Pub Date : 2024-09-01Epub Date: 2024-07-11DOI: 10.1152/ajprenal.00117.2024
Pritha Dutta, Anita T Layton
Type 1 Bartter's syndrome and Gitelman's syndrome are characterized by mutations in two key renal Na+ transporters, Na-K-2Cl cotransporter (NKCC2) and Na-Cl cotransporter (NCC). Since these two transporters play an important role in regulating magnesium (Mg2+) and calcium (Ca2+) transport in the kidney, significant alterations in the transport of these two electrolytes are observed in type 1 Bartter's syndrome and Gitelman's syndrome. In this study, we used our sex-specific computational models of renal electrolyte transport in rats to understand the complex compensatory mechanisms, in terms of alterations in tubular dimensions and ion transporter activities, that lead to Mg2+ and Ca2+ preservation or wasting in these two genetic disorders. Given the sexual dimorphism in renal transporter patterns, we also assessed how the magnitude of these alterations may differ between males and females. Model simulations showed that in type 1 Bartter's syndrome, nephron adaptations prevent salt wasting and favor Mg2+ preservation but not Ca2+, whereas in Gitelman's syndrome, those adaptations favor Ca2+ preservation over Mg2+. In addition, our models predicted that the compensatory alterations in tubular dimensions and ion transporter activities are stronger in females than in males.NEW & NOTEWORTHY Although changes in Ca2+ excretion in type 1 Bartter's syndrome and Gitelman's syndrome are well understood, Mg2+ excretion displays an interesting paradox. This computational modeling study provides insights into how renal adaptations in these two disorders impact Ca2+ and Mg2+ transport along different nephron segments. Model simulations showed that nephron adaptations favor Mg2+ preservation over Ca2+ in Bartter's syndrome and Ca2+ preservation over Mg2+ in Gitelman's syndrome and are stronger in females than in males.
{"title":"Paradoxes in magnesium transport in type 1 Bartter's syndrome and Gitelman's syndrome: a modeling analysis.","authors":"Pritha Dutta, Anita T Layton","doi":"10.1152/ajprenal.00117.2024","DOIUrl":"10.1152/ajprenal.00117.2024","url":null,"abstract":"<p><p>Type 1 Bartter's syndrome and Gitelman's syndrome are characterized by mutations in two key renal Na<sup>+</sup> transporters, Na-K-2Cl cotransporter (NKCC2) and Na-Cl cotransporter (NCC). Since these two transporters play an important role in regulating magnesium (Mg<sup>2+</sup>) and calcium (Ca<sup>2+</sup>) transport in the kidney, significant alterations in the transport of these two electrolytes are observed in type 1 Bartter's syndrome and Gitelman's syndrome. In this study, we used our sex-specific computational models of renal electrolyte transport in rats to understand the complex compensatory mechanisms, in terms of alterations in tubular dimensions and ion transporter activities, that lead to Mg<sup>2+</sup> and Ca<sup>2+</sup> preservation or wasting in these two genetic disorders. Given the sexual dimorphism in renal transporter patterns, we also assessed how the magnitude of these alterations may differ between males and females. Model simulations showed that in type 1 Bartter's syndrome, nephron adaptations prevent salt wasting and favor Mg<sup>2+</sup> preservation but not Ca<sup>2+</sup>, whereas in Gitelman's syndrome, those adaptations favor Ca<sup>2+</sup> preservation over Mg<sup>2+</sup>. In addition, our models predicted that the compensatory alterations in tubular dimensions and ion transporter activities are stronger in females than in males.<b>NEW & NOTEWORTHY</b> Although changes in Ca<sup>2+</sup> excretion in type 1 Bartter's syndrome and Gitelman's syndrome are well understood, Mg<sup>2+</sup> excretion displays an interesting paradox. This computational modeling study provides insights into how renal adaptations in these two disorders impact Ca<sup>2+</sup> and Mg<sup>2+</sup> transport along different nephron segments. Model simulations showed that nephron adaptations favor Mg<sup>2+</sup> preservation over Ca<sup>2+</sup> in Bartter's syndrome and Ca<sup>2+</sup> preservation over Mg<sup>2+</sup> in Gitelman's syndrome and are stronger in females than in males.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F386-F396"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-04DOI: 10.1152/ajprenal.00028.2024
Yunmee Lho, Yeong Park, Jun Young Do, A-Young Kim, Yong-Eun Park, Seok Hui Kang
Epithelial-to-mesenchymal transition (EMT) is considered as one of the senescence processes; reportedly, antisenescence therapies effectively reduce EMT. Some models have shown antisenescence effects with the use of sodium-glucose cotransporter 2 (SGLT2) inhibitor. Therefore, our study investigated the antisenescence effects of empagliflozin as an SGLT2 inhibitor in a peritoneal fibrosis model and their impact on EMT inhibition. For in vitro study, human peritoneal mesothelial cells (HPMCs) were isolated and grown in a 96-well plate. The cell media were exchanged with serum-free M199 medium with d-glucose, with or without empagliflozin. All animal experiments were carried out in male mice. Mice were randomly classified into three treatment groups based on peritoneal dialysis (PD) or empagliflozin. We evaluated changes in senescence and EMT markers in HPMCs and PD model. HPMCs treated with glucose transformed from cobblestone to spindle shape, resulting in EMT. Empagliflozin attenuated these morphological changes. Reactive oxygen species production, DNA damage, senescence, and EMT markers were increased by glucose treatment; however, cotreatment with glucose and empagliflozin attenuated these changes. For the mice with PD, an increase in thickness, collagen deposition, staining for senescence, or EMT markers of the parietal peritoneum was observed, which, however, was attenuated by cotreatment with empagliflozin. p53, p21, and p16 increased in mice with PD compared with those in the control group; however, these changes were decreased by empagliflozin. In conclusion, empagliflozin effectively attenuated glucose-induced EMT in HPMCs through a decrease in senescence. Cotreatment with empagliflozin improved peritoneal thickness and fibrosis in PD.NEW & NOTEWORTHY Epithelial-to-mesenchymal transition (EMT) is considered one of the senescence processes. Antisenescence therapies may effectively reduce EMT in peritoneal dialysis models. Human peritoneal mesothelial cells treated with glucose show an increase in senescence and EMT markers; however, empagliflozin attenuates these changes. Mice undergoing peritoneal dialysis exhibit increased senescence and EMT markers, which are decreased by empagliflozin. These findings suggest that empagliflozin may emerge as a novel strategy for prevention or treatment of peritoneal fibrosis.
{"title":"Empagliflozin attenuates epithelial-to-mesenchymal transition through senescence in peritoneal dialysis.","authors":"Yunmee Lho, Yeong Park, Jun Young Do, A-Young Kim, Yong-Eun Park, Seok Hui Kang","doi":"10.1152/ajprenal.00028.2024","DOIUrl":"10.1152/ajprenal.00028.2024","url":null,"abstract":"<p><p>Epithelial-to-mesenchymal transition (EMT) is considered as one of the senescence processes; reportedly, antisenescence therapies effectively reduce EMT. Some models have shown antisenescence effects with the use of sodium-glucose cotransporter 2 (SGLT2) inhibitor. Therefore, our study investigated the antisenescence effects of empagliflozin as an SGLT2 inhibitor in a peritoneal fibrosis model and their impact on EMT inhibition. For in vitro study, human peritoneal mesothelial cells (HPMCs) were isolated and grown in a 96-well plate. The cell media were exchanged with serum-free M199 medium with d-glucose, with or without empagliflozin. All animal experiments were carried out in male mice. Mice were randomly classified into three treatment groups based on peritoneal dialysis (PD) or empagliflozin. We evaluated changes in senescence and EMT markers in HPMCs and PD model. HPMCs treated with glucose transformed from cobblestone to spindle shape, resulting in EMT. Empagliflozin attenuated these morphological changes. Reactive oxygen species production, DNA damage, senescence, and EMT markers were increased by glucose treatment; however, cotreatment with glucose and empagliflozin attenuated these changes. For the mice with PD, an increase in thickness, collagen deposition, staining for senescence, or EMT markers of the parietal peritoneum was observed, which, however, was attenuated by cotreatment with empagliflozin. p53, p21, and p16 increased in mice with PD compared with those in the control group; however, these changes were decreased by empagliflozin. In conclusion, empagliflozin effectively attenuated glucose-induced EMT in HPMCs through a decrease in senescence. Cotreatment with empagliflozin improved peritoneal thickness and fibrosis in PD.<b>NEW & NOTEWORTHY</b> Epithelial-to-mesenchymal transition (EMT) is considered one of the senescence processes. Antisenescence therapies may effectively reduce EMT in peritoneal dialysis models. Human peritoneal mesothelial cells treated with glucose show an increase in senescence and EMT markers; however, empagliflozin attenuates these changes. Mice undergoing peritoneal dialysis exhibit increased senescence and EMT markers, which are decreased by empagliflozin. These findings suggest that empagliflozin may emerge as a novel strategy for prevention or treatment of peritoneal fibrosis.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F363-F372"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-04DOI: 10.1152/ajprenal.00237.2023
Mina Shirazi, Cosimo Cianfarini, Ahmed Ismail, Jan Wysocki, Jiao-Jing Wang, Minghao Ye, Zheng Jenny Zhang, Daniel Batlle
There are diverse pathophysiological mechanisms involved in acute kidney injury (AKI). Among them, overactivity of the renin-angiotensin system (RAS) has been described. Angiotensin-converting enzyme 2 (ACE2) is a tissue RAS enzyme expressed in the apical border of proximal tubules. Given the important role of ACE2 in the metabolism of angiotensin II, this study aimed to characterize kidney and urinary ACE2 in a mouse model of AKI. Ischemia-reperfusion injury (IRI) was induced in C57BL/6 mice by clamping of the left renal artery followed by removal of the right kidney. In kidneys harvested 48 h after IRI, immunostaining revealed a striking maldistribution of ACE2 including spillage into the tubular lumen and the presence of ACE2-positive luminal casts in the medulla. In cortical membranes, ACE2 protein and enzymatic activity were both markedly reduced (37 ± 4 vs. 100 ± 6 ACE2/β-actin, P = 0.0004, and 96 ± 14 vs. 152 ± 6 RFU/μg protein/h, P = 0.006). In urine, full-length membrane-bound ACE2 protein (100 kDa) was markedly increased (1,120 ± 405 vs. 100 ± 46 ACE2/µg creatinine, P = 0.04), and casts stained for ACE2 were recovered in the urine sediment. In conclusion, in AKI caused by IRI, there is a marked loss of ACE2 from the apical tubular border with deposition of ACE2-positive material in the medulla and increased urinary excretion of full-length membrane-bound ACE2 protein. The deficiency of tubular ACE2 in AKI suggests that provision of this enzyme could have therapeutic applications and that its excretion in the urine may also serve as a diagnostic marker of severe proximal tubular injury.NEW & NOTEWORTHY This study provides novel insights into the distribution of kidney ACE2 in a model of AKI by IRI showing a striking detachment of apical ACE2 from proximal tubules and its loss in urine and urine sediment. The observed deficiency of kidney ACE2 protein and enzymatic activity in severe AKI suggests that administration of forms of this enzyme may mitigate AKI and that urinary ACE2 may serve as a potential biomarker for tubular injury.
急性肾损伤(AKI)的病理生理机制多种多样。其中,肾素血管紧张素系统(RAS)的过度活动已被描述。血管紧张素转换酶 2(ACE2)是一种在近端肾小管顶端边界表达的组织 RAS 酶。鉴于 ACE2 在血管紧张素 II 代谢中的重要作用,本研究旨在描述 AKI 小鼠模型中肾脏和尿液 ACE2 的特征。通过夹闭左肾动脉并切除右肾,诱导 C57BL/6 小鼠缺血再灌注损伤(IRI)。在IRI 48小时后摘取的肾脏中,免疫染色显示ACE2明显分布不良,包括溢入肾小管管腔和在髓质中出现ACE2阳性管腔铸型。皮质膜中的 ACE2 蛋白和酶活性都明显降低(37±4 对 100±6 ACE2/ß-Actin,P=0.0004;96±14 对 152±6 RFU/μg 蛋白/h,P=0.006)。在尿液中,全长膜结合 ACE2 蛋白(100kD)明显增加(1120±405 vs. 100±46 ACE2/µg Crea,P=0.04),尿沉渣中发现了 ACE2 染色的铸型。在由 IRI 引起的 AKI 中,ACE2 从肾小管顶端边界明显丢失,ACE2 阳性物质沉积在髓质中,全长膜结合 ACE2 蛋白的尿排泄增加。肾小管 ACE2 在 AKI 中的缺乏表明,提供这种酶可能有治疗用途,它在尿液中的排泄也可作为近端肾小管严重损伤的诊断标志。
{"title":"Altered kidney distribution and loss of ACE2 into the urine in acute kidney injury.","authors":"Mina Shirazi, Cosimo Cianfarini, Ahmed Ismail, Jan Wysocki, Jiao-Jing Wang, Minghao Ye, Zheng Jenny Zhang, Daniel Batlle","doi":"10.1152/ajprenal.00237.2023","DOIUrl":"10.1152/ajprenal.00237.2023","url":null,"abstract":"<p><p>There are diverse pathophysiological mechanisms involved in acute kidney injury (AKI). Among them, overactivity of the renin-angiotensin system (RAS) has been described. Angiotensin-converting enzyme 2 (ACE2) is a tissue RAS enzyme expressed in the apical border of proximal tubules. Given the important role of ACE2 in the metabolism of angiotensin II, this study aimed to characterize kidney and urinary ACE2 in a mouse model of AKI. Ischemia-reperfusion injury (IRI) was induced in C57BL/6 mice by clamping of the left renal artery followed by removal of the right kidney. In kidneys harvested 48 h after IRI, immunostaining revealed a striking maldistribution of ACE2 including spillage into the tubular lumen and the presence of ACE2-positive luminal casts in the medulla. In cortical membranes, ACE2 protein and enzymatic activity were both markedly reduced (37 ± 4 vs. 100 ± 6 ACE2/β-actin, <i>P</i> = 0.0004, and 96 ± 14 vs. 152 ± 6 RFU/μg protein/h, <i>P</i> = 0.006). In urine, full-length membrane-bound ACE2 protein (100 kDa) was markedly increased (1,120 ± 405 vs. 100 ± 46 ACE2/µg creatinine, <i>P</i> = 0.04), and casts stained for ACE2 were recovered in the urine sediment. In conclusion, in AKI caused by IRI, there is a marked loss of ACE2 from the apical tubular border with deposition of ACE2-positive material in the medulla and increased urinary excretion of full-length membrane-bound ACE2 protein. The deficiency of tubular ACE2 in AKI suggests that provision of this enzyme could have therapeutic applications and that its excretion in the urine may also serve as a diagnostic marker of severe proximal tubular injury.<b>NEW & NOTEWORTHY</b> This study provides novel insights into the distribution of kidney ACE2 in a model of AKI by IRI showing a striking detachment of apical ACE2 from proximal tubules and its loss in urine and urine sediment. The observed deficiency of kidney ACE2 protein and enzymatic activity in severe AKI suggests that administration of forms of this enzyme may mitigate AKI and that urinary ACE2 may serve as a potential biomarker for tubular injury.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F412-F425"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460339/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-18DOI: 10.1152/ajprenal.00316.2023
Marharyta Semenikhina, Ruslan Bohovyk, Mykhailo Fedoriuk, Mariia Stefanenko, Christine A Klemens, Jim C Oates, Alexander Staruschenko, Oleg Palygin
Nitric oxide (NO) is widely recognized for its role in regulating renal function and blood pressure. However, the precise mechanisms by which NO affects renal epithelial cells remain understudied. Our previous research has shown that NO signaling in glomerular podocytes can be initiated by Angiotensin II (ANG II) but not by ATP. This study aims to elucidate the crucial interplay between the renin-angiotensin system (RAS) and NO production in podocytes. To conduct our research, we used cultured human podocytes and freshly isolated rat glomeruli. A variety of RAS peptides were used, alongside confocal microscopy, to detect NO production and NO/Ca2+ cross talk. Dynamic changes in the podocyte cytoskeleton, mediated by RAS-NO intracellular signaling, were observed using fluorescent labeling for F-actin and scanning probe microscopy. The experiments demonstrated that ANG II and ANG III generated high levels of NO by activating the angiotensin II type 2 receptor (AT2R). We did not detect functional MAS receptor presence in podocytes, and the moderate NO response to ANG 1-7 was also mediated through AT2R. Furthermore, NO production impacted intracellular Ca2+ signaling and correlated with an increase in podocyte volume and growth. Scanning probe experiments revealed that AT2R activation and the corresponding NO generation are responsible for the protrusion of podocyte lamellipodia. Taken together, our data indicate that AT2R activation enhances NO production in podocytes and subsequently mediates changes in Ca2+ signaling and podocyte volume dynamics. These mechanisms may play a significant role in both physiological and pathophysiological interactions between the RAS and podocytes.NEW & NOTEWORTHY The renin-angiotensin system plays a crucial role in the production of intracellular nitric oxide within podocytes. This mechanism operates through the activation of the angiotensin II type 2 receptor, leading to dynamic modifications in intracellular calcium levels and the actin filament network. This intricate process is vital for linking the activity of angiotensin receptors to podocyte function.
一氧化氮(NO)在调节肾功能和血压方面的作用已得到广泛认可。然而,NO 影响肾上皮细胞的确切机制仍未得到充分研究。我们之前的研究表明,肾小球荚膜细胞中的 NO 信号传导可由血管紧张素 II(Ang II)启动,但不能由 ATP 启动。本研究旨在阐明肾素-血管紧张素系统(RAS)与荚膜细胞中 NO 生成之间的重要相互作用。为了进行研究,我们利用了培养的人类荚膜细胞和新鲜分离的大鼠肾小球。我们使用了多种 RAS 肽和共聚焦显微镜来检测 NO 的产生和 NO/Ca2+ 的串扰。利用荧光标记 F-肌动蛋白和扫描探针显微镜观察了 RAS-NO 细胞内信号介导的荚膜细胞细胞骨架的动态变化。实验证明,血管紧张素 II 和血管紧张素 III 通过激活血管紧张素 II 2 型受体(AT2R)产生大量 NO。我们没有在荚膜细胞中检测到功能性 MAS 受体的存在,而对 Ang 1-7 的中度 NO 反应也是通过 AT2R 介导的。此外,NO 的产生影响了细胞内 Ca2+ 信号的传递,并与荚膜细胞体积和生长的增加相关。扫描探针实验显示,AT2R 激活和相应的 NO 生成是荚膜细胞片层突起的原因。总之,我们的数据表明,AT2R 激活会增强荚膜细胞中的 NO 生成,进而介导 Ca2+ 信号转导和荚膜细胞体积动态变化。这些机制可能在 RAS 和荚膜细胞之间的生理和病理相互作用中发挥重要作用。
{"title":"Renin-angiotensin system-mediated nitric oxide signaling in podocytes.","authors":"Marharyta Semenikhina, Ruslan Bohovyk, Mykhailo Fedoriuk, Mariia Stefanenko, Christine A Klemens, Jim C Oates, Alexander Staruschenko, Oleg Palygin","doi":"10.1152/ajprenal.00316.2023","DOIUrl":"10.1152/ajprenal.00316.2023","url":null,"abstract":"<p><p>Nitric oxide (NO) is widely recognized for its role in regulating renal function and blood pressure. However, the precise mechanisms by which NO affects renal epithelial cells remain understudied. Our previous research has shown that NO signaling in glomerular podocytes can be initiated by Angiotensin II (ANG II) but not by ATP. This study aims to elucidate the crucial interplay between the renin-angiotensin system (RAS) and NO production in podocytes. To conduct our research, we used cultured human podocytes and freshly isolated rat glomeruli. A variety of RAS peptides were used, alongside confocal microscopy, to detect NO production and NO/Ca<sup>2+</sup> cross talk. Dynamic changes in the podocyte cytoskeleton, mediated by RAS-NO intracellular signaling, were observed using fluorescent labeling for F-actin and scanning probe microscopy. The experiments demonstrated that ANG II and ANG III generated high levels of NO by activating the angiotensin II type 2 receptor (AT<sub>2</sub>R). We did not detect functional MAS receptor presence in podocytes, and the moderate NO response to ANG 1-7 was also mediated through AT<sub>2</sub>R. Furthermore, NO production impacted intracellular Ca<sup>2+</sup> signaling and correlated with an increase in podocyte volume and growth. Scanning probe experiments revealed that AT<sub>2</sub>R activation and the corresponding NO generation are responsible for the protrusion of podocyte lamellipodia. Taken together, our data indicate that AT<sub>2</sub>R activation enhances NO production in podocytes and subsequently mediates changes in Ca<sup>2+</sup> signaling and podocyte volume dynamics. These mechanisms may play a significant role in both physiological and pathophysiological interactions between the RAS and podocytes.<b>NEW & NOTEWORTHY</b> The renin-angiotensin system plays a crucial role in the production of intracellular nitric oxide within podocytes. This mechanism operates through the activation of the angiotensin II type 2 receptor, leading to dynamic modifications in intracellular calcium levels and the actin filament network. This intricate process is vital for linking the activity of angiotensin receptors to podocyte function.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F532-F542"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460333/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-11DOI: 10.1152/ajprenal.00147.2024
Josie A Silvaroli, Gabriela V Martinez, Thitinee Vanichapol, Alan J Davidson, Diana Zepeda-Orozco, Navjot S Pabla, Ji Young Kim
The biology of the cyclin-dependent kinase-like (CDKL) kinase family remains enigmatic. Contrary to their nomenclature, CDKLs do not rely on cyclins for activation and are not involved in cell cycle regulation. Instead, they share structural similarities with mitogen-activated protein kinases and glycogen synthase kinase-3, although their specific functions and associated signaling pathways are still unknown. Previous studies have shown that the activation of CDKL5 kinase contributes to the development of acute kidney injury (AKI) by suppressing the protective SOX9-dependent transcriptional program in tubular epithelial cells. In the current study, we measured the functional activity of all five CDKL kinases and discovered that, in addition to CDKL5, CDKL1 is also activated in tubular epithelial cells during AKI. To explore the role of CDKL1, we generated a germline knockout mouse that exhibited no abnormalities under normal conditions. Notably, when these mice were challenged with bilateral ischemia-reperfusion and rhabdomyolysis, they were found to be protected from AKI. Further mechanistic investigations revealed that CDKL1 phosphorylates and destabilizes SOX11, contributing to tubular dysfunction. In summary, this study has unveiled a previously unknown CDKL1-SOX11 axis that drives tubular dysfunction during AKI.NEW & NOTEWORTHY Identifying and targeting pathogenic protein kinases holds potential for drug discovery in treating acute kidney injury. Our study, using novel germline knockout mice, revealed that Cdkl1 kinase deficiency does not affect mouse viability but provides protection against acute kidney injury. This underscores the importance of Cdkl1 kinase in kidney injury and supports the development of targeted small-molecule inhibitors as potential therapeutics.
CDKL(类似细胞周期蛋白依赖性激酶)激酶家族的生物学特性仍是一个谜。与它们的命名相反,CDKL 并不依赖于细胞周期蛋白进行激活,也不参与细胞周期调控。相反,它们在结构上与 MAPKs(丝裂原活化蛋白激酶)和 GSK3(糖原合酶激酶 3)相似,但其具体功能和相关信号通路仍然未知。先前的研究表明,CDKL5 激酶的激活会抑制肾小管上皮细胞中依赖于 SOX9 的保护性转录程序,从而导致急性肾损伤(AKI)的发生。在本研究中,我们测量了所有五种 CDKL 激酶的功能活性,发现除了 CDKL5 外,CDKL1 也会在 AKI 期间激活肾小管上皮细胞。为了探索 CDKL1 的作用,我们产生了一种种系基因敲除小鼠,这种小鼠在正常情况下没有任何异常。值得注意的是,当这些小鼠受到双侧缺血再灌注和横纹肌溶解的挑战时,发现它们对 AKI 具有保护作用。进一步的机理研究发现,CDKL1 磷酸化并破坏 SOX11 的稳定性,导致肾小管功能障碍。总之,这些研究揭示了之前未知的 CDKL1-SOX11 轴,它在 AKI 期间驱动肾小管功能障碍。
{"title":"Role of the CDKL1-SOX11 signaling axis in acute kidney injury.","authors":"Josie A Silvaroli, Gabriela V Martinez, Thitinee Vanichapol, Alan J Davidson, Diana Zepeda-Orozco, Navjot S Pabla, Ji Young Kim","doi":"10.1152/ajprenal.00147.2024","DOIUrl":"10.1152/ajprenal.00147.2024","url":null,"abstract":"<p><p>The biology of the cyclin-dependent kinase-like (CDKL) kinase family remains enigmatic. Contrary to their nomenclature, CDKLs do not rely on cyclins for activation and are not involved in cell cycle regulation. Instead, they share structural similarities with mitogen-activated protein kinases and glycogen synthase kinase-3, although their specific functions and associated signaling pathways are still unknown. Previous studies have shown that the activation of CDKL5 kinase contributes to the development of acute kidney injury (AKI) by suppressing the protective SOX9-dependent transcriptional program in tubular epithelial cells. In the current study, we measured the functional activity of all five CDKL kinases and discovered that, in addition to CDKL5, CDKL1 is also activated in tubular epithelial cells during AKI. To explore the role of CDKL1, we generated a germline knockout mouse that exhibited no abnormalities under normal conditions. Notably, when these mice were challenged with bilateral ischemia-reperfusion and rhabdomyolysis, they were found to be protected from AKI. Further mechanistic investigations revealed that CDKL1 phosphorylates and destabilizes SOX11, contributing to tubular dysfunction. In summary, this study has unveiled a previously unknown CDKL1-SOX11 axis that drives tubular dysfunction during AKI.<b>NEW & NOTEWORTHY</b> Identifying and targeting pathogenic protein kinases holds potential for drug discovery in treating acute kidney injury. Our study, using novel germline knockout mice, revealed that Cdkl1 kinase deficiency does not affect mouse viability but provides protection against acute kidney injury. This underscores the importance of Cdkl1 kinase in kidney injury and supports the development of targeted small-molecule inhibitors as potential therapeutics.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F426-F434"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460330/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-04DOI: 10.1152/ajprenal.00061.2024
Teruhiko Yoshida, Komuraiah Myakala, Bryce A Jones, Xiaoxin X Wang, Shashi Shrivastav, Briana A Santo, Tatsat R Patel, Yongmei Zhao, Vincent M Tutino, Pinaki Sarder, Avi Z Rosenberg, Cheryl A Winkler, Moshe Levi, Jeffrey B Kopp
HIV disease remains prevalent in the United States and is particularly prevalent in sub-Saharan Africa. Recent investigations revealed that mitochondrial dysfunction in kidney contributes to HIV-associated nephropathy (HIVAN) in Tg26 transgenic mice. We hypothesized that nicotinamide adenine dinucleotide (NAD) deficiency contributes to energetic dysfunction and progressive tubular injury. We investigated metabolomic mechanisms of HIVAN tubulopathy. Tg26 and wild-type (WT) mice were treated with the farnesoid X receptor (FXR) agonist INT-747 or nicotinamide riboside (NR) from 6 to 12 wk of age. Multiomic approaches were used to characterize kidney tissue transcriptomes and metabolomes. Treatment with INT-747 or NR ameliorated kidney tubular injury, as shown by serum creatinine, the tubular injury marker urinary neutrophil-associated lipocalin, and tubular morphometry. Integrated analysis of metabolomic and transcriptomic measurements showed that NAD levels and production were globally downregulated in Tg26 mouse kidneys, especially nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway. Furthermore, NAD-dependent deacetylase sirtuin3 activity and mitochondrial oxidative phosphorylation activity were lower in ex vivo proximal tubules from Tg26 mouse kidneys compared with those of WT mice. Restoration of NAD levels in the kidney improved these abnormalities. These data suggest that NAD deficiency might be a treatable target for HIVAN.NEW & NOTEWORTHY The study describes a novel investigation that identified nicotinamide adenine dinucleotide (NAD) deficiency in a widely used HIV-associated nephropathy (HIVAN) transgenic mouse model. We show that INT-747, a farnesoid X receptor agonist, and nicotinamide riboside (NR), a precursor of nicotinamide, each ameliorated HIVAN tubulopathy. Multiomic analysis of mouse kidneys revealed that NAD deficiency was an upstream metabolomic mechanism contributing to HIVAN tubulopathy.
艾滋病毒疾病在美国仍然很普遍,在撒哈拉以南非洲地区尤为流行。最近的研究发现,在 Tg26 转基因小鼠中,肾脏线粒体功能障碍导致了艾滋病毒相关性肾病(HIVAN)。我们推测烟酰胺腺嘌呤二核苷酸(NAD)缺乏会导致能量功能障碍和渐进性肾小管损伤。我们研究了 HIVAN 肾小管病变的代谢组学机制。Tg26和野生型(WT)小鼠在6至12周龄期间接受法尼类固醇-X受体(FXR)激动剂INT-747或烟酰胺核糖苷(NR)治疗。多组学方法用于描述肾组织转录组和代谢组的特征。血清肌酐、肾小管损伤标志物尿中性粒细胞相关脂褐素和肾小管形态测量显示,INT-747或NR能改善肾小管损伤。对代谢组学和转录组学测量结果的综合分析表明,Tg26 小鼠肾脏中的 NAD 水平和产生量全面下调,尤其是烟酰胺磷酸核糖转移酶(NAMPT),它是 NAD 修复途径中的限速酶。此外,与 WT 小鼠相比,Tg26 小鼠肾脏近端肾小管的 NAD 依赖性去乙酰化酶 sirtuin3 活性和线粒体氧化磷酸化活性均较低。恢复肾脏中的 NAD 水平可改善这些异常。这些数据表明,NAD缺乏可能是HIVAN的一个可治疗靶点。
{"title":"NAD deficiency contributes to progressive kidney disease in HIV-nephropathy mice.","authors":"Teruhiko Yoshida, Komuraiah Myakala, Bryce A Jones, Xiaoxin X Wang, Shashi Shrivastav, Briana A Santo, Tatsat R Patel, Yongmei Zhao, Vincent M Tutino, Pinaki Sarder, Avi Z Rosenberg, Cheryl A Winkler, Moshe Levi, Jeffrey B Kopp","doi":"10.1152/ajprenal.00061.2024","DOIUrl":"10.1152/ajprenal.00061.2024","url":null,"abstract":"<p><p>HIV disease remains prevalent in the United States and is particularly prevalent in sub-Saharan Africa. Recent investigations revealed that mitochondrial dysfunction in kidney contributes to HIV-associated nephropathy (HIVAN) in Tg26 transgenic mice. We hypothesized that nicotinamide adenine dinucleotide (NAD) deficiency contributes to energetic dysfunction and progressive tubular injury. We investigated metabolomic mechanisms of HIVAN tubulopathy. Tg26 and wild-type (WT) mice were treated with the farnesoid X receptor (FXR) agonist INT-747 or nicotinamide riboside (NR) from 6 to 12 wk of age. Multiomic approaches were used to characterize kidney tissue transcriptomes and metabolomes. Treatment with INT-747 or NR ameliorated kidney tubular injury, as shown by serum creatinine, the tubular injury marker urinary neutrophil-associated lipocalin, and tubular morphometry. Integrated analysis of metabolomic and transcriptomic measurements showed that NAD levels and production were globally downregulated in Tg26 mouse kidneys, especially nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway. Furthermore, NAD-dependent deacetylase sirtuin3 activity and mitochondrial oxidative phosphorylation activity were lower in ex vivo proximal tubules from Tg26 mouse kidneys compared with those of WT mice. Restoration of NAD levels in the kidney improved these abnormalities. These data suggest that NAD deficiency might be a treatable target for HIVAN.<b>NEW & NOTEWORTHY</b> The study describes a novel investigation that identified nicotinamide adenine dinucleotide (NAD) deficiency in a widely used HIV-associated nephropathy (HIVAN) transgenic mouse model. We show that INT-747, a farnesoid X receptor agonist, and nicotinamide riboside (NR), a precursor of nicotinamide, each ameliorated HIVAN tubulopathy. Multiomic analysis of mouse kidneys revealed that NAD deficiency was an upstream metabolomic mechanism contributing to HIVAN tubulopathy.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F450-F462"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444509/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-04DOI: 10.1152/ajprenal.00050.2024
Adam Gaweda, Michael Brier, Eleanor Lederer
Chronic kidney disease mineral bone disorder (CKD-MBD) is a complex clinical syndrome responsible for the accelerated cardiovascular mortality seen in individuals afflicted with CKD. Current approaches to therapy have failed to improve clinical outcomes adequately, likely due to targeting surrogate biochemical parameters as articulated by the guideline developer, Kidney Disease: Improving Global Outcomes (KDIGO). We hypothesized that using a Systems Biology Approach combining machine learning with mathematical modeling, we could test a novel approach to therapy targeting the abnormal movement of mineral out of bone and into soft tissue that is characteristic of CKD-MBD. The mathematical model describes the movement of calcium and phosphate between body compartments in response to standard therapeutic agents. The machine-learning technique we applied is reinforcement learning (RL). We compared calcium, phosphate, parathyroid hormone (PTH), and mineral movement out of bone and into soft tissue under four scenarios: standard approach (KDIGO), achievement of KDIGO guidelines using RL (RLKDIGO), targeting abnormal mineral flux (RLFLUX), and combining achievement of KDIGO guidelines with minimization of abnormal mineral flux (RLKDIGOFLUX). We demonstrate through simulations that explicitly targeting abnormal mineral flux significantly decreases abnormal mineral movement compared with standard approach while achieving acceptable biochemical outcomes. These investigations highlight the limitations of current therapeutic targets, primarily secondary hyperparathyroidism, and emphasize the central role of deranged phosphate homeostasis in the genesis of the CKD-MBD syndrome.NEW & NOTEWORTHY Artificial intelligence is a powerful tool for exploration of complex processes but application to clinical syndromes is challenging. Using a mathematical model describing the movement of calcium and phosphate between body compartments combined with machine learning, we show the feasibility of testing alternative goals of therapy for Chronic Kidney Disease Mineral Bone Disorder while maintaining acceptable biochemical outcomes. These simulations demonstrate the potential for using this platform to generate and test hypotheses in silico rapidly, inexpensively, and safely.
{"title":"Leveraging quantitative systems pharmacology and artificial intelligence to advance treatment of chronic kidney disease mineral bone disorder.","authors":"Adam Gaweda, Michael Brier, Eleanor Lederer","doi":"10.1152/ajprenal.00050.2024","DOIUrl":"10.1152/ajprenal.00050.2024","url":null,"abstract":"<p><p>Chronic kidney disease mineral bone disorder (CKD-MBD) is a complex clinical syndrome responsible for the accelerated cardiovascular mortality seen in individuals afflicted with CKD. Current approaches to therapy have failed to improve clinical outcomes adequately, likely due to targeting surrogate biochemical parameters as articulated by the guideline developer, Kidney Disease: Improving Global Outcomes (KDIGO). We hypothesized that using a Systems Biology Approach combining machine learning with mathematical modeling, we could test a novel approach to therapy targeting the abnormal movement of mineral out of bone and into soft tissue that is characteristic of CKD-MBD. The mathematical model describes the movement of calcium and phosphate between body compartments in response to standard therapeutic agents. The machine-learning technique we applied is reinforcement learning (RL). We compared calcium, phosphate, parathyroid hormone (PTH), and mineral movement out of bone and into soft tissue under four scenarios: standard approach (KDIGO), achievement of KDIGO guidelines using RL (RLKDIGO), targeting abnormal mineral flux (RLFLUX), and combining achievement of KDIGO guidelines with minimization of abnormal mineral flux (RLKDIGOFLUX). We demonstrate through simulations that explicitly targeting abnormal mineral flux significantly decreases abnormal mineral movement compared with standard approach while achieving acceptable biochemical outcomes. These investigations highlight the limitations of current therapeutic targets, primarily secondary hyperparathyroidism, and emphasize the central role of deranged phosphate homeostasis in the genesis of the CKD-MBD syndrome.<b>NEW & NOTEWORTHY</b> Artificial intelligence is a powerful tool for exploration of complex processes but application to clinical syndromes is challenging. Using a mathematical model describing the movement of calcium and phosphate between body compartments combined with machine learning, we show the feasibility of testing alternative goals of therapy for Chronic Kidney Disease Mineral Bone Disorder while maintaining acceptable biochemical outcomes. These simulations demonstrate the potential for using this platform to generate and test hypotheses in silico rapidly, inexpensively, and safely.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F351-F362"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-04DOI: 10.1152/ajprenal.00101.2024
Mohammed Z Ferdaus, Andrew S Terker, Rainelli B Koumangoye, Lama Al-Qusairi, Paul A Welling, Eric Delpire
Dietary potassium deficiency causes stimulation of sodium reabsorption leading to an increased risk in blood pressure elevation. The distal convoluted tubule (DCT) is the main rheostat linking plasma K+ levels to the activity of the Na-Cl cotransporter (NCC). This occurs through basolateral membrane potential sensing by inwardly rectifying K+ channels (Kir4.1/5.1); decrease in intracellular Cl-; activation of WNK4 and interaction and phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK); binding of calcium-binding protein 39 (cab39) adaptor protein to SPAK, leading to its trafficking to the apical membrane; and SPAK binding, phosphorylation, and activation of NCC. As kidney-specific with-no-lysine kinase 1 (WNK1) isoform (KS-WNK1) is another participant in this pathway, we examined its function in NCC regulation. We eliminated KS-WNK1 specifically in the DCT and demonstrated increased expression of WNK4 and long WNK1 (L-WNK1) and increased phosphorylation of NCC. As in other KS-WNK1 models, the mice were not hyperkalemic. Although wild-type mice under low-dietary K+ conditions demonstrated increased NCC phosphorylation, the phosphorylation levels of the transporter, already high in KS-WNK1, did not change under the low-K+ diet. Thus, in the absence of KS-WNK1, the transporter lost its sensitivity to low plasma K+. We also show that under low K+ conditions, in the absence of KS-WNK1, there was no formation of WNK bodies. These bodies were observed in adjacent segments, not affected by the targeting of KS-WNK1. As our data are overall consistent with those of the global KS-WNK1 knockout, they indicate that the DCT is the predominant segment affecting the salt transport regulated by KS-WNK1.NEW & NOTEWORTHY In this paper, we show that KS-WNK1 is a critical component of the distal convoluted tubule (DCT) K+ switch pathway. Its deletion results in an inability of the DCT to sense changes in plasma potassium. Absence of KS-WNK1 leads to abnormally high levels of WNK4 and L-WNK1 in the DCT, resulting in increased Na-Cl phosphorylation and function. Our data are consistent with KS-WNK1 targeting WNK4 and L-WNK1 to degradation.
{"title":"Deletion of KS-WNK1 promotes NCC activation by increasing WNK1/4 abundance.","authors":"Mohammed Z Ferdaus, Andrew S Terker, Rainelli B Koumangoye, Lama Al-Qusairi, Paul A Welling, Eric Delpire","doi":"10.1152/ajprenal.00101.2024","DOIUrl":"10.1152/ajprenal.00101.2024","url":null,"abstract":"<p><p>Dietary potassium deficiency causes stimulation of sodium reabsorption leading to an increased risk in blood pressure elevation. The distal convoluted tubule (DCT) is the main rheostat linking plasma K<sup>+</sup> levels to the activity of the Na-Cl cotransporter (NCC). This occurs through basolateral membrane potential sensing by inwardly rectifying K<sup>+</sup> channels (Kir4.1/5.1); decrease in intracellular Cl<sup>-</sup>; activation of WNK4 and interaction and phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK); binding of calcium-binding protein 39 (cab39) adaptor protein to SPAK, leading to its trafficking to the apical membrane; and SPAK binding, phosphorylation, and activation of NCC. As kidney-specific with-no-lysine kinase 1 (WNK1) isoform (KS-WNK1) is another participant in this pathway, we examined its function in NCC regulation. We eliminated KS-WNK1 specifically in the DCT and demonstrated increased expression of WNK4 and long WNK1 (L-WNK1) and increased phosphorylation of NCC. As in other KS-WNK1 models, the mice were not hyperkalemic. Although wild-type mice under low-dietary K<sup>+</sup> conditions demonstrated increased NCC phosphorylation, the phosphorylation levels of the transporter, already high in KS-WNK1, did not change under the low-K<sup>+</sup> diet. Thus, in the absence of KS-WNK1, the transporter lost its sensitivity to low plasma K<sup>+</sup>. We also show that under low K<sup>+</sup> conditions, in the absence of KS-WNK1, there was no formation of WNK bodies. These bodies were observed in adjacent segments, not affected by the targeting of KS-WNK1. As our data are overall consistent with those of the global KS-WNK1 knockout, they indicate that the DCT is the predominant segment affecting the salt transport regulated by KS-WNK1.<b>NEW & NOTEWORTHY</b> In this paper, we show that KS-WNK1 is a critical component of the distal convoluted tubule (DCT) K<sup>+</sup> switch pathway. Its deletion results in an inability of the DCT to sense changes in plasma potassium. Absence of KS-WNK1 leads to abnormally high levels of WNK4 and L-WNK1 in the DCT, resulting in increased Na-Cl phosphorylation and function. Our data are consistent with KS-WNK1 targeting WNK4 and L-WNK1 to degradation.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F373-F385"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460338/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-05-23DOI: 10.1152/ajprenal.00403.2023
Chun Yang, Elena Isaeva, Satoshi Shimada, Theresa Kurth, Megan Stumpf, Nadezhda N Zheleznova, Alexander Staruschenko, Ranjan K Dash, Allen W Cowley
We have previously observed that prolonged administration of rapamycin, an inhibitor targeting the mammalian target of rapamycin complex (mTORC)1, partially reduced hypertension and alleviated kidney inflammation in Dahl salt-sensitive (SS) rats. In contrast, treatment with PP242, an inhibitor affecting both mTORC1/mTORC2, not only completely prevented hypertension but also provided substantial protection against kidney injury. Notably, PP242 exhibited potent natriuretic effects that were not evident with rapamycin. The primary objective of this study was to pinpoint the specific tubular sites responsible for the natriuretic effect of PP242 in SS rats subjected to either 0.4% NaCl (normal salt) or 4.0% NaCl (high salt) diet. Acute effects of PP242 on natriuretic, diuretic, and kaliuretic responses were determined in unanesthetized SS rats utilizing benzamil, furosemide, or hydrochlorothiazide [inhibitors of epithelial Na+ channel (ENaC), Na-K-2Cl cotransporter (NKCC2), or Na-Cl cotransporter (NCC), respectively] either administered alone or in combination. The findings indicate that the natriuretic effects of PP242 in SS rats stem predominantly from the inhibition of NCC and a reduction of ENaC open probability. Molecular analysis revealed that mTORC2 regulates NCC activity through protein phosphorylation and ENaC activity through proteolytic cleavage in vivo. Evidence also indicated that PP242 also prevents the loss of K+ associated with the inhibition of NCC. These findings suggest that PP242 may represent an improved therapeutic approach for antihypertensive intervention, potentially controlling blood pressure and mitigating kidney injury in salt-sensitive human subjects.NEW & NOTEWORTHY This study explored mechanisms underlying the natriuretic effects of mammalian target of rapamycin protein complex 2 inhibition using PP242 and revealed both epithelial Na+ channel and Na-Cl cotransporter in the distal tubular segments were potentially inhibited. These observations, with prior lab evidence, indicate that PP242 prevents hypertension via its potent inhibitory effects on these specific sodium transporters and by reducing renal immune responses. This dual action, coupled with potassium sparing effects, suggests an improved approach for managing hypertension and associated kidney damage.
{"title":"Inhibition of mTORC2 promotes natriuresis in Dahl salt-sensitive rats via the decrease of NCC and ENaC activity.","authors":"Chun Yang, Elena Isaeva, Satoshi Shimada, Theresa Kurth, Megan Stumpf, Nadezhda N Zheleznova, Alexander Staruschenko, Ranjan K Dash, Allen W Cowley","doi":"10.1152/ajprenal.00403.2023","DOIUrl":"10.1152/ajprenal.00403.2023","url":null,"abstract":"<p><p>We have previously observed that prolonged administration of rapamycin, an inhibitor targeting the mammalian target of rapamycin complex (mTORC)1, partially reduced hypertension and alleviated kidney inflammation in Dahl salt-sensitive (SS) rats. In contrast, treatment with PP242, an inhibitor affecting both mTORC1/mTORC2, not only completely prevented hypertension but also provided substantial protection against kidney injury. Notably, PP242 exhibited potent natriuretic effects that were not evident with rapamycin. The primary objective of this study was to pinpoint the specific tubular sites responsible for the natriuretic effect of PP242 in SS rats subjected to either 0.4% NaCl (normal salt) or 4.0% NaCl (high salt) diet. Acute effects of PP242 on natriuretic, diuretic, and kaliuretic responses were determined in unanesthetized SS rats utilizing benzamil, furosemide, or hydrochlorothiazide [inhibitors of epithelial Na<sup>+</sup> channel (ENaC), Na-K-2Cl cotransporter (NKCC2), or Na-Cl cotransporter (NCC), respectively] either administered alone or in combination. The findings indicate that the natriuretic effects of PP242 in SS rats stem predominantly from the inhibition of NCC and a reduction of ENaC open probability. Molecular analysis revealed that mTORC2 regulates NCC activity through protein phosphorylation and ENaC activity through proteolytic cleavage in vivo. Evidence also indicated that PP242 also prevents the loss of K<sup>+</sup> associated with the inhibition of NCC. These findings suggest that PP242 may represent an improved therapeutic approach for antihypertensive intervention, potentially controlling blood pressure and mitigating kidney injury in salt-sensitive human subjects.<b>NEW & NOTEWORTHY</b> This study explored mechanisms underlying the natriuretic effects of mammalian target of rapamycin protein complex 2 inhibition using PP242 and revealed both epithelial Na<sup>+</sup> channel and Na-Cl cotransporter in the distal tubular segments were potentially inhibited. These observations, with prior lab evidence, indicate that PP242 prevents hypertension via its potent inhibitory effects on these specific sodium transporters and by reducing renal immune responses. This dual action, coupled with potassium sparing effects, suggests an improved approach for managing hypertension and associated kidney damage.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F435-F449"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141082035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-05-30DOI: 10.1152/ajprenal.00150.2023
Kiyoung Kim, Kayla M Nist, Franco Puleo, James McKenna, Richard D Wainford
Hypertension affects approximately one in two United States adults and sex plays an important role in the pathogenesis of hypertension. The Na+-Cl- cotransporter (NCC), regulated by a kinase network including with-no-lysine kinase (WNK)1 and WNK4, STE20/SPS1-related proline alanine-rich kinase (SPAK), and oxidative stress response 1 (OxSR1), is critical to Na+ reabsorption and blood pressure regulation. Dietary salt differentially modulates NCC in salt-sensitive and salt-resistant rats, in part by modulation of WNK/SPAK/OxSR1 signaling. In this study, we tested the hypothesis that sex-dependent differences in NCC regulation contribute to the development of the salt sensitivity of blood pressure using male and female Sprague-Dawley (SD), Dahl salt-resistant (DSR), and Dahl salt-sensitive (DSS) rats. In normotensive salt-resistant SD and DSR rats, a high-salt diet evoked significant decreases in NCC activity, expression, and phosphorylation. In males, these changes were associated with no change in WNK1 expression, a decrease in WNK4 levels, and suppression of SPAK/OxSR1 expression and phosphorylation. In contrast, in females, there was decreased NCC activity associated with suppression of SPAK/OxSR1 expression and phosphorylation. In hypertensive DSS rats, the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension. Collectively, our findings support the existence of sex differences in male versus female rats with NCC regulation during dietary salt intake involving suppression of WNK4 expression in male rats only and the involvement of SPAK/OxSR1 signaling in both males and females.NEW & NOTEWORTHY NCC regulation is sex dependent. In normotensive male and female Sprague-Dawley and Dahl salt-resistant rats, which exhibit dietary Na+-evoked NCC suppression, male rats exhibit decreased WNK4 expression and decreased SPAK and OxSR1 levels, whereas female rats only suppress SPAK and OxSR1. In hypertensive Dahl salt-sensitive rats, the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension.
{"title":"Sex differences in dietary sodium evoked NCC regulation and blood pressure in male and female Sprague-Dawley, Dahl salt-resistant, and Dahl salt-sensitive rats.","authors":"Kiyoung Kim, Kayla M Nist, Franco Puleo, James McKenna, Richard D Wainford","doi":"10.1152/ajprenal.00150.2023","DOIUrl":"10.1152/ajprenal.00150.2023","url":null,"abstract":"<p><p>Hypertension affects approximately one in two United States adults and sex plays an important role in the pathogenesis of hypertension. The Na<sup>+</sup>-Cl<sup>-</sup> cotransporter (NCC), regulated by a kinase network including with-no-lysine kinase (WNK)1 and WNK4, STE20/SPS1-related proline alanine-rich kinase (SPAK), and oxidative stress response 1 (OxSR1), is critical to Na<sup>+</sup> reabsorption and blood pressure regulation. Dietary salt differentially modulates NCC in salt-sensitive and salt-resistant rats, in part by modulation of WNK/SPAK/OxSR1 signaling. In this study, we tested the hypothesis that sex-dependent differences in NCC regulation contribute to the development of the salt sensitivity of blood pressure using male and female Sprague-Dawley (SD), Dahl salt-resistant (DSR), and Dahl salt-sensitive (DSS) rats. In normotensive salt-resistant SD and DSR rats, a high-salt diet evoked significant decreases in NCC activity, expression, and phosphorylation. In males, these changes were associated with no change in WNK1 expression, a decrease in WNK4 levels, and suppression of SPAK/OxSR1 expression and phosphorylation. In contrast, in females, there was decreased NCC activity associated with suppression of SPAK/OxSR1 expression and phosphorylation. In hypertensive DSS rats, the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension. Collectively, our findings support the existence of sex differences in male versus female rats with NCC regulation during dietary salt intake involving suppression of WNK4 expression in male rats only and the involvement of SPAK/OxSR1 signaling in both males and females.<b>NEW & NOTEWORTHY</b> NCC regulation is sex dependent. In normotensive male and female Sprague-Dawley and Dahl salt-resistant rats, which exhibit dietary Na<sup>+</sup>-evoked NCC suppression, male rats exhibit decreased WNK4 expression and decreased SPAK and OxSR1 levels, whereas female rats only suppress SPAK and OxSR1. In hypertensive Dahl salt-sensitive rats, the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F277-F289"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460337/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141177044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}