首页 > 最新文献

American journal of physiology. Renal physiology最新文献

英文 中文
Renin-angiotensin system-mediated nitric oxide signaling in podocytes. 荚膜细胞中 RAS 介导的一氧化氮信号转导。
Pub Date : 2024-09-01 Epub Date: 2024-07-18 DOI: 10.1152/ajprenal.00316.2023
Marharyta Semenikhina, Ruslan Bohovyk, Mykhailo Fedoriuk, Mariia Stefanenko, Christine A Klemens, Jim C Oates, Alexander Staruschenko, Oleg Palygin

Nitric oxide (NO) is widely recognized for its role in regulating renal function and blood pressure. However, the precise mechanisms by which NO affects renal epithelial cells remain understudied. Our previous research has shown that NO signaling in glomerular podocytes can be initiated by Angiotensin II (ANG II) but not by ATP. This study aims to elucidate the crucial interplay between the renin-angiotensin system (RAS) and NO production in podocytes. To conduct our research, we used cultured human podocytes and freshly isolated rat glomeruli. A variety of RAS peptides were used, alongside confocal microscopy, to detect NO production and NO/Ca2+ cross talk. Dynamic changes in the podocyte cytoskeleton, mediated by RAS-NO intracellular signaling, were observed using fluorescent labeling for F-actin and scanning probe microscopy. The experiments demonstrated that ANG II and ANG III generated high levels of NO by activating the angiotensin II type 2 receptor (AT2R). We did not detect functional MAS receptor presence in podocytes, and the moderate NO response to ANG 1-7 was also mediated through AT2R. Furthermore, NO production impacted intracellular Ca2+ signaling and correlated with an increase in podocyte volume and growth. Scanning probe experiments revealed that AT2R activation and the corresponding NO generation are responsible for the protrusion of podocyte lamellipodia. Taken together, our data indicate that AT2R activation enhances NO production in podocytes and subsequently mediates changes in Ca2+ signaling and podocyte volume dynamics. These mechanisms may play a significant role in both physiological and pathophysiological interactions between the RAS and podocytes.NEW & NOTEWORTHY The renin-angiotensin system plays a crucial role in the production of intracellular nitric oxide within podocytes. This mechanism operates through the activation of the angiotensin II type 2 receptor, leading to dynamic modifications in intracellular calcium levels and the actin filament network. This intricate process is vital for linking the activity of angiotensin receptors to podocyte function.

一氧化氮(NO)在调节肾功能和血压方面的作用已得到广泛认可。然而,NO 影响肾上皮细胞的确切机制仍未得到充分研究。我们之前的研究表明,肾小球荚膜细胞中的 NO 信号传导可由血管紧张素 II(Ang II)启动,但不能由 ATP 启动。本研究旨在阐明肾素-血管紧张素系统(RAS)与荚膜细胞中 NO 生成之间的重要相互作用。为了进行研究,我们利用了培养的人类荚膜细胞和新鲜分离的大鼠肾小球。我们使用了多种 RAS 肽和共聚焦显微镜来检测 NO 的产生和 NO/Ca2+ 的串扰。利用荧光标记 F-肌动蛋白和扫描探针显微镜观察了 RAS-NO 细胞内信号介导的荚膜细胞细胞骨架的动态变化。实验证明,血管紧张素 II 和血管紧张素 III 通过激活血管紧张素 II 2 型受体(AT2R)产生大量 NO。我们没有在荚膜细胞中检测到功能性 MAS 受体的存在,而对 Ang 1-7 的中度 NO 反应也是通过 AT2R 介导的。此外,NO 的产生影响了细胞内 Ca2+ 信号的传递,并与荚膜细胞体积和生长的增加相关。扫描探针实验显示,AT2R 激活和相应的 NO 生成是荚膜细胞片层突起的原因。总之,我们的数据表明,AT2R 激活会增强荚膜细胞中的 NO 生成,进而介导 Ca2+ 信号转导和荚膜细胞体积动态变化。这些机制可能在 RAS 和荚膜细胞之间的生理和病理相互作用中发挥重要作用。
{"title":"Renin-angiotensin system-mediated nitric oxide signaling in podocytes.","authors":"Marharyta Semenikhina, Ruslan Bohovyk, Mykhailo Fedoriuk, Mariia Stefanenko, Christine A Klemens, Jim C Oates, Alexander Staruschenko, Oleg Palygin","doi":"10.1152/ajprenal.00316.2023","DOIUrl":"10.1152/ajprenal.00316.2023","url":null,"abstract":"<p><p>Nitric oxide (NO) is widely recognized for its role in regulating renal function and blood pressure. However, the precise mechanisms by which NO affects renal epithelial cells remain understudied. Our previous research has shown that NO signaling in glomerular podocytes can be initiated by Angiotensin II (ANG II) but not by ATP. This study aims to elucidate the crucial interplay between the renin-angiotensin system (RAS) and NO production in podocytes. To conduct our research, we used cultured human podocytes and freshly isolated rat glomeruli. A variety of RAS peptides were used, alongside confocal microscopy, to detect NO production and NO/Ca<sup>2+</sup> cross talk. Dynamic changes in the podocyte cytoskeleton, mediated by RAS-NO intracellular signaling, were observed using fluorescent labeling for F-actin and scanning probe microscopy. The experiments demonstrated that ANG II and ANG III generated high levels of NO by activating the angiotensin II type 2 receptor (AT<sub>2</sub>R). We did not detect functional MAS receptor presence in podocytes, and the moderate NO response to ANG 1-7 was also mediated through AT<sub>2</sub>R. Furthermore, NO production impacted intracellular Ca<sup>2+</sup> signaling and correlated with an increase in podocyte volume and growth. Scanning probe experiments revealed that AT<sub>2</sub>R activation and the corresponding NO generation are responsible for the protrusion of podocyte lamellipodia. Taken together, our data indicate that AT<sub>2</sub>R activation enhances NO production in podocytes and subsequently mediates changes in Ca<sup>2+</sup> signaling and podocyte volume dynamics. These mechanisms may play a significant role in both physiological and pathophysiological interactions between the RAS and podocytes.<b>NEW & NOTEWORTHY</b> The renin-angiotensin system plays a crucial role in the production of intracellular nitric oxide within podocytes. This mechanism operates through the activation of the angiotensin II type 2 receptor, leading to dynamic modifications in intracellular calcium levels and the actin filament network. This intricate process is vital for linking the activity of angiotensin receptors to podocyte function.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F532-F542"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460333/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of the CDKL1-SOX11 signaling axis in acute kidney injury. CDKL1-SOX11 信号轴在急性肾损伤中的作用
Pub Date : 2024-09-01 Epub Date: 2024-07-11 DOI: 10.1152/ajprenal.00147.2024
Josie A Silvaroli, Gabriela V Martinez, Thitinee Vanichapol, Alan J Davidson, Diana Zepeda-Orozco, Navjot S Pabla, Ji Young Kim

The biology of the cyclin-dependent kinase-like (CDKL) kinase family remains enigmatic. Contrary to their nomenclature, CDKLs do not rely on cyclins for activation and are not involved in cell cycle regulation. Instead, they share structural similarities with mitogen-activated protein kinases and glycogen synthase kinase-3, although their specific functions and associated signaling pathways are still unknown. Previous studies have shown that the activation of CDKL5 kinase contributes to the development of acute kidney injury (AKI) by suppressing the protective SOX9-dependent transcriptional program in tubular epithelial cells. In the current study, we measured the functional activity of all five CDKL kinases and discovered that, in addition to CDKL5, CDKL1 is also activated in tubular epithelial cells during AKI. To explore the role of CDKL1, we generated a germline knockout mouse that exhibited no abnormalities under normal conditions. Notably, when these mice were challenged with bilateral ischemia-reperfusion and rhabdomyolysis, they were found to be protected from AKI. Further mechanistic investigations revealed that CDKL1 phosphorylates and destabilizes SOX11, contributing to tubular dysfunction. In summary, this study has unveiled a previously unknown CDKL1-SOX11 axis that drives tubular dysfunction during AKI.NEW & NOTEWORTHY Identifying and targeting pathogenic protein kinases holds potential for drug discovery in treating acute kidney injury. Our study, using novel germline knockout mice, revealed that Cdkl1 kinase deficiency does not affect mouse viability but provides protection against acute kidney injury. This underscores the importance of Cdkl1 kinase in kidney injury and supports the development of targeted small-molecule inhibitors as potential therapeutics.

CDKL(类似细胞周期蛋白依赖性激酶)激酶家族的生物学特性仍是一个谜。与它们的命名相反,CDKL 并不依赖于细胞周期蛋白进行激活,也不参与细胞周期调控。相反,它们在结构上与 MAPKs(丝裂原活化蛋白激酶)和 GSK3(糖原合酶激酶 3)相似,但其具体功能和相关信号通路仍然未知。先前的研究表明,CDKL5 激酶的激活会抑制肾小管上皮细胞中依赖于 SOX9 的保护性转录程序,从而导致急性肾损伤(AKI)的发生。在本研究中,我们测量了所有五种 CDKL 激酶的功能活性,发现除了 CDKL5 外,CDKL1 也会在 AKI 期间激活肾小管上皮细胞。为了探索 CDKL1 的作用,我们产生了一种种系基因敲除小鼠,这种小鼠在正常情况下没有任何异常。值得注意的是,当这些小鼠受到双侧缺血再灌注和横纹肌溶解的挑战时,发现它们对 AKI 具有保护作用。进一步的机理研究发现,CDKL1 磷酸化并破坏 SOX11 的稳定性,导致肾小管功能障碍。总之,这些研究揭示了之前未知的 CDKL1-SOX11 轴,它在 AKI 期间驱动肾小管功能障碍。
{"title":"Role of the CDKL1-SOX11 signaling axis in acute kidney injury.","authors":"Josie A Silvaroli, Gabriela V Martinez, Thitinee Vanichapol, Alan J Davidson, Diana Zepeda-Orozco, Navjot S Pabla, Ji Young Kim","doi":"10.1152/ajprenal.00147.2024","DOIUrl":"10.1152/ajprenal.00147.2024","url":null,"abstract":"<p><p>The biology of the cyclin-dependent kinase-like (CDKL) kinase family remains enigmatic. Contrary to their nomenclature, CDKLs do not rely on cyclins for activation and are not involved in cell cycle regulation. Instead, they share structural similarities with mitogen-activated protein kinases and glycogen synthase kinase-3, although their specific functions and associated signaling pathways are still unknown. Previous studies have shown that the activation of CDKL5 kinase contributes to the development of acute kidney injury (AKI) by suppressing the protective SOX9-dependent transcriptional program in tubular epithelial cells. In the current study, we measured the functional activity of all five CDKL kinases and discovered that, in addition to CDKL5, CDKL1 is also activated in tubular epithelial cells during AKI. To explore the role of CDKL1, we generated a germline knockout mouse that exhibited no abnormalities under normal conditions. Notably, when these mice were challenged with bilateral ischemia-reperfusion and rhabdomyolysis, they were found to be protected from AKI. Further mechanistic investigations revealed that CDKL1 phosphorylates and destabilizes SOX11, contributing to tubular dysfunction. In summary, this study has unveiled a previously unknown CDKL1-SOX11 axis that drives tubular dysfunction during AKI.<b>NEW & NOTEWORTHY</b> Identifying and targeting pathogenic protein kinases holds potential for drug discovery in treating acute kidney injury. Our study, using novel germline knockout mice, revealed that Cdkl1 kinase deficiency does not affect mouse viability but provides protection against acute kidney injury. This underscores the importance of Cdkl1 kinase in kidney injury and supports the development of targeted small-molecule inhibitors as potential therapeutics.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F426-F434"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460330/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NAD deficiency contributes to progressive kidney disease in HIV-nephropathy mice. 缺乏 NAD 会导致 HIV 肾病小鼠出现进行性肾病。
Pub Date : 2024-09-01 Epub Date: 2024-07-04 DOI: 10.1152/ajprenal.00061.2024
Teruhiko Yoshida, Komuraiah Myakala, Bryce A Jones, Xiaoxin X Wang, Shashi Shrivastav, Briana A Santo, Tatsat R Patel, Yongmei Zhao, Vincent M Tutino, Pinaki Sarder, Avi Z Rosenberg, Cheryl A Winkler, Moshe Levi, Jeffrey B Kopp

HIV disease remains prevalent in the United States and is particularly prevalent in sub-Saharan Africa. Recent investigations revealed that mitochondrial dysfunction in kidney contributes to HIV-associated nephropathy (HIVAN) in Tg26 transgenic mice. We hypothesized that nicotinamide adenine dinucleotide (NAD) deficiency contributes to energetic dysfunction and progressive tubular injury. We investigated metabolomic mechanisms of HIVAN tubulopathy. Tg26 and wild-type (WT) mice were treated with the farnesoid X receptor (FXR) agonist INT-747 or nicotinamide riboside (NR) from 6 to 12 wk of age. Multiomic approaches were used to characterize kidney tissue transcriptomes and metabolomes. Treatment with INT-747 or NR ameliorated kidney tubular injury, as shown by serum creatinine, the tubular injury marker urinary neutrophil-associated lipocalin, and tubular morphometry. Integrated analysis of metabolomic and transcriptomic measurements showed that NAD levels and production were globally downregulated in Tg26 mouse kidneys, especially nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway. Furthermore, NAD-dependent deacetylase sirtuin3 activity and mitochondrial oxidative phosphorylation activity were lower in ex vivo proximal tubules from Tg26 mouse kidneys compared with those of WT mice. Restoration of NAD levels in the kidney improved these abnormalities. These data suggest that NAD deficiency might be a treatable target for HIVAN.NEW & NOTEWORTHY The study describes a novel investigation that identified nicotinamide adenine dinucleotide (NAD) deficiency in a widely used HIV-associated nephropathy (HIVAN) transgenic mouse model. We show that INT-747, a farnesoid X receptor agonist, and nicotinamide riboside (NR), a precursor of nicotinamide, each ameliorated HIVAN tubulopathy. Multiomic analysis of mouse kidneys revealed that NAD deficiency was an upstream metabolomic mechanism contributing to HIVAN tubulopathy.

艾滋病毒疾病在美国仍然很普遍,在撒哈拉以南非洲地区尤为流行。最近的研究发现,在 Tg26 转基因小鼠中,肾脏线粒体功能障碍导致了艾滋病毒相关性肾病(HIVAN)。我们推测烟酰胺腺嘌呤二核苷酸(NAD)缺乏会导致能量功能障碍和渐进性肾小管损伤。我们研究了 HIVAN 肾小管病变的代谢组学机制。Tg26和野生型(WT)小鼠在6至12周龄期间接受法尼类固醇-X受体(FXR)激动剂INT-747或烟酰胺核糖苷(NR)治疗。多组学方法用于描述肾组织转录组和代谢组的特征。血清肌酐、肾小管损伤标志物尿中性粒细胞相关脂褐素和肾小管形态测量显示,INT-747或NR能改善肾小管损伤。对代谢组学和转录组学测量结果的综合分析表明,Tg26 小鼠肾脏中的 NAD 水平和产生量全面下调,尤其是烟酰胺磷酸核糖转移酶(NAMPT),它是 NAD 修复途径中的限速酶。此外,与 WT 小鼠相比,Tg26 小鼠肾脏近端肾小管的 NAD 依赖性去乙酰化酶 sirtuin3 活性和线粒体氧化磷酸化活性均较低。恢复肾脏中的 NAD 水平可改善这些异常。这些数据表明,NAD缺乏可能是HIVAN的一个可治疗靶点。
{"title":"NAD deficiency contributes to progressive kidney disease in HIV-nephropathy mice.","authors":"Teruhiko Yoshida, Komuraiah Myakala, Bryce A Jones, Xiaoxin X Wang, Shashi Shrivastav, Briana A Santo, Tatsat R Patel, Yongmei Zhao, Vincent M Tutino, Pinaki Sarder, Avi Z Rosenberg, Cheryl A Winkler, Moshe Levi, Jeffrey B Kopp","doi":"10.1152/ajprenal.00061.2024","DOIUrl":"10.1152/ajprenal.00061.2024","url":null,"abstract":"<p><p>HIV disease remains prevalent in the United States and is particularly prevalent in sub-Saharan Africa. Recent investigations revealed that mitochondrial dysfunction in kidney contributes to HIV-associated nephropathy (HIVAN) in Tg26 transgenic mice. We hypothesized that nicotinamide adenine dinucleotide (NAD) deficiency contributes to energetic dysfunction and progressive tubular injury. We investigated metabolomic mechanisms of HIVAN tubulopathy. Tg26 and wild-type (WT) mice were treated with the farnesoid X receptor (FXR) agonist INT-747 or nicotinamide riboside (NR) from 6 to 12 wk of age. Multiomic approaches were used to characterize kidney tissue transcriptomes and metabolomes. Treatment with INT-747 or NR ameliorated kidney tubular injury, as shown by serum creatinine, the tubular injury marker urinary neutrophil-associated lipocalin, and tubular morphometry. Integrated analysis of metabolomic and transcriptomic measurements showed that NAD levels and production were globally downregulated in Tg26 mouse kidneys, especially nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway. Furthermore, NAD-dependent deacetylase sirtuin3 activity and mitochondrial oxidative phosphorylation activity were lower in ex vivo proximal tubules from Tg26 mouse kidneys compared with those of WT mice. Restoration of NAD levels in the kidney improved these abnormalities. These data suggest that NAD deficiency might be a treatable target for HIVAN.<b>NEW & NOTEWORTHY</b> The study describes a novel investigation that identified nicotinamide adenine dinucleotide (NAD) deficiency in a widely used HIV-associated nephropathy (HIVAN) transgenic mouse model. We show that INT-747, a farnesoid X receptor agonist, and nicotinamide riboside (NR), a precursor of nicotinamide, each ameliorated HIVAN tubulopathy. Multiomic analysis of mouse kidneys revealed that NAD deficiency was an upstream metabolomic mechanism contributing to HIVAN tubulopathy.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F450-F462"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444509/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging quantitative systems pharmacology and artificial intelligence to advance treatment of chronic kidney disease mineral bone disorder. 利用定量系统药理学和人工智能推进慢性肾病矿物质骨病的治疗。
Pub Date : 2024-09-01 Epub Date: 2024-07-04 DOI: 10.1152/ajprenal.00050.2024
Adam Gaweda, Michael Brier, Eleanor Lederer

Chronic kidney disease mineral bone disorder (CKD-MBD) is a complex clinical syndrome responsible for the accelerated cardiovascular mortality seen in individuals afflicted with CKD. Current approaches to therapy have failed to improve clinical outcomes adequately, likely due to targeting surrogate biochemical parameters as articulated by the guideline developer, Kidney Disease: Improving Global Outcomes (KDIGO). We hypothesized that using a Systems Biology Approach combining machine learning with mathematical modeling, we could test a novel approach to therapy targeting the abnormal movement of mineral out of bone and into soft tissue that is characteristic of CKD-MBD. The mathematical model describes the movement of calcium and phosphate between body compartments in response to standard therapeutic agents. The machine-learning technique we applied is reinforcement learning (RL). We compared calcium, phosphate, parathyroid hormone (PTH), and mineral movement out of bone and into soft tissue under four scenarios: standard approach (KDIGO), achievement of KDIGO guidelines using RL (RLKDIGO), targeting abnormal mineral flux (RLFLUX), and combining achievement of KDIGO guidelines with minimization of abnormal mineral flux (RLKDIGOFLUX). We demonstrate through simulations that explicitly targeting abnormal mineral flux significantly decreases abnormal mineral movement compared with standard approach while achieving acceptable biochemical outcomes. These investigations highlight the limitations of current therapeutic targets, primarily secondary hyperparathyroidism, and emphasize the central role of deranged phosphate homeostasis in the genesis of the CKD-MBD syndrome.NEW & NOTEWORTHY Artificial intelligence is a powerful tool for exploration of complex processes but application to clinical syndromes is challenging. Using a mathematical model describing the movement of calcium and phosphate between body compartments combined with machine learning, we show the feasibility of testing alternative goals of therapy for Chronic Kidney Disease Mineral Bone Disorder while maintaining acceptable biochemical outcomes. These simulations demonstrate the potential for using this platform to generate and test hypotheses in silico rapidly, inexpensively, and safely.

慢性肾脏病矿物质骨病(CKD-MBD)是一种复杂的临床综合征,是导致慢性肾脏病患者心血管死亡率加快的原因。目前的治疗方法未能充分改善临床疗效,这很可能是由于以指南制定者 KDIGO(《肾脏病:改善全球疗效》)阐明的替代生化指标为目标所致。我们假设,利用机器学习与数学建模相结合的系统生物学方法,我们可以测试一种针对矿物质从骨骼向软组织异常移动(这是 CKD-MBD 的特征)的新型治疗方法。该数学模型描述了钙和磷酸盐在标准治疗药物作用下在体内各区间的移动。我们采用的机器学习技术是强化学习(RL)。我们比较了以下四种情况下钙、磷酸盐、PTH 和矿物质从骨骼流出并进入软组织的情况:标准方法 (KDIGO)、使用 RL 实现 KDIGO 指南 (RLKDIGO)、针对异常矿物质通量 (RLFLUX) 以及将实现 KDIGO 指南与最小化异常矿物质通量相结合 (RLKDIGOFLUX)。我们通过模拟证明,与标准方法相比,明确针对异常矿物质通量可显著减少异常矿物质移动,同时获得可接受的生化结果。这些研究凸显了当前治疗目标(主要是继发性甲状旁腺功能亢进)的局限性,并强调了磷酸盐平衡失调在 CKD-MBD 综合征发病过程中的核心作用。
{"title":"Leveraging quantitative systems pharmacology and artificial intelligence to advance treatment of chronic kidney disease mineral bone disorder.","authors":"Adam Gaweda, Michael Brier, Eleanor Lederer","doi":"10.1152/ajprenal.00050.2024","DOIUrl":"10.1152/ajprenal.00050.2024","url":null,"abstract":"<p><p>Chronic kidney disease mineral bone disorder (CKD-MBD) is a complex clinical syndrome responsible for the accelerated cardiovascular mortality seen in individuals afflicted with CKD. Current approaches to therapy have failed to improve clinical outcomes adequately, likely due to targeting surrogate biochemical parameters as articulated by the guideline developer, Kidney Disease: Improving Global Outcomes (KDIGO). We hypothesized that using a Systems Biology Approach combining machine learning with mathematical modeling, we could test a novel approach to therapy targeting the abnormal movement of mineral out of bone and into soft tissue that is characteristic of CKD-MBD. The mathematical model describes the movement of calcium and phosphate between body compartments in response to standard therapeutic agents. The machine-learning technique we applied is reinforcement learning (RL). We compared calcium, phosphate, parathyroid hormone (PTH), and mineral movement out of bone and into soft tissue under four scenarios: standard approach (KDIGO), achievement of KDIGO guidelines using RL (RLKDIGO), targeting abnormal mineral flux (RLFLUX), and combining achievement of KDIGO guidelines with minimization of abnormal mineral flux (RLKDIGOFLUX). We demonstrate through simulations that explicitly targeting abnormal mineral flux significantly decreases abnormal mineral movement compared with standard approach while achieving acceptable biochemical outcomes. These investigations highlight the limitations of current therapeutic targets, primarily secondary hyperparathyroidism, and emphasize the central role of deranged phosphate homeostasis in the genesis of the CKD-MBD syndrome.<b>NEW & NOTEWORTHY</b> Artificial intelligence is a powerful tool for exploration of complex processes but application to clinical syndromes is challenging. Using a mathematical model describing the movement of calcium and phosphate between body compartments combined with machine learning, we show the feasibility of testing alternative goals of therapy for Chronic Kidney Disease Mineral Bone Disorder while maintaining acceptable biochemical outcomes. These simulations demonstrate the potential for using this platform to generate and test hypotheses in silico rapidly, inexpensively, and safely.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F351-F362"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deletion of KS-WNK1 promotes NCC activation by increasing WNK1/4 abundance. KS-WNK1的缺失会通过增加WNK1/4的丰度来促进NCC的激活。
Pub Date : 2024-09-01 Epub Date: 2024-07-04 DOI: 10.1152/ajprenal.00101.2024
Mohammed Z Ferdaus, Andrew S Terker, Rainelli B Koumangoye, Lama Al-Qusairi, Paul A Welling, Eric Delpire

Dietary potassium deficiency causes stimulation of sodium reabsorption leading to an increased risk in blood pressure elevation. The distal convoluted tubule (DCT) is the main rheostat linking plasma K+ levels to the activity of the Na-Cl cotransporter (NCC). This occurs through basolateral membrane potential sensing by inwardly rectifying K+ channels (Kir4.1/5.1); decrease in intracellular Cl-; activation of WNK4 and interaction and phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK); binding of calcium-binding protein 39 (cab39) adaptor protein to SPAK, leading to its trafficking to the apical membrane; and SPAK binding, phosphorylation, and activation of NCC. As kidney-specific with-no-lysine kinase 1 (WNK1) isoform (KS-WNK1) is another participant in this pathway, we examined its function in NCC regulation. We eliminated KS-WNK1 specifically in the DCT and demonstrated increased expression of WNK4 and long WNK1 (L-WNK1) and increased phosphorylation of NCC. As in other KS-WNK1 models, the mice were not hyperkalemic. Although wild-type mice under low-dietary K+ conditions demonstrated increased NCC phosphorylation, the phosphorylation levels of the transporter, already high in KS-WNK1, did not change under the low-K+ diet. Thus, in the absence of KS-WNK1, the transporter lost its sensitivity to low plasma K+. We also show that under low K+ conditions, in the absence of KS-WNK1, there was no formation of WNK bodies. These bodies were observed in adjacent segments, not affected by the targeting of KS-WNK1. As our data are overall consistent with those of the global KS-WNK1 knockout, they indicate that the DCT is the predominant segment affecting the salt transport regulated by KS-WNK1.NEW & NOTEWORTHY In this paper, we show that KS-WNK1 is a critical component of the distal convoluted tubule (DCT) K+ switch pathway. Its deletion results in an inability of the DCT to sense changes in plasma potassium. Absence of KS-WNK1 leads to abnormally high levels of WNK4 and L-WNK1 in the DCT, resulting in increased Na-Cl phosphorylation and function. Our data are consistent with KS-WNK1 targeting WNK4 and L-WNK1 to degradation.

饮食中缺钾会刺激钠的重吸收,从而增加血压升高的风险。远端曲小管是连接血浆 K+ 水平与 Na-Cl 共转运体(NCC)活性的主要调节器。这是通过 Kir4.1/5.1 的基底侧膜电位感应、细胞内 Cl- 的减少、WNK4 的激活、Ste20/SPS1 相关富脯氨酸/丙氨酸激酶(SPAK)的相互作用和磷酸化、钙结合蛋白 39(cab39)适配蛋白与 SPAK 的结合导致其迁移到顶端膜,以及 SPAK 与 NCC 的结合、磷酸化和激活而实现的。肾脏特异性赖氨酸(K)激酶1(WNK1)同工酶(KS-WNK1)是该通路的另一个参与者,因此我们研究了它在NCC调控中的功能。我们特异性地消除了 DCT 中的 KS-WNK1,结果表明 WNK4 和 L-WNK1 的表达增加,NCC 的磷酸化增加。与其他 KS-WNK1 模型一样,这些小鼠没有高血钾症。虽然野生型小鼠在低 K+饮食条件下表现出 NCC 磷酸化增加,但 KS-WNK1 中已经很高的转运体磷酸化水平在低 K+饮食条件下没有变化。因此,在 KS-WNK1 缺失的情况下,转运体失去了对低血浆 K+ 的敏感性。我们还发现,在低 K+条件下,如果没有 KS-WNK1,就不会形成 WNK 体。在不受 KS-WNK1 靶向影响的相邻区段也能观察到 WNK 体。由于我们的数据与 KS-WNK1 整体敲除的数据总体上一致,它们表明 DCT 是影响 KS-WNK1 盐转运的主要区段。
{"title":"Deletion of KS-WNK1 promotes NCC activation by increasing WNK1/4 abundance.","authors":"Mohammed Z Ferdaus, Andrew S Terker, Rainelli B Koumangoye, Lama Al-Qusairi, Paul A Welling, Eric Delpire","doi":"10.1152/ajprenal.00101.2024","DOIUrl":"10.1152/ajprenal.00101.2024","url":null,"abstract":"<p><p>Dietary potassium deficiency causes stimulation of sodium reabsorption leading to an increased risk in blood pressure elevation. The distal convoluted tubule (DCT) is the main rheostat linking plasma K<sup>+</sup> levels to the activity of the Na-Cl cotransporter (NCC). This occurs through basolateral membrane potential sensing by inwardly rectifying K<sup>+</sup> channels (Kir4.1/5.1); decrease in intracellular Cl<sup>-</sup>; activation of WNK4 and interaction and phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK); binding of calcium-binding protein 39 (cab39) adaptor protein to SPAK, leading to its trafficking to the apical membrane; and SPAK binding, phosphorylation, and activation of NCC. As kidney-specific with-no-lysine kinase 1 (WNK1) isoform (KS-WNK1) is another participant in this pathway, we examined its function in NCC regulation. We eliminated KS-WNK1 specifically in the DCT and demonstrated increased expression of WNK4 and long WNK1 (L-WNK1) and increased phosphorylation of NCC. As in other KS-WNK1 models, the mice were not hyperkalemic. Although wild-type mice under low-dietary K<sup>+</sup> conditions demonstrated increased NCC phosphorylation, the phosphorylation levels of the transporter, already high in KS-WNK1, did not change under the low-K<sup>+</sup> diet. Thus, in the absence of KS-WNK1, the transporter lost its sensitivity to low plasma K<sup>+</sup>. We also show that under low K<sup>+</sup> conditions, in the absence of KS-WNK1, there was no formation of WNK bodies. These bodies were observed in adjacent segments, not affected by the targeting of KS-WNK1. As our data are overall consistent with those of the global KS-WNK1 knockout, they indicate that the DCT is the predominant segment affecting the salt transport regulated by KS-WNK1.<b>NEW & NOTEWORTHY</b> In this paper, we show that KS-WNK1 is a critical component of the distal convoluted tubule (DCT) K<sup>+</sup> switch pathway. Its deletion results in an inability of the DCT to sense changes in plasma potassium. Absence of KS-WNK1 leads to abnormally high levels of WNK4 and L-WNK1 in the DCT, resulting in increased Na-Cl phosphorylation and function. Our data are consistent with KS-WNK1 targeting WNK4 and L-WNK1 to degradation.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F373-F385"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460338/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of mTORC2 promotes natriuresis in Dahl salt-sensitive rats via the decrease of NCC and ENaC activity. 抑制 mTORC2 可通过降低 NCC 和 ENaC 的活性促进达尔盐敏感大鼠的利尿作用。
Pub Date : 2024-09-01 Epub Date: 2024-05-23 DOI: 10.1152/ajprenal.00403.2023
Chun Yang, Elena Isaeva, Satoshi Shimada, Theresa Kurth, Megan Stumpf, Nadezhda N Zheleznova, Alexander Staruschenko, Ranjan K Dash, Allen W Cowley

We have previously observed that prolonged administration of rapamycin, an inhibitor targeting the mammalian target of rapamycin complex (mTORC)1, partially reduced hypertension and alleviated kidney inflammation in Dahl salt-sensitive (SS) rats. In contrast, treatment with PP242, an inhibitor affecting both mTORC1/mTORC2, not only completely prevented hypertension but also provided substantial protection against kidney injury. Notably, PP242 exhibited potent natriuretic effects that were not evident with rapamycin. The primary objective of this study was to pinpoint the specific tubular sites responsible for the natriuretic effect of PP242 in SS rats subjected to either 0.4% NaCl (normal salt) or 4.0% NaCl (high salt) diet. Acute effects of PP242 on natriuretic, diuretic, and kaliuretic responses were determined in unanesthetized SS rats utilizing benzamil, furosemide, or hydrochlorothiazide [inhibitors of epithelial Na+ channel (ENaC), Na-K-2Cl cotransporter (NKCC2), or Na-Cl cotransporter (NCC), respectively] either administered alone or in combination. The findings indicate that the natriuretic effects of PP242 in SS rats stem predominantly from the inhibition of NCC and a reduction of ENaC open probability. Molecular analysis revealed that mTORC2 regulates NCC activity through protein phosphorylation and ENaC activity through proteolytic cleavage in vivo. Evidence also indicated that PP242 also prevents the loss of K+ associated with the inhibition of NCC. These findings suggest that PP242 may represent an improved therapeutic approach for antihypertensive intervention, potentially controlling blood pressure and mitigating kidney injury in salt-sensitive human subjects.NEW & NOTEWORTHY This study explored mechanisms underlying the natriuretic effects of mammalian target of rapamycin protein complex 2 inhibition using PP242 and revealed both epithelial Na+ channel and Na-Cl cotransporter in the distal tubular segments were potentially inhibited. These observations, with prior lab evidence, indicate that PP242 prevents hypertension via its potent inhibitory effects on these specific sodium transporters and by reducing renal immune responses. This dual action, coupled with potassium sparing effects, suggests an improved approach for managing hypertension and associated kidney damage.

我们以前曾观察到,长期服用雷帕霉素(一种针对哺乳动物雷帕霉素靶标 1(mTORC1)的抑制剂)可部分缓解达尔盐敏感大鼠(SS)的高血压并减轻肾脏炎症。相比之下,同时影响 mTORC1 和 mTORC2 的抑制剂 PP242 不仅能完全防止高血压,还能有效防止肾脏损伤。值得注意的是,PP242 具有雷帕霉素所不具备的强效利钠作用。本研究的主要目的是确定 PP242 在 0.4% NaCl(NS)或 4.0% NaCl(HS)饮食的 SS 大鼠肾小管中发挥利钠作用的特定部位。利用苯扎米尔、呋塞米或氢氯噻嗪(分别是ENaC、NKCC2或NCC的抑制剂)单独或联合给药,在未麻醉的SS大鼠体内测定了PP242对纳尿、利尿和缩尿反应的急性影响。研究结果表明,PP242 对 SS 大鼠的利尿作用主要源于抑制 NCC 和降低 ENaC 开放概率。分子分析表明,mTORC2 在体内通过蛋白磷酸化调节 NCC 活性,通过蛋白水解裂解调节 ENaC 活性。证据还表明,PP242 还能防止与抑制 NCC 相关的 K+ 损失。这些研究结果表明,PP242 可能是一种更好的降压干预治疗方法,有可能控制血压并减轻盐敏感人群的肾损伤。
{"title":"Inhibition of mTORC2 promotes natriuresis in Dahl salt-sensitive rats via the decrease of NCC and ENaC activity.","authors":"Chun Yang, Elena Isaeva, Satoshi Shimada, Theresa Kurth, Megan Stumpf, Nadezhda N Zheleznova, Alexander Staruschenko, Ranjan K Dash, Allen W Cowley","doi":"10.1152/ajprenal.00403.2023","DOIUrl":"10.1152/ajprenal.00403.2023","url":null,"abstract":"<p><p>We have previously observed that prolonged administration of rapamycin, an inhibitor targeting the mammalian target of rapamycin complex (mTORC)1, partially reduced hypertension and alleviated kidney inflammation in Dahl salt-sensitive (SS) rats. In contrast, treatment with PP242, an inhibitor affecting both mTORC1/mTORC2, not only completely prevented hypertension but also provided substantial protection against kidney injury. Notably, PP242 exhibited potent natriuretic effects that were not evident with rapamycin. The primary objective of this study was to pinpoint the specific tubular sites responsible for the natriuretic effect of PP242 in SS rats subjected to either 0.4% NaCl (normal salt) or 4.0% NaCl (high salt) diet. Acute effects of PP242 on natriuretic, diuretic, and kaliuretic responses were determined in unanesthetized SS rats utilizing benzamil, furosemide, or hydrochlorothiazide [inhibitors of epithelial Na<sup>+</sup> channel (ENaC), Na-K-2Cl cotransporter (NKCC2), or Na-Cl cotransporter (NCC), respectively] either administered alone or in combination. The findings indicate that the natriuretic effects of PP242 in SS rats stem predominantly from the inhibition of NCC and a reduction of ENaC open probability. Molecular analysis revealed that mTORC2 regulates NCC activity through protein phosphorylation and ENaC activity through proteolytic cleavage in vivo. Evidence also indicated that PP242 also prevents the loss of K<sup>+</sup> associated with the inhibition of NCC. These findings suggest that PP242 may represent an improved therapeutic approach for antihypertensive intervention, potentially controlling blood pressure and mitigating kidney injury in salt-sensitive human subjects.<b>NEW & NOTEWORTHY</b> This study explored mechanisms underlying the natriuretic effects of mammalian target of rapamycin protein complex 2 inhibition using PP242 and revealed both epithelial Na<sup>+</sup> channel and Na-Cl cotransporter in the distal tubular segments were potentially inhibited. These observations, with prior lab evidence, indicate that PP242 prevents hypertension via its potent inhibitory effects on these specific sodium transporters and by reducing renal immune responses. This dual action, coupled with potassium sparing effects, suggests an improved approach for managing hypertension and associated kidney damage.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F435-F449"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141082035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex differences in dietary sodium evoked NCC regulation and blood pressure in male and female Sprague-Dawley, Dahl salt-resistant, and Dahl salt-sensitive rats. 雌雄 Sprague Dawley 大鼠、耐达尔盐大鼠和对达尔盐敏感大鼠饮食钠诱发的 NCC 调节和血压的性别差异。
Pub Date : 2024-08-01 Epub Date: 2024-05-30 DOI: 10.1152/ajprenal.00150.2023
Kiyoung Kim, Kayla M Nist, Franco Puleo, James McKenna, Richard D Wainford

Hypertension affects approximately one in two United States adults and sex plays an important role in the pathogenesis of hypertension. The Na+-Cl- cotransporter (NCC), regulated by a kinase network including with-no-lysine kinase (WNK)1 and WNK4, STE20/SPS1-related proline alanine-rich kinase (SPAK), and oxidative stress response 1 (OxSR1), is critical to Na+ reabsorption and blood pressure regulation. Dietary salt differentially modulates NCC in salt-sensitive and salt-resistant rats, in part by modulation of WNK/SPAK/OxSR1 signaling. In this study, we tested the hypothesis that sex-dependent differences in NCC regulation contribute to the development of the salt sensitivity of blood pressure using male and female Sprague-Dawley (SD), Dahl salt-resistant (DSR), and Dahl salt-sensitive (DSS) rats. In normotensive salt-resistant SD and DSR rats, a high-salt diet evoked significant decreases in NCC activity, expression, and phosphorylation. In males, these changes were associated with no change in WNK1 expression, a decrease in WNK4 levels, and suppression of SPAK/OxSR1 expression and phosphorylation. In contrast, in females, there was decreased NCC activity associated with suppression of SPAK/OxSR1 expression and phosphorylation. In hypertensive DSS rats, the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension. Collectively, our findings support the existence of sex differences in male versus female rats with NCC regulation during dietary salt intake involving suppression of WNK4 expression in male rats only and the involvement of SPAK/OxSR1 signaling in both males and females.NEW & NOTEWORTHY NCC regulation is sex dependent. In normotensive male and female Sprague-Dawley and Dahl salt-resistant rats, which exhibit dietary Na+-evoked NCC suppression, male rats exhibit decreased WNK4 expression and decreased SPAK and OxSR1 levels, whereas female rats only suppress SPAK and OxSR1. In hypertensive Dahl salt-sensitive rats, the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension.

大约每两个美国成年人中就有一人患有高血压,而性别在高血压的发病机制中起着重要作用。 氯化钠共转运体(NCC)由一个激酶网络调控,该激酶网络包括无赖氨酸激酶(WNK)1 和 WNK4、STE20/SPS1 相关富脯氨酸丙氨酸激酶(SPAK)和氧化应激反应 1(OxSR1),对钠的重吸收和血压调节至关重要。膳食盐对盐敏感大鼠和盐耐受大鼠的 NCC 有不同的调节作用,部分原因是 WNK/SPAK/OxSR1 信号的调节。在这些研究中,我们使用雄性和雌性 Sprague Dawley 大鼠、达尔耐盐大鼠(DSR)和达尔盐敏感大鼠(DSS)测试了 NCC 调节的性别差异有助于血压盐敏感性发展的假设。在血压正常的耐盐 SD 和 DSR 大鼠中,高盐饮食导致 NCC 活性、表达和磷酸化显著下降。在雄性大鼠中,这些变化与 WNK1 表达无变化、WNK4 水平下降以及 SPAK/OxSR1 表达和磷酸化受抑制有关。相反,在雌性大鼠中,NCC 活性的降低与 SPAK/OxSR1 表达和磷酸化的抑制有关。在高血压 DSS 大鼠中,雌性大鼠通过 SPAK/OxSR1 机制抑制 NCC 的能力(与雄性相反)很可能是其盐敏感性高血压程度较低的原因。总之,我们的研究结果表明,雄性大鼠与雌性大鼠存在性别差异,在饮食摄入盐分期间,NCC的调节只涉及雄性大鼠WNK4表达的抑制,而SPAK/OxSR1信号传导在雄性和雌性大鼠中均有参与。
{"title":"Sex differences in dietary sodium evoked NCC regulation and blood pressure in male and female Sprague-Dawley, Dahl salt-resistant, and Dahl salt-sensitive rats.","authors":"Kiyoung Kim, Kayla M Nist, Franco Puleo, James McKenna, Richard D Wainford","doi":"10.1152/ajprenal.00150.2023","DOIUrl":"10.1152/ajprenal.00150.2023","url":null,"abstract":"<p><p>Hypertension affects approximately one in two United States adults and sex plays an important role in the pathogenesis of hypertension. The Na<sup>+</sup>-Cl<sup>-</sup> cotransporter (NCC), regulated by a kinase network including with-no-lysine kinase (WNK)1 and WNK4, STE20/SPS1-related proline alanine-rich kinase (SPAK), and oxidative stress response 1 (OxSR1), is critical to Na<sup>+</sup> reabsorption and blood pressure regulation. Dietary salt differentially modulates NCC in salt-sensitive and salt-resistant rats, in part by modulation of WNK/SPAK/OxSR1 signaling. In this study, we tested the hypothesis that sex-dependent differences in NCC regulation contribute to the development of the salt sensitivity of blood pressure using male and female Sprague-Dawley (SD), Dahl salt-resistant (DSR), and Dahl salt-sensitive (DSS) rats. In normotensive salt-resistant SD and DSR rats, a high-salt diet evoked significant decreases in NCC activity, expression, and phosphorylation. In males, these changes were associated with no change in WNK1 expression, a decrease in WNK4 levels, and suppression of SPAK/OxSR1 expression and phosphorylation. In contrast, in females, there was decreased NCC activity associated with suppression of SPAK/OxSR1 expression and phosphorylation. In hypertensive DSS rats, the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension. Collectively, our findings support the existence of sex differences in male versus female rats with NCC regulation during dietary salt intake involving suppression of WNK4 expression in male rats only and the involvement of SPAK/OxSR1 signaling in both males and females.<b>NEW & NOTEWORTHY</b> NCC regulation is sex dependent. In normotensive male and female Sprague-Dawley and Dahl salt-resistant rats, which exhibit dietary Na<sup>+</sup>-evoked NCC suppression, male rats exhibit decreased WNK4 expression and decreased SPAK and OxSR1 levels, whereas female rats only suppress SPAK and OxSR1. In hypertensive Dahl salt-sensitive rats, the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F277-F289"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460337/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141177044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endogenous activation of peroxisome proliferator-activated receptor-α in proximal tubule cells in counteracting phosphate toxicity. 近端肾小管细胞中过氧化物酶体增殖激活受体α在抵消磷酸盐毒性中的内源性激活作用
Pub Date : 2024-08-01 Epub Date: 2024-06-13 DOI: 10.1152/ajprenal.00046.2024
Yusuke Katsuma, Isao Matsui, Ayumi Matsumoto, Hiroki Okushima, Atsuhiro Imai, Yusuke Sakaguchi, Takeshi Yamamoto, Masayuki Mizui, Shohei Uchinomiya, Hisakazu Kato, Akio Ojida, Seiji Takashima, Kazunori Inoue, Yoshitaka Isaka

Increased dietary phosphate consumption intensifies renal phosphate burden. Several mechanisms for phosphate-induced renal tubulointerstitial fibrosis have been reported. Considering the dual nature of phosphate as both a potential renal toxin and an essential nutrient for the body, kidneys may possess inherent protective mechanisms against phosphate overload, rather than succumbing solely to injury. However, there is limited understanding of such mechanisms. To identify these mechanisms, we conducted single-cell RNA sequencing (scRNA-seq) analysis of the kidneys of control and dietary phosphate-loaded (Phos) mice at a time point when the Phos group had not yet developed tubulointerstitial fibrosis. scRNA-seq analysis identified the highest number of differentially expressed genes in the clusters belonging to proximal tubular epithelial cells (PTECs). Based on these differentially expressed genes, in silico analyses suggested that the Phos group activated peroxisome proliferator-activated receptor-α (PPAR-α) and fatty acid β-oxidation (FAO) in the PTECs. This activation was further substantiated through various experiments, including the use of an FAO activity visualization probe. Compared with wild-type mice, Ppara knockout mice exhibited exacerbated tubulointerstitial fibrosis in response to phosphate overload. Experiments conducted with cultured PTECs demonstrated that activation of the PPAR-α/FAO pathway leads to improved cellular viability under high-phosphate conditions. The Phos group mice showed a decreased serum concentration of free fatty acids, which are endogenous PPAR-α agonists. Instead, experiments using cultured PTECs revealed that phosphate directly activates the PPAR-α/FAO pathway. These findings indicate that noncanonical metabolic reprogramming via endogenous activation of the PPAR-α/FAO pathway in PTECs is essential to counteract phosphate toxicity.NEW & NOTEWORTHY This study revealed the activation of peroxisome proliferator-activated receptor-α and fatty acid β-oxidation in proximal tubular epithelial cells as an endogenous mechanism to protect the kidney from phosphate toxicity. These findings highlight noncanonical metabolic reprogramming as a potential target for suppressing phosphate toxicity in the kidneys.

饮食中磷酸盐摄入量的增加会加重肾脏的磷酸盐负担。据报道,磷酸盐诱发肾小管间质纤维化的机制有多种。考虑到磷酸盐既是一种潜在的肾脏毒素,又是人体必需的营养物质,因此肾脏可能具有固有的保护机制来防止磷酸盐超载,而不是仅仅屈服于损伤。然而,人们对这种机制的了解还很有限。为了确定这些机制,我们对对照组(Ctrl)和饮食磷酸盐负荷组(Phos)小鼠的肾脏进行了单细胞RNA测序(scRNA-seq)分析,当时Phos组尚未出现肾小管间质纤维化。根据这些 DEGs,硅学分析表明 Phos 组能激活 PTECs 中的过氧化物酶体增殖激活受体α(PPAR-α)和脂肪酸β氧化(FAO)。通过各种实验,包括使用 FAO 活性可视化探针,进一步证实了这种激活作用。与野生型小鼠相比,Ppara 基因敲除小鼠在磷酸盐超载时表现出更严重的肾小管间质纤维化。用培养的 PTECs 进行的实验表明,PPAR-α/FAO 途径的激活可提高高磷酸盐条件下的细胞活力。Phos 组小鼠血清中游离脂肪酸的浓度降低,而游离脂肪酸是内源性 PPAR-α 激动剂。相反,使用培养的 PTECs 进行的实验显示,磷酸盐能直接激活 PPAR-α/FAO 通路。这些研究结果表明,通过内源性激活PPAR-α/FAO途径对PTECs进行非规范的新陈代谢重编程对于对抗磷酸盐毒性至关重要。
{"title":"Endogenous activation of peroxisome proliferator-activated receptor-α in proximal tubule cells in counteracting phosphate toxicity.","authors":"Yusuke Katsuma, Isao Matsui, Ayumi Matsumoto, Hiroki Okushima, Atsuhiro Imai, Yusuke Sakaguchi, Takeshi Yamamoto, Masayuki Mizui, Shohei Uchinomiya, Hisakazu Kato, Akio Ojida, Seiji Takashima, Kazunori Inoue, Yoshitaka Isaka","doi":"10.1152/ajprenal.00046.2024","DOIUrl":"10.1152/ajprenal.00046.2024","url":null,"abstract":"<p><p>Increased dietary phosphate consumption intensifies renal phosphate burden. Several mechanisms for phosphate-induced renal tubulointerstitial fibrosis have been reported. Considering the dual nature of phosphate as both a potential renal toxin and an essential nutrient for the body, kidneys may possess inherent protective mechanisms against phosphate overload, rather than succumbing solely to injury. However, there is limited understanding of such mechanisms. To identify these mechanisms, we conducted single-cell RNA sequencing (scRNA-seq) analysis of the kidneys of control and dietary phosphate-loaded (Phos) mice at a time point when the Phos group had not yet developed tubulointerstitial fibrosis. scRNA-seq analysis identified the highest number of differentially expressed genes in the clusters belonging to proximal tubular epithelial cells (PTECs). Based on these differentially expressed genes, in silico analyses suggested that the Phos group activated peroxisome proliferator-activated receptor-α (PPAR-α) and fatty acid β-oxidation (FAO) in the PTECs. This activation was further substantiated through various experiments, including the use of an FAO activity visualization probe. Compared with wild-type mice, <i>Ppara</i> knockout mice exhibited exacerbated tubulointerstitial fibrosis in response to phosphate overload. Experiments conducted with cultured PTECs demonstrated that activation of the PPAR-α/FAO pathway leads to improved cellular viability under high-phosphate conditions. The Phos group mice showed a decreased serum concentration of free fatty acids, which are endogenous PPAR-α agonists. Instead, experiments using cultured PTECs revealed that phosphate directly activates the PPAR-α/FAO pathway. These findings indicate that noncanonical metabolic reprogramming via endogenous activation of the PPAR-α/FAO pathway in PTECs is essential to counteract phosphate toxicity.<b>NEW & NOTEWORTHY</b> This study revealed the activation of peroxisome proliferator-activated receptor-α and fatty acid β-oxidation in proximal tubular epithelial cells as an endogenous mechanism to protect the kidney from phosphate toxicity. These findings highlight noncanonical metabolic reprogramming as a potential target for suppressing phosphate toxicity in the kidneys.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F208-F223"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perinatal asphyxia leads to acute kidney damage and increased renal susceptibility in adulthood. 围产期窒息会导致急性肾损伤和成年后肾脏易感性增加。
Pub Date : 2024-08-01 Epub Date: 2024-06-27 DOI: 10.1152/ajprenal.00039.2024
Tamas Lakat, Andrea Fekete, Kornel Demeter, Akos R Toth, Zoltan K Varga, Attila Patonai, Hanga Kelemen, Andras Budai, Miklos Szabo, Attila J Szabo, Kai Kaila, Adam Denes, Eva Mikics, Adam Hosszu

Perinatal asphyxia (PA) poses a significant threat to multiple organs, particularly the kidneys. Diagnosing PA-associated kidney injury remains challenging, and treatment options are inadequate. Furthermore, there is a lack of long-term follow-up data regarding the renal implications of PA. In this study, 7-day-old male Wistar rats were exposed to PA using a gas mixture (4% O2; 20% CO2 in N2 for 15 min) to investigate molecular pathways linked to renal tubular damage, hypoxia, angiogenesis, heat shock response, inflammation, and fibrosis in the kidney. In a second experiment, adult rats with a history of PA were subjected to moderate renal ischemia-reperfusion (IR) injury to test the hypothesis that PA exacerbates renal susceptibility. Our results revealed an increased gene expression of renal injury markers (kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin), hypoxic and heat shock factors (hypoxia-inducible factor-1α, heat shock factor-1, and heat shock protein-27), proinflammatory cytokines (interleukin-1β, interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1), and fibrotic markers (transforming growth factor-β, connective tissue growth factor, and fibronectin) promptly after PA. Moreover, a machine learning model was identified through random forest analysis, demonstrating an impressive classification accuracy (95.5%) for PA. Post-PA rats showed exacerbated functional decline and tubular injury and more intense hypoxic, heat shock, proinflammatory, and profibrotic response after renal IR injury compared with controls. In conclusion, PA leads to subclinical kidney injury, which may increase the susceptibility to subsequent renal damage later in life. In addition, the parameters identified through random forest analysis provide a robust foundation for future biomarker research in the context of PA.NEW & NOTEWORTHY This article demonstrates that perinatal asphyxia leads to subclinical kidney injury that permanently increases renal susceptibility to subsequent ischemic injury. We identified major molecular pathways involved in perinatal asphyxia-induced renal complications, highlighting potential targets of therapeutic approaches. In addition, random forest analysis revealed a model that classifies perinatal asphyxia with 95.5% accuracy that may provide a strong foundation for further biomarker research. These findings underscore the importance of multiorgan follow-up for perinatal asphyxia-affected patients.

围产期窒息(PA)对多个器官,尤其是肾脏造成严重威胁。诊断 PA 引起的肾损伤仍具有挑战性,治疗方案也不完善。此外,目前还缺乏有关 PA 对肾脏影响的长期随访数据。在本研究中,使用混合气体(4% O2; 20% CO2 in N2,15 分钟)将 7 天大的雄性 Wistar 大鼠暴露于 PA,以研究与肾小管损伤、缺氧、血管生成、热休克反应、炎症和肾脏纤维化相关的分子通路。在第二项实验中,对有 PA 病史的成年大鼠进行了中度肾缺血再灌注(IR)损伤,以验证 PA 会加剧肾脏易感性的假设。我们的研究结果表明,在 PA 损伤后,肾损伤标志物(KIM-1、NGAL)、缺氧和热休克因子(HIF-1α、HSF-1、HSP-27)、促炎细胞因子(IL-1ß、IL-6、TNF-α、MCP-1)和纤维化标志物(TGF-ß、CTGF、纤维连接蛋白)的基因表达迅速增加。此外,通过随机森林分析确定了一个机器学习模型,该模型对 PA 的分类准确率高达 95.5%。与对照组相比,PA 后大鼠在肾脏 IRI 后表现出更严重的功能衰退和肾小管损伤,以及更强烈的缺氧、热休克、促炎症和促纤维化反应。总之,PA 会导致亚临床肾损伤,这可能会增加日后肾损伤的易感性。此外,通过随机森林分析确定的参数为今后在 PA 背景下开展生物标记物研究奠定了坚实的基础。
{"title":"Perinatal asphyxia leads to acute kidney damage and increased renal susceptibility in adulthood.","authors":"Tamas Lakat, Andrea Fekete, Kornel Demeter, Akos R Toth, Zoltan K Varga, Attila Patonai, Hanga Kelemen, Andras Budai, Miklos Szabo, Attila J Szabo, Kai Kaila, Adam Denes, Eva Mikics, Adam Hosszu","doi":"10.1152/ajprenal.00039.2024","DOIUrl":"10.1152/ajprenal.00039.2024","url":null,"abstract":"<p><p>Perinatal asphyxia (PA) poses a significant threat to multiple organs, particularly the kidneys. Diagnosing PA-associated kidney injury remains challenging, and treatment options are inadequate. Furthermore, there is a lack of long-term follow-up data regarding the renal implications of PA. In this study, 7-day-old male Wistar rats were exposed to PA using a gas mixture (4% O<sub>2</sub>; 20% CO<sub>2</sub> in N<sub>2</sub> for 15 min) to investigate molecular pathways linked to renal tubular damage, hypoxia, angiogenesis, heat shock response, inflammation, and fibrosis in the kidney. In a second experiment, adult rats with a history of PA were subjected to moderate renal ischemia-reperfusion (IR) injury to test the hypothesis that PA exacerbates renal susceptibility. Our results revealed an increased gene expression of renal injury markers (kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin), hypoxic and heat shock factors (hypoxia-inducible factor-1α, heat shock factor-1, and heat shock protein-27), proinflammatory cytokines (interleukin-1β, interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1), and fibrotic markers (transforming growth factor-β, connective tissue growth factor, and fibronectin) promptly after PA. Moreover, a machine learning model was identified through random forest analysis, demonstrating an impressive classification accuracy (95.5%) for PA. Post-PA rats showed exacerbated functional decline and tubular injury and more intense hypoxic, heat shock, proinflammatory, and profibrotic response after renal IR injury compared with controls. In conclusion, PA leads to subclinical kidney injury, which may increase the susceptibility to subsequent renal damage later in life. In addition, the parameters identified through random forest analysis provide a robust foundation for future biomarker research in the context of PA.<b>NEW & NOTEWORTHY</b> This article demonstrates that perinatal asphyxia leads to subclinical kidney injury that permanently increases renal susceptibility to subsequent ischemic injury. We identified major molecular pathways involved in perinatal asphyxia-induced renal complications, highlighting potential targets of therapeutic approaches. In addition, random forest analysis revealed a model that classifies perinatal asphyxia with 95.5% accuracy that may provide a strong foundation for further biomarker research. These findings underscore the importance of multiorgan follow-up for perinatal asphyxia-affected patients.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F314-F326"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-voltage-gated Ca2+ channel signaling in glomerular cells in kidney health and disease. 肾脏健康和疾病中肾小球细胞的非电压门控 Ca2+ 通道信号传导。
Pub Date : 2024-08-01 Epub Date: 2024-06-13 DOI: 10.1152/ajprenal.00130.2024
Rong Ma, Yu Tao, Michael L Wade, Robert T Mallet

Positioned at the head of the nephron, the renal corpuscle generates a plasma ultrafiltrate to initiate urine formation. Three major cell types within the renal corpuscle, the glomerular mesangial cells, podocytes, and glomerular capillary endothelial cells, communicate via endocrine- and paracrine-signaling mechanisms to maintain the structure and function of the glomerular capillary network and filtration barrier. Ca2+ signaling mediated by several distinct plasma membrane Ca2+ channels impacts the functions of all three cell types. The past two decades have witnessed pivotal advances in understanding of non-voltage-gated Ca2+ channel function and regulation in the renal corpuscle in health and renal disease. This review summarizes the current knowledge of the physiological and pathological impact of non-voltage-gated Ca2+ channel signaling in mesangial cells, podocytes and glomerular capillary endothelium. The main focus is on transient receptor potential and store-operated Ca2+ channels, but ionotropic N-methyl-d-aspartate receptors and purinergic receptors also are discussed. This update of Ca2+ channel functions and their cellular signaling cascades in the renal corpuscle is intended to inform the development of therapeutic strategies targeting these channels to treat kidney diseases, particularly diabetic nephropathy.

肾小球位于肾小球的头部,产生血浆超滤液以形成尿液。肾小球内的三种主要细胞类型,即肾小球系膜细胞、荚膜细胞和肾小球毛细血管内皮细胞通过内分泌和旁分泌信号机制进行交流,以维持肾小球毛细血管网络和过滤屏障的结构和功能。由几种不同质膜 Ca2+ 通道介导的 Ca2+ 信号调节这三种细胞类型的功能。在过去的二十年中,人们对肾小球细胞中 Ca2+ 通道功能和调节的认识取得了关键性进展,尤其是对健康和肾脏疾病中的非电压门控 Ca2+ 通道的认识。本综述总结了目前对肾小球毛细血管内皮细胞、间质细胞和荚膜细胞中非电压门控 Ca2+ 通道信号传导的生理和病理影响的认识。主要重点是瞬时受体电位和贮存操作 Ca2+ 通道,但也讨论了离子型 N-甲基-D-天冬氨酸受体和嘌呤能 2X 受体。本研究更新了肾小球中 Ca2+ 通道的功能及其细胞信号级联,旨在为开发针对这些通道的治疗策略提供信息,以治疗肾脏疾病,尤其是糖尿病肾病。
{"title":"Non-voltage-gated Ca<sup>2+</sup> channel signaling in glomerular cells in kidney health and disease.","authors":"Rong Ma, Yu Tao, Michael L Wade, Robert T Mallet","doi":"10.1152/ajprenal.00130.2024","DOIUrl":"10.1152/ajprenal.00130.2024","url":null,"abstract":"<p><p>Positioned at the head of the nephron, the renal corpuscle generates a plasma ultrafiltrate to initiate urine formation. Three major cell types within the renal corpuscle, the glomerular mesangial cells, podocytes, and glomerular capillary endothelial cells, communicate via endocrine- and paracrine-signaling mechanisms to maintain the structure and function of the glomerular capillary network and filtration barrier. Ca<sup>2+</sup> signaling mediated by several distinct plasma membrane Ca<sup>2+</sup> channels impacts the functions of all three cell types. The past two decades have witnessed pivotal advances in understanding of non-voltage-gated Ca<sup>2+</sup> channel function and regulation in the renal corpuscle in health and renal disease. This review summarizes the current knowledge of the physiological and pathological impact of non-voltage-gated Ca<sup>2+</sup> channel signaling in mesangial cells, podocytes and glomerular capillary endothelium. The main focus is on transient receptor potential and store-operated Ca<sup>2+</sup> channels, but ionotropic <i>N</i>-methyl-d-aspartate receptors and purinergic receptors also are discussed. This update of Ca<sup>2+</sup> channel functions and their cellular signaling cascades in the renal corpuscle is intended to inform the development of therapeutic strategies targeting these channels to treat kidney diseases, particularly diabetic nephropathy.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F249-F264"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American journal of physiology. Renal physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1