基因驱动蕈蚊(tCRISPR)的方法的开发拓展了环境 DNA 的用途。这种方法提供了一种工具,可立即用于世界各地的野生麝香猫入侵管理。这是利用环境样本监测基因生物控制构建物的概念验证。
{"title":"Building an eDNA surveillance toolkit for invasive rodents on islands: can we detect wild-type and gene drive Mus musculus?","authors":"Antoinette J Piaggio, Luke Gierus, Daniel R Taylor, Nick D Holmes, David J Will, Neil J Gemmell, Paul Q Thomas","doi":"10.1186/s12915-024-02063-0","DOIUrl":"10.1186/s12915-024-02063-0","url":null,"abstract":"<p><strong>Background: </strong>Invasive management strategies range from preventing new invasive species incursions to eliminating established populations, with all requiring effective monitoring to guide action. The use of DNA sampled from the environment (eDNA) is one such tool that provides the ability to surveille and monitor target invasive species through passive sampling. Technology being developed to eliminate invasive species includes genetic biocontrol in the form of gene drive. This approach would drive a trait through a population and could be used to eliminate or modify a target population. Once a gene drive organism is released into a population then monitoring changes in density of the target species and the spread of the drive in the population would be critical.</p><p><strong>Results: </strong>In this paper, we use invasive Mus musculus as a model for development of an eDNA assay that detects wild-type M. musculus and gene drive M. musculus. We demonstrate successful development of an assay where environmental samples could be used to detect wild-type invasive M. musculus and the relative density of wild-type to gene drive M. musculus.</p><p><strong>Conclusions: </strong>The development of a method that detects both wild-type M. musculus and a gene drive M. musculus (t<sub>CRISPR</sub>) from environmental samples expands the utility of environmental DNA. This method provides a tool that can immediately be deployed for invasive wild M. musculus management across the world. This is a proof-of-concept that a genetic biocontrol construct could be monitored using environmental samples.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"261"},"PeriodicalIF":4.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566076/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1186/s12915-024-02058-x
Kui Wang, Tian-Lun Chen, Xin-Xin Zhang, Jian-Bin Cao, Pengcheng Wang, Mingcang Wang, Jiu-Lin Du, Yu Mu, Rongkun Tao
Background: Tryptophan is an essential amino acid involved in critical cellular processes in vertebrates, serving as a precursor for serotonin and kynurenine, which are key neuromodulators to influence neural and immune functions. Systematic and quantitative measurement of tryptophan is vital to understanding these processes.
Results: Here, we utilized a robust and highly responsive green ratiometric indicator for tryptophan (GRIT) to quantitatively measure tryptophan dynamics in bacteria, mitochondria of mammalian cell cultures, human serum, and intact zebrafish. At the cellular scale, these quantitative analyses uncovered differences in tryptophan dynamics across cell types and organelles. At the whole-organism scale, we revealed that inflammation-induced tryptophan concentration increases in zebrafish brain led to elevated serotonin and kynurenine levels, prolonged sleep duration, suggesting a novel metabolic connection between immune response and behavior. Moreover, GRIT's application in detecting reduced serum tryptophan levels in patients with inflammation symptoms suggests its potential as a high-throughput diagnostic tool.
Conclusions: In summary, this study introduces GRIT as a powerful method for studying tryptophan metabolism and its broader physiological implications, paving the way for new insights into the metabolic regulation of health and disease across multiple biological scales.
{"title":"Unveiling tryptophan dynamics and functions across model organisms via quantitative imaging.","authors":"Kui Wang, Tian-Lun Chen, Xin-Xin Zhang, Jian-Bin Cao, Pengcheng Wang, Mingcang Wang, Jiu-Lin Du, Yu Mu, Rongkun Tao","doi":"10.1186/s12915-024-02058-x","DOIUrl":"10.1186/s12915-024-02058-x","url":null,"abstract":"<p><strong>Background: </strong>Tryptophan is an essential amino acid involved in critical cellular processes in vertebrates, serving as a precursor for serotonin and kynurenine, which are key neuromodulators to influence neural and immune functions. Systematic and quantitative measurement of tryptophan is vital to understanding these processes.</p><p><strong>Results: </strong>Here, we utilized a robust and highly responsive green ratiometric indicator for tryptophan (GRIT) to quantitatively measure tryptophan dynamics in bacteria, mitochondria of mammalian cell cultures, human serum, and intact zebrafish. At the cellular scale, these quantitative analyses uncovered differences in tryptophan dynamics across cell types and organelles. At the whole-organism scale, we revealed that inflammation-induced tryptophan concentration increases in zebrafish brain led to elevated serotonin and kynurenine levels, prolonged sleep duration, suggesting a novel metabolic connection between immune response and behavior. Moreover, GRIT's application in detecting reduced serum tryptophan levels in patients with inflammation symptoms suggests its potential as a high-throughput diagnostic tool.</p><p><strong>Conclusions: </strong>In summary, this study introduces GRIT as a powerful method for studying tryptophan metabolism and its broader physiological implications, paving the way for new insights into the metabolic regulation of health and disease across multiple biological scales.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"258"},"PeriodicalIF":4.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1186/s12915-024-02038-1
Richard J McDowell, Altug Didikoglu, Tom Woelders, Mazie J Gatt, Finn Moffatt, Saba Notash, Roelof A Hut, Timothy M Brown, Robert J Lucas
Background: Light is a key environmental regulator of physiology and behaviour. Mistimed or insufficient light disrupts circadian rhythms and is associated with impaired health and well-being across mammals. Appropriate lighting is therefore crucial for indoor housed mammals. Light is commonly measured in lux. However, this employs a spectral weighting function for human luminance and is not suitable for 'non-visual' effects of light or use across species. In humans, a photoreceptor-specific (α-opic) metrology system has been proposed as a more appropriate way of measuring light.
Results: Here we establish technology to allow this α-opic measurement approach to be readily extended across mammalian species, accounting for differences in photoreceptor types, photopigment spectral sensitivities, and eye anatomy. We develop a high-throughput method to derive spectral sensitivities for recombinantly expressed mammalian opsins and use it to establish the spectral sensitivity of melanopsin from 13 non-human mammals. We further address the need for simple measurement strategies for species-specific α-opic measures by developing an accessible online toolbox for calculating these units and validating an open hardware multichannel light sensor for 'point and click' measurement. We finally demonstrate that species-specific α-opic measurements are superior to photopic lux as predictors of physiological responses to light in mice and allow ecologically relevant comparisons of photosensitivity between species.
Conclusions: Our study presents methods for measuring light in species-specific α-opic units that are superior to the existing unit of photopic lux and holds the promise of improvements to the health and welfare of animals, scientific research reproducibility, agricultural productivity, and energy usage.
{"title":"Beyond Lux: methods for species and photoreceptor-specific quantification of ambient light for mammals.","authors":"Richard J McDowell, Altug Didikoglu, Tom Woelders, Mazie J Gatt, Finn Moffatt, Saba Notash, Roelof A Hut, Timothy M Brown, Robert J Lucas","doi":"10.1186/s12915-024-02038-1","DOIUrl":"10.1186/s12915-024-02038-1","url":null,"abstract":"<p><strong>Background: </strong>Light is a key environmental regulator of physiology and behaviour. Mistimed or insufficient light disrupts circadian rhythms and is associated with impaired health and well-being across mammals. Appropriate lighting is therefore crucial for indoor housed mammals. Light is commonly measured in lux. However, this employs a spectral weighting function for human luminance and is not suitable for 'non-visual' effects of light or use across species. In humans, a photoreceptor-specific (α-opic) metrology system has been proposed as a more appropriate way of measuring light.</p><p><strong>Results: </strong>Here we establish technology to allow this α-opic measurement approach to be readily extended across mammalian species, accounting for differences in photoreceptor types, photopigment spectral sensitivities, and eye anatomy. We develop a high-throughput method to derive spectral sensitivities for recombinantly expressed mammalian opsins and use it to establish the spectral sensitivity of melanopsin from 13 non-human mammals. We further address the need for simple measurement strategies for species-specific α-opic measures by developing an accessible online toolbox for calculating these units and validating an open hardware multichannel light sensor for 'point and click' measurement. We finally demonstrate that species-specific α-opic measurements are superior to photopic lux as predictors of physiological responses to light in mice and allow ecologically relevant comparisons of photosensitivity between species.</p><p><strong>Conclusions: </strong>Our study presents methods for measuring light in species-specific α-opic units that are superior to the existing unit of photopic lux and holds the promise of improvements to the health and welfare of animals, scientific research reproducibility, agricultural productivity, and energy usage.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"257"},"PeriodicalIF":4.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562817/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1186/s12915-024-02064-z
Jing Li, Shida He, Jian Zhang, Feng Zhang, Quan Zou, Fengming Ni
Background: The type IV secretion system is widely present in various bacteria, such as Salmonella, Escherichia coli, and Helicobacter pylori. These bacteria use the type IV secretion system to secrete type IV secretion effectors, infect host cells, and disrupt or modulate the communication pathways. In this study, type III and type VI secretion effectors were used as negative samples to train a robust model.
Results: The area under the curve of T4Seeker on the validation and independent test sets were 0.947 and 0.970, respectively, demonstrating the strong predictive capacity and robustness of T4Seeker. After comparing with the classic and state-of-the-art T4SE identification models, we found that T4Seeker, which is based on traditional features and large language model features, had a higher predictive ability.
Conclusion: The T4Seeker proposed in this study demonstrates superior performance in the field of T4SEs prediction. By integrating features at multiple levels, it achieves higher predictive accuracy and strong generalization capability, providing an effective tool for future T4SE research.
{"title":"T4Seeker: a hybrid model for type IV secretion effectors identification.","authors":"Jing Li, Shida He, Jian Zhang, Feng Zhang, Quan Zou, Fengming Ni","doi":"10.1186/s12915-024-02064-z","DOIUrl":"10.1186/s12915-024-02064-z","url":null,"abstract":"<p><strong>Background: </strong>The type IV secretion system is widely present in various bacteria, such as Salmonella, Escherichia coli, and Helicobacter pylori. These bacteria use the type IV secretion system to secrete type IV secretion effectors, infect host cells, and disrupt or modulate the communication pathways. In this study, type III and type VI secretion effectors were used as negative samples to train a robust model.</p><p><strong>Results: </strong>The area under the curve of T4Seeker on the validation and independent test sets were 0.947 and 0.970, respectively, demonstrating the strong predictive capacity and robustness of T4Seeker. After comparing with the classic and state-of-the-art T4SE identification models, we found that T4Seeker, which is based on traditional features and large language model features, had a higher predictive ability.</p><p><strong>Conclusion: </strong>The T4Seeker proposed in this study demonstrates superior performance in the field of T4SEs prediction. By integrating features at multiple levels, it achieves higher predictive accuracy and strong generalization capability, providing an effective tool for future T4SE research.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"259"},"PeriodicalIF":4.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566746/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1186/s12915-024-02055-0
Chao Cao, Chunyu Wang, Qi Dai, Quan Zou, Tao Wang
Background: Due to the ability of circRNA to bind with corresponding RBPs and play a critical role in gene regulation and disease prevention, numerous identification algorithms have been developed. Nevertheless, most of the current mainstream methods primarily capture one-dimensional sequence features through various descriptors, while neglecting the effective extraction of secondary structure features. Moreover, as the number of introduced descriptors increases, the issues of sparsity and ineffective representation also rise, causing a significant burden on computational models and leaving room for improvement in predictive performance.
Results: Based on this, we focused on capturing the features of secondary structure in sequences and developed a new architecture called CRBPSA, which is based on a sequence-structure attention mechanism. Firstly, a base-pairing matrix is generated by calculating the matching probability between each base, with a Gaussian function introduced as a weight to construct the secondary structure. Then, a Structure_Transformer is employed to extract base-pairing information and spatial positional dependencies, enabling the identification of binding sites through deeper feature extraction. Experimental results using the same set of hyperparameters on 37 circRNA datasets, totaling 671,952 samples, show that the CRBPSA algorithm achieves an average AUC of 99.93%, surpassing all existing prediction methods.
Conclusions: CRBPSA is a lightweight and efficient prediction tool for circRNA-RBP, which can capture structural features of sequences with minimal computational resources and accurately predict protein-binding sites. This tool facilitates a deeper understanding of the biological processes and mechanisms underlying circRNA and protein interactions.
{"title":"CRBPSA: CircRNA-RBP interaction sites identification using sequence structural attention model.","authors":"Chao Cao, Chunyu Wang, Qi Dai, Quan Zou, Tao Wang","doi":"10.1186/s12915-024-02055-0","DOIUrl":"10.1186/s12915-024-02055-0","url":null,"abstract":"<p><strong>Background: </strong>Due to the ability of circRNA to bind with corresponding RBPs and play a critical role in gene regulation and disease prevention, numerous identification algorithms have been developed. Nevertheless, most of the current mainstream methods primarily capture one-dimensional sequence features through various descriptors, while neglecting the effective extraction of secondary structure features. Moreover, as the number of introduced descriptors increases, the issues of sparsity and ineffective representation also rise, causing a significant burden on computational models and leaving room for improvement in predictive performance.</p><p><strong>Results: </strong>Based on this, we focused on capturing the features of secondary structure in sequences and developed a new architecture called CRBPSA, which is based on a sequence-structure attention mechanism. Firstly, a base-pairing matrix is generated by calculating the matching probability between each base, with a Gaussian function introduced as a weight to construct the secondary structure. Then, a Structure_Transformer is employed to extract base-pairing information and spatial positional dependencies, enabling the identification of binding sites through deeper feature extraction. Experimental results using the same set of hyperparameters on 37 circRNA datasets, totaling 671,952 samples, show that the CRBPSA algorithm achieves an average AUC of 99.93%, surpassing all existing prediction methods.</p><p><strong>Conclusions: </strong>CRBPSA is a lightweight and efficient prediction tool for circRNA-RBP, which can capture structural features of sequences with minimal computational resources and accurately predict protein-binding sites. This tool facilitates a deeper understanding of the biological processes and mechanisms underlying circRNA and protein interactions.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"260"},"PeriodicalIF":4.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566611/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1186/s12915-024-02056-z
Narendra K Dewangan, Sayed Golam Mohiuddin, Shayne Sensenbach, Prashant Karki, Mehmet A Orman
Background: The interactions between bacterial pathogens and host cells are characterized by a multitude of complexities, leading to a wide range of heterogeneous outcomes. Despite extensive research, we still have a limited understanding of how bacterial motility in complex environments impacts their ability to tolerate antibiotics and adhere to mammalian cell surfaces. The challenge lies in unraveling the complexity of these interactions and developing quantitative microscopy approaches to predict the behavior of bacterial populations.
Results: To address this challenge, we directed our efforts towards Pseudomonas aeruginosa, a pathogenic bacterium known for producing thick films in the lungs of cystic fibrosis patients, and Escherichia coli, used as a proof of concept to develop and demonstrate our single-cell tracking approaches. Our results revealed that P. aeruginosa exhibits diverse and complex interactions on mammalian cell surfaces, such as adhesion, rotational motion, and swimming, unlike the less interactive behavior of Escherichia coli. Our analysis indicated that P. aeruginosa demonstrated lower mean-squared displacement (MSD) values and greater adherence to mammalian cells compared to E. coli, which showed higher MSD slopes and less frequent adherence. Genetic mutations in membrane proteins of P. aeruginosa resulted in altered displacement patterns and reduced adhesion, with the ΔfliD mutant displaying a more Gaussian displacement distribution and significantly less adherence to mammalian cells. Adhesion and tolerance mechanisms are diverse and complex, potentially involving distinct pathways; however, our findings highlight the therapeutic potential of targeting the fliD gene (encoding a critical flagellum protein), as its deletion not only reduced adherence but also antibiotic tolerance.
Conclusions: Overall, our findings underscore the importance of single cell tracking in accurately assessing bacterial behavior over short time periods and highlight its significant potential in guiding effective intervention strategies.
{"title":"Uncovering bacterial-mammalian cell interactions via single-cell tracking.","authors":"Narendra K Dewangan, Sayed Golam Mohiuddin, Shayne Sensenbach, Prashant Karki, Mehmet A Orman","doi":"10.1186/s12915-024-02056-z","DOIUrl":"10.1186/s12915-024-02056-z","url":null,"abstract":"<p><strong>Background: </strong>The interactions between bacterial pathogens and host cells are characterized by a multitude of complexities, leading to a wide range of heterogeneous outcomes. Despite extensive research, we still have a limited understanding of how bacterial motility in complex environments impacts their ability to tolerate antibiotics and adhere to mammalian cell surfaces. The challenge lies in unraveling the complexity of these interactions and developing quantitative microscopy approaches to predict the behavior of bacterial populations.</p><p><strong>Results: </strong>To address this challenge, we directed our efforts towards Pseudomonas aeruginosa, a pathogenic bacterium known for producing thick films in the lungs of cystic fibrosis patients, and Escherichia coli, used as a proof of concept to develop and demonstrate our single-cell tracking approaches. Our results revealed that P. aeruginosa exhibits diverse and complex interactions on mammalian cell surfaces, such as adhesion, rotational motion, and swimming, unlike the less interactive behavior of Escherichia coli. Our analysis indicated that P. aeruginosa demonstrated lower mean-squared displacement (MSD) values and greater adherence to mammalian cells compared to E. coli, which showed higher MSD slopes and less frequent adherence. Genetic mutations in membrane proteins of P. aeruginosa resulted in altered displacement patterns and reduced adhesion, with the ΔfliD mutant displaying a more Gaussian displacement distribution and significantly less adherence to mammalian cells. Adhesion and tolerance mechanisms are diverse and complex, potentially involving distinct pathways; however, our findings highlight the therapeutic potential of targeting the fliD gene (encoding a critical flagellum protein), as its deletion not only reduced adherence but also antibiotic tolerance.</p><p><strong>Conclusions: </strong>Overall, our findings underscore the importance of single cell tracking in accurately assessing bacterial behavior over short time periods and highlight its significant potential in guiding effective intervention strategies.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"256"},"PeriodicalIF":4.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552363/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1186/s12915-024-02032-7
Nejc Haberman, Holly Digby, Rupert Faraway, Rebecca Cheung, Anob M Chakrabarti, Andrew M Jobbins, Callum Parr, Kayoko Yasuzawa, Takeya Kasukawa, Chi Wai Yip, Masaki Kato, Hazuki Takahashi, Piero Carninci, Santiago Vernia, Jernej Ule, Christopher R Sibley, Aida Martinez-Sanchez, Boris Lenhard
The 3' untranslated region (3'UTR) plays a crucial role in determining mRNA stability, localisation, translation and degradation. Cap analysis of gene expression (CAGE), a method for the detection of capped 5' ends of mRNAs, additionally reveals a large number of apparently 5' capped RNAs derived from locations within the body of the transcript, including 3'UTRs. Here, we provide direct evidence that these 3'UTR-derived RNAs are indeed capped and widespread in mammalian cells. By using a combination of AGO2 enhanced individual nucleotide resolution UV crosslinking and immunoprecipitation (eiCLIP) and CAGE following siRNA treatment, we find that these 3'UTR-derived RNAs likely originate from AGO2-binding sites, and most often occur at locations with G-rich motifs bound by the RNA-binding protein UPF1. High-resolution imaging and long-read sequencing analysis validate several 3'UTR-derived RNAs, showcase their variable abundance and show that they may not co-localise with the parental mRNAs. Taken together, we provide new insights into the origin and prevalence of 3'UTR-derived RNAs, show the utility of CAGE-seq for their genome-wide detection and provide a rich dataset for exploring new biology of a poorly understood new class of RNAs.
{"title":"Widespread 3'UTR capped RNAs derive from G-rich regions in proximity to AGO2 binding sites.","authors":"Nejc Haberman, Holly Digby, Rupert Faraway, Rebecca Cheung, Anob M Chakrabarti, Andrew M Jobbins, Callum Parr, Kayoko Yasuzawa, Takeya Kasukawa, Chi Wai Yip, Masaki Kato, Hazuki Takahashi, Piero Carninci, Santiago Vernia, Jernej Ule, Christopher R Sibley, Aida Martinez-Sanchez, Boris Lenhard","doi":"10.1186/s12915-024-02032-7","DOIUrl":"10.1186/s12915-024-02032-7","url":null,"abstract":"<p><p>The 3' untranslated region (3'UTR) plays a crucial role in determining mRNA stability, localisation, translation and degradation. Cap analysis of gene expression (CAGE), a method for the detection of capped 5' ends of mRNAs, additionally reveals a large number of apparently 5' capped RNAs derived from locations within the body of the transcript, including 3'UTRs. Here, we provide direct evidence that these 3'UTR-derived RNAs are indeed capped and widespread in mammalian cells. By using a combination of AGO2 enhanced individual nucleotide resolution UV crosslinking and immunoprecipitation (eiCLIP) and CAGE following siRNA treatment, we find that these 3'UTR-derived RNAs likely originate from AGO2-binding sites, and most often occur at locations with G-rich motifs bound by the RNA-binding protein UPF1. High-resolution imaging and long-read sequencing analysis validate several 3'UTR-derived RNAs, showcase their variable abundance and show that they may not co-localise with the parental mRNAs. Taken together, we provide new insights into the origin and prevalence of 3'UTR-derived RNAs, show the utility of CAGE-seq for their genome-wide detection and provide a rich dataset for exploring new biology of a poorly understood new class of RNAs.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"254"},"PeriodicalIF":4.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1186/s12915-024-02054-1
Yin Zhang, Ye Yuan, Mengqian Zhang, Xiaoyan Yu, Bixun Qiu, Fangchun Wu, Douglas R Tocher, Jiajia Zhang, Shaopan Ye, Wenxiao Cui, Jonathan Y S Leung, Mhd Ikhwanuddin, Waqas Waqas, Tariq Dildar, Hongyu Ma
Background: Evolutionary adaptation drives organismal adjustments to environmental pressures, exemplified in the diverse morphological and ecological adaptations seen in Decapoda crustaceans, particularly brachyuran crabs. Crabs thrive in diverse ecosystems, from coral reefs to hydrothermal vents and terrestrial habitats. Despite their ecological importance, the genetic mechanisms underpinning their developmental processes, reproductive strategies, and nutrient acquisition remain poorly understood.
Results: Here, we report a comprehensive genomic analysis of the green mud crab Scylla paramamosain using ultralong sequencing technologies, achieving a high-quality chromosome-level assembly. The refined 1.21 Gb genome, with an impressive contig N50 of 11.45 Mb, offers a valuable genomic resource. The genome exhibits 33,662 protein-coding genes, enriched in various pathways related to development and environmental adaptation. Gene family analysis shows expansion in development-related pathways and contraction in metabolic pathways, indicating niche adaptations. Notably, investigation into Hox gene regulation sheds light on their role in pleopod development, with the Abd-A gene identified as a linchpin. Post-transcriptional regulation involving novel-miR1317 negatively regulates Abd-A levels. Furthermore, the potential role of fru gene in ovarian development and the identification of novel-miR35 as a regulator of Spfru2 add complexity to gene regulatory networks. Comparative functional analysis across Decapoda species reveals neo-functionalization of the elovl6 gene in the synthesis of long-chain polyunsaturated fatty acids (LC-PUFA), suggesting its importance in environmental adaptation.
Conclusions: Our findings shed light on various aspects of crab biology, including genome sequencing, assembly, and annotation, as well as gene family expansion, contraction, and regulatory mechanisms governing crucial developmental processes such as metamorphosis, reproductive strategies, and fatty acid metabolism.
{"title":"High-resolution chromosome-level genome of Scylla paramamosain provides molecular insights into adaptive evolution in crabs.","authors":"Yin Zhang, Ye Yuan, Mengqian Zhang, Xiaoyan Yu, Bixun Qiu, Fangchun Wu, Douglas R Tocher, Jiajia Zhang, Shaopan Ye, Wenxiao Cui, Jonathan Y S Leung, Mhd Ikhwanuddin, Waqas Waqas, Tariq Dildar, Hongyu Ma","doi":"10.1186/s12915-024-02054-1","DOIUrl":"10.1186/s12915-024-02054-1","url":null,"abstract":"<p><strong>Background: </strong>Evolutionary adaptation drives organismal adjustments to environmental pressures, exemplified in the diverse morphological and ecological adaptations seen in Decapoda crustaceans, particularly brachyuran crabs. Crabs thrive in diverse ecosystems, from coral reefs to hydrothermal vents and terrestrial habitats. Despite their ecological importance, the genetic mechanisms underpinning their developmental processes, reproductive strategies, and nutrient acquisition remain poorly understood.</p><p><strong>Results: </strong>Here, we report a comprehensive genomic analysis of the green mud crab Scylla paramamosain using ultralong sequencing technologies, achieving a high-quality chromosome-level assembly. The refined 1.21 Gb genome, with an impressive contig N50 of 11.45 Mb, offers a valuable genomic resource. The genome exhibits 33,662 protein-coding genes, enriched in various pathways related to development and environmental adaptation. Gene family analysis shows expansion in development-related pathways and contraction in metabolic pathways, indicating niche adaptations. Notably, investigation into Hox gene regulation sheds light on their role in pleopod development, with the Abd-A gene identified as a linchpin. Post-transcriptional regulation involving novel-miR1317 negatively regulates Abd-A levels. Furthermore, the potential role of fru gene in ovarian development and the identification of novel-miR35 as a regulator of Spfru2 add complexity to gene regulatory networks. Comparative functional analysis across Decapoda species reveals neo-functionalization of the elovl6 gene in the synthesis of long-chain polyunsaturated fatty acids (LC-PUFA), suggesting its importance in environmental adaptation.</p><p><strong>Conclusions: </strong>Our findings shed light on various aspects of crab biology, including genome sequencing, assembly, and annotation, as well as gene family expansion, contraction, and regulatory mechanisms governing crucial developmental processes such as metamorphosis, reproductive strategies, and fatty acid metabolism.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"255"},"PeriodicalIF":4.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545969/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}