Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)最新文献
{"title":"Data-Driven Reduced Order Control for Partially Observed Fluid Systems","authors":"P. Sashittal, D. Bodony","doi":"10.2514/6.2020-1813","DOIUrl":"https://doi.org/10.2514/6.2020-1813","url":null,"abstract":"","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"75 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74499963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Kashitani, M. Taguchi, N. T. Duong, A. Oomori, M. Nishiyama, H. Tanno
{"title":"Correction: A Preliminary Study on Transonic Shock Tube Airfoil Flows with Gurney Flap by utilizing PDI","authors":"M. Kashitani, M. Taguchi, N. T. Duong, A. Oomori, M. Nishiyama, H. Tanno","doi":"10.2514/6.2020-1356.c1","DOIUrl":"https://doi.org/10.2514/6.2020-1356.c1","url":null,"abstract":"","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76309915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A mechanics-based modeling approach is developed to rapidly predict damage in polymer matrix composites resulting from a low velocity impact event. The approach is incorporated into a computer code that provides an efficient means to assess the damage resistance for a range of material systems, layup configurations, and impact scenarios. It is envisioned that the developed approach will aid in early design and analysis of composite structures where sizing and layup decisions must be made, and evaluating the feasibility of a large number of laminate configurations using numerical approaches such as finite element analysis (FEA) is prohibitively expensive. Therefore, the goal of the modeling approach is to predict the impact damage size given the laminate configuration and impact scenario. This information can then be used to determine the residual strength of the material. To be useful in such a context, the tool is designed to run quickly (<2 minutes) to allow a large number of design cases to be investigated. The results presented demonstrate that the model is capable of efficiently predicting low velocity impact damage size, shape, and location within an acceptable accuracy suitable for preliminary design and analysis of composite structures.
{"title":"Mechanics-Based Modeling Approach for Rapid Prediction of Low Velocity Impact Damage in Composite Laminates","authors":"L. Borkowski, R. Kumar, U. Palliyaguru","doi":"10.2514/6.2020-0726","DOIUrl":"https://doi.org/10.2514/6.2020-0726","url":null,"abstract":"A mechanics-based modeling approach is developed to rapidly predict damage in polymer matrix composites resulting from a low velocity impact event. The approach is incorporated into a computer code that provides an efficient means to assess the damage resistance for a range of material systems, layup configurations, and impact scenarios. It is envisioned that the developed approach will aid in early design and analysis of composite structures where sizing and layup decisions must be made, and evaluating the feasibility of a large number of laminate configurations using numerical approaches such as finite element analysis (FEA) is prohibitively expensive. Therefore, the goal of the modeling approach is to predict the impact damage size given the laminate configuration and impact scenario. This information can then be used to determine the residual strength of the material. To be useful in such a context, the tool is designed to run quickly (<2 minutes) to allow a large number of design cases to be investigated. The results presented demonstrate that the model is capable of efficiently predicting low velocity impact damage size, shape, and location within an acceptable accuracy suitable for preliminary design and analysis of composite structures.","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90759215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a modelling scheme suitable for loads analysis of maneuvers and gusts of flexible aircraft with active control systems. In contrast to most ongoing research the component to be investigated is not the wing but the vertical tail plane (VTP). Critical load conditions for vertical tail plane include yawing maneuver conditions as well as discrete lateral gusts. A new rudder reversal load condition features a three full reversals of the rudder pedal input instead of just one step input and amere return to neutral. This condition, where resulting loads are considered ultimate, was mainly motivated by wake vortex encounters during which the pilots made excessive use of the rudder. The design loads resulting from all conditions are heavily influenced by the flight control system, the underlying control law design method, and associated control law parameters. This gives rise to interesting trade-offs between handling qualities and loads sizing the VTP structure. Therefore, in this paper the influence of different types of lateral control laws on the loads of the different gust and maneuver conditions for certification as specified by the authorities is analysed. The control laws considered vary from basic yaw damping with rudder travel limitation to full roll and yaw command augmentation systems. From a design methodology point of view, classical and (incremental) Nonlinear Dynamic Inversion-based methods are analysed.
{"title":"Analysis of Automatic Control Function Effects on Vertical Tail Plane Critical Load Conditions","authors":"T. Kier, R. Muller, G. Looye","doi":"10.2514/6.2020-1621","DOIUrl":"https://doi.org/10.2514/6.2020-1621","url":null,"abstract":"This paper presents a modelling scheme suitable for loads analysis of maneuvers and gusts of flexible aircraft with active control systems. In contrast to most ongoing research the component to be investigated is not the wing but the vertical tail plane (VTP). Critical load conditions for vertical tail plane include yawing maneuver conditions as well as discrete lateral gusts. A new rudder reversal load condition features a three full reversals of the rudder pedal input instead of just one step input and amere return to neutral. This condition, where resulting loads are considered ultimate, was mainly motivated by wake vortex encounters during which the pilots made excessive use of the rudder. The design loads resulting from all conditions are heavily influenced by the flight control system, the underlying control law design method, and associated control law parameters. This gives rise to interesting trade-offs between handling qualities and loads sizing the VTP structure. Therefore, in this paper the influence of different types of lateral control laws on the loads of the different gust and maneuver conditions for certification as specified by the authorities is analysed. The control laws considered vary from basic yaw damping with rudder travel limitation to full roll and yaw command augmentation systems. From a design methodology point of view, classical and (incremental) Nonlinear Dynamic Inversion-based methods are analysed.","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89906583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The International Civil Aviation Organization is considering new environmental standards for future supersonic civil aircraft. NASA is supporting this effort by analyzing several notional, near-term supersonic transports. NASA’s performance, noise, and exhaust emission predictions for these transports are being used to inform a larger study that will determine the global environmental and economic impact of adding supersonic aircraft to the fleet beginning this decade. A supersonic business jet with a maximum takeoff gross weight of 55 tonnes is the focus of this paper. A smaller business jet weighing 45 tonnes is also discussed. Both airplanes use supersonic engines derived from a common contemporary commercial subsonic turbofan core. Aircraft performance, airport-vicinity noise, and exhaust emissions are predicted using NASA tools. Also investigated are some of the anticipated behaviors and requirements of these aircraft in the commercial airspace. The sensitivity of noise to system uncertainties is presented and alternative engine studies are discussed.
{"title":"Supersonic Technology Concept Aeroplanes for Environmental Studies","authors":"J. Berton, D. Huff, K. Geiselhart, J. Seidel","doi":"10.2514/6.2020-0263","DOIUrl":"https://doi.org/10.2514/6.2020-0263","url":null,"abstract":"The International Civil Aviation Organization is considering new environmental standards for future supersonic civil aircraft. NASA is supporting this effort by analyzing several notional, near-term supersonic transports. NASA’s performance, noise, and exhaust emission predictions for these transports are being used to inform a larger study that will determine the global environmental and economic impact of adding supersonic aircraft to the fleet beginning this decade. A supersonic business jet with a maximum takeoff gross weight of 55 tonnes is the focus of this paper. A smaller business jet weighing 45 tonnes is also discussed. Both airplanes use supersonic engines derived from a common contemporary commercial subsonic turbofan core. Aircraft performance, airport-vicinity noise, and exhaust emissions are predicted using NASA tools. Also investigated are some of the anticipated behaviors and requirements of these aircraft in the commercial airspace. The sensitivity of noise to system uncertainties is presented and alternative engine studies are discussed.","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74916203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Korzun, R. Maddock, M. Schoenenberger, K. Edquist, C. Zumwalt, C. Karlgaard
{"title":"Aerodynamic Performance of the 2018 InSight Mars Lander","authors":"A. Korzun, R. Maddock, M. Schoenenberger, K. Edquist, C. Zumwalt, C. Karlgaard","doi":"10.2514/6.2020-1272","DOIUrl":"https://doi.org/10.2514/6.2020-1272","url":null,"abstract":"","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"229 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80215162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jennifer G. Colborn, Joshua S. Heyne, Tyler H. Hendershott, S. Stouffer, Erin Peiffer, E. Corporan
{"title":"Fuel and Operating Condition Effects on Lean Blowout in a Swirl-Stabilized Single-Cup Combustor","authors":"Jennifer G. Colborn, Joshua S. Heyne, Tyler H. Hendershott, S. Stouffer, Erin Peiffer, E. Corporan","doi":"10.2514/6.2020-1883","DOIUrl":"https://doi.org/10.2514/6.2020-1883","url":null,"abstract":"","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90676272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulating a Vortex-Driven Cloud Feature on Uranus","authors":"Kevin Farmer","doi":"10.2514/6.2020-0143","DOIUrl":"https://doi.org/10.2514/6.2020-0143","url":null,"abstract":"","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"130 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91435324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RANS and LES Simulation of a Mach 7 Axisymmetric Flare Interaction","authors":"Cyrus Jordan, G. Buss, J. Edwards, D. Stefanski","doi":"10.2514/6.2020-1331","DOIUrl":"https://doi.org/10.2514/6.2020-1331","url":null,"abstract":"","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73786442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance Analysis of a Team of Highly Capable Individual Unmanned Aerial Systems","authors":"Rajnish Bhusal, B. Taner, K. Subbarao","doi":"10.2514/6.2020-2070","DOIUrl":"https://doi.org/10.2514/6.2020-2070","url":null,"abstract":"","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74318935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)