Osteoarthritis (OA) is a common age-related degenerative disease characterized by changes in the local tissue environment as inflammation progresses. Inspired by the wind-dispersal mechanism of dandelion seeds, this study develops responsive biomimetic microsphere-drug conjugate for OA therapy and protection. The conjugate integrates dibenzaldehyde polyethylene glycol (DFPEG) with chitosan and polyethylene glycol diacrylate (PEGDA) through dynamic covalent bonds to form a dual-network hydrogel microsphere. Based on the progression of OA, the conjugate with the surface-anchored cyclic peptide cortistatin-14 (CST-14) achieves targeted drug therapy and a self-regulating hydrogel network. In cases of progressing inflammation (pH < 5), CST-14 dissociates from the microsphere surface (viz. the drug release rate increased) and inhibits TNF-α signaling to suppress OA. Concurrently, the monomer DFPEG responsively detaches from the hydrogel network and scavenges reactive oxygen species (ROS) to protect the cartilage tissue. The ROS scavenging of DFPEG is comparable to that of coenzyme Q10 and vitamin C. The degraded PEGDA microspheres provide tissue lubrication through reused conjugates. The rat OA model successfully achieved a synergistic therapeutic effect greater than the additive effect (1 + 1 > 2). This strategy offers an approach for anchoring amine-containing drugs and has marked potential for OA treatment and protection.
骨关节炎(OA)是一种常见的与年龄有关的退行性疾病,其特点是随着炎症的发展,局部组织环境发生变化。受蒲公英种子随风飘散机制的启发,本研究开发了用于治疗和保护 OA 的响应性仿生物微球-药物共轭物。该共轭物将二苯甲醛聚乙二醇(DFPEG)与壳聚糖和聚乙二醇二丙烯酸酯(PEGDA)通过动态共价键结合在一起,形成双网络水凝胶微球。根据 OA 的进展情况,与表面锚定的环肽可的松-14(CST-14)的共轭物实现了靶向药物治疗和水凝胶网络的自我调节。在炎症进展(pH < 5)的情况下,CST-14 会从微球表面解离(即药物释放率增加),并抑制 TNF-α 信号传导,从而抑制 OA。与此同时,单体 DFPEG 反应性地脱离水凝胶网络,清除活性氧(ROS),保护软骨组织。降解的 PEGDA 微球通过重复使用的共轭物提供组织润滑。大鼠 OA 模型成功实现了大于相加效应(1 + 1 > 2)的协同治疗效果。这种策略提供了一种锚定含胺药物的方法,在治疗和保护 OA 方面具有显著的潜力。
{"title":"Nanoarchitectonics of Injectable Biomimetic Conjugates for Cartilage Protection and Therapy Based on Degenerative Osteoarthritis Progression.","authors":"Jingwei Bi, Limin Zhang, Pengfei Zhang, Shulei Xu, Yuhao Liu, Xiaolai Zhang, Xiaoyong Qiu, Yanwen Bi, Fangfang Yan, Hui Wei, Xin Cui, Xin Pan, Jun Huang, Yunpeng Zhao","doi":"10.34133/bmr.0075","DOIUrl":"https://doi.org/10.34133/bmr.0075","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a common age-related degenerative disease characterized by changes in the local tissue environment as inflammation progresses. Inspired by the wind-dispersal mechanism of dandelion seeds, this study develops responsive biomimetic microsphere-drug conjugate for OA therapy and protection. The conjugate integrates dibenzaldehyde polyethylene glycol (DFPEG) with chitosan and polyethylene glycol diacrylate (PEGDA) through dynamic covalent bonds to form a dual-network hydrogel microsphere. Based on the progression of OA, the conjugate with the surface-anchored cyclic peptide cortistatin-14 (CST-14) achieves targeted drug therapy and a self-regulating hydrogel network. In cases of progressing inflammation (pH < 5), CST-14 dissociates from the microsphere surface (viz. the drug release rate increased) and inhibits TNF-α signaling to suppress OA. Concurrently, the monomer DFPEG responsively detaches from the hydrogel network and scavenges reactive oxygen species (ROS) to protect the cartilage tissue. The ROS scavenging of DFPEG is comparable to that of coenzyme Q10 and vitamin C. The degraded PEGDA microspheres provide tissue lubrication through reused conjugates. The rat OA model successfully achieved a synergistic therapeutic effect greater than the additive effect (1 + 1 > 2). This strategy offers an approach for anchoring amine-containing drugs and has marked potential for OA treatment and protection.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0075"},"PeriodicalIF":8.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11383433/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142303317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09eCollection Date: 2024-01-01DOI: 10.34133/bmr.0076
Yang Luo, Zeming Hu, Renhao Ni, Rong Xu, Jianmin Zhao, Peipei Feng, Tong Zhu, Yaoqi Chen, Jie Yao, Yudong Yao, Lu Yang, Hua Zhang, Yabin Zhu
Smooth muscles play a vital role in peristalsis, tissue constriction, and relaxation but lack adequate self-repair capability for addressing extensive muscle defects. Engineering scaffolds have been broadly proposed to repair the muscle tissue. However, efforts to date have shown that those engineered scaffolds focus on cell alignment in 2-dimension (2D) and fail to direct muscle cells to align in 3D area, which is irresolvable to remodel the muscle architecture and restore the muscle functions like contraction and relaxation. Herein, we introduced an iron oxide (Fe3O4) filament-embedded gelatin (Gel)-silk fibroin composite hydrogel in which the oriented Fe3O4 self-assembled and functioned as micro/nanoscale geometric cues to induce cell alignment growth. The hydrogel scaffold can be designed to fabricate aligned or anisotropic muscle by combining embedded 3D bioprinting with magnetic induction to accommodate special architectures of muscular tissues in the body. Particularly, the bioprinted muscle-like matrices effectively promote the self-organization of smooth muscle cells (SMCs) and the directional differentiation of bone marrow mesenchymal stem cells (BMSCs) into SMCs. This biomimetic muscle accelerated tissue regeneration, enhancing intercellular connectivity within the muscular tissue, and the deposition of fibronectin and collagen I. This work provides a novel approach for constructing engineered biomimetic muscles, holding significant promise for clinical treatment of muscle-related diseases in the future.
{"title":"Fabrication of 3D Biomimetic Smooth Muscle Using Magnetic Induction and Bioprinting for Tissue Regeneration.","authors":"Yang Luo, Zeming Hu, Renhao Ni, Rong Xu, Jianmin Zhao, Peipei Feng, Tong Zhu, Yaoqi Chen, Jie Yao, Yudong Yao, Lu Yang, Hua Zhang, Yabin Zhu","doi":"10.34133/bmr.0076","DOIUrl":"https://doi.org/10.34133/bmr.0076","url":null,"abstract":"<p><p>Smooth muscles play a vital role in peristalsis, tissue constriction, and relaxation but lack adequate self-repair capability for addressing extensive muscle defects. Engineering scaffolds have been broadly proposed to repair the muscle tissue. However, efforts to date have shown that those engineered scaffolds focus on cell alignment in 2-dimension (2D) and fail to direct muscle cells to align in 3D area, which is irresolvable to remodel the muscle architecture and restore the muscle functions like contraction and relaxation. Herein, we introduced an iron oxide (Fe<sub>3</sub>O<sub>4</sub>) filament-embedded gelatin (Gel)-silk fibroin composite hydrogel in which the oriented Fe<sub>3</sub>O<sub>4</sub> self-assembled and functioned as micro/nanoscale geometric cues to induce cell alignment growth. The hydrogel scaffold can be designed to fabricate aligned or anisotropic muscle by combining embedded 3D bioprinting with magnetic induction to accommodate special architectures of muscular tissues in the body. Particularly, the bioprinted muscle-like matrices effectively promote the self-organization of smooth muscle cells (SMCs) and the directional differentiation of bone marrow mesenchymal stem cells (BMSCs) into SMCs. This biomimetic muscle accelerated tissue regeneration, enhancing intercellular connectivity within the muscular tissue, and the deposition of fibronectin and collagen I. This work provides a novel approach for constructing engineered biomimetic muscles, holding significant promise for clinical treatment of muscle-related diseases in the future.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0076"},"PeriodicalIF":8.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382380/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142303314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06eCollection Date: 2024-01-01DOI: 10.34133/bmr.0073
Lei Liu, Gang He, Yixi Li, Yiwen Xian, Guixian He, Yonglong Hong, Chong Zhang, Decheng Wu
The pathogenesis of temporomandibular joint osteoarthritis (TMJOA) is closely associated with mechanical friction, which leads to the up-regulation of inflammatory mediators and the degradation of articular cartilage. Injectable drug-loaded microparticles have attracted widespread interest in intra-articular treatment of TMJOA by providing lubrication and facilitating localized drug delivery. Herein, a hyaluronic acid-based microparticle is developed with excellent lubrication properties, drug loading capacity, antioxidant activity, and anti-inflammatory effect for the treatment of TMJOA. The microparticles are facilely prepared by the self-assembly of 3-aminophenylboronic acid-modified hyaluronic acid (HP) through hydrophobic interaction in an aqueous solution, which can further encapsulate diol-containing drugs through dynamic boronate ester bonds. The resulting microparticles demonstrate excellent injectability, lubrication properties, radical scavenging efficiency, and antibacterial activity. Additionally, the drug-loaded microparticles exhibit a favorable cytoprotective effect on chondrocyte cells in vitro under an oxidative stress microenvironment. In vivo experiments validate that intra-articular injection of drug-loaded microparticles effectively alleviates osteoporosis-like damage, suppresses inflammatory response, and facilitates matrix regeneration in the treatment of TMJOA. The HP microparticles demonstrate excellent injectability and encapsulation capacity for diol-containing drugs, highlighting its potential as a versatile drug delivery vehicle in the intra-articular treatment of TMJOA.
{"title":"Hyaluronic Acid-Based Microparticles with Lubrication and Anti-Inflammation for Alleviating Temporomandibular Joint Osteoarthritis.","authors":"Lei Liu, Gang He, Yixi Li, Yiwen Xian, Guixian He, Yonglong Hong, Chong Zhang, Decheng Wu","doi":"10.34133/bmr.0073","DOIUrl":"10.34133/bmr.0073","url":null,"abstract":"<p><p>The pathogenesis of temporomandibular joint osteoarthritis (TMJOA) is closely associated with mechanical friction, which leads to the up-regulation of inflammatory mediators and the degradation of articular cartilage. Injectable drug-loaded microparticles have attracted widespread interest in intra-articular treatment of TMJOA by providing lubrication and facilitating localized drug delivery. Herein, a hyaluronic acid-based microparticle is developed with excellent lubrication properties, drug loading capacity, antioxidant activity, and anti-inflammatory effect for the treatment of TMJOA. The microparticles are facilely prepared by the self-assembly of 3-aminophenylboronic acid-modified hyaluronic acid (HP) through hydrophobic interaction in an aqueous solution, which can further encapsulate diol-containing drugs through dynamic boronate ester bonds. The resulting microparticles demonstrate excellent injectability, lubrication properties, radical scavenging efficiency, and antibacterial activity. Additionally, the drug-loaded microparticles exhibit a favorable cytoprotective effect on chondrocyte cells in vitro under an oxidative stress microenvironment. In vivo experiments validate that intra-articular injection of drug-loaded microparticles effectively alleviates osteoporosis-like damage, suppresses inflammatory response, and facilitates matrix regeneration in the treatment of TMJOA. The HP microparticles demonstrate excellent injectability and encapsulation capacity for diol-containing drugs, highlighting its potential as a versatile drug delivery vehicle in the intra-articular treatment of TMJOA.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0073"},"PeriodicalIF":8.1,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Along with a paradigm shift in looking at soft tissue fillers from space-filling to bioactive materials, decellularized extracellular matrix (DEM) fillers have gained more attention considering their superior bioactivity. However, the complex mechanisms that govern the interaction between host tissues and DEMs have been partially understood. This review first covers the mechanisms that determine immunogenicity, angiogenesis and vasculogenesis, and recellularization and remodeling after DEM implantation into host tissue, with a particular focus on related findings from filler materials. Accordingly, the review delves into the dual role of macrophages and their M1/M2 polarization paradigm to form both constructive and destructive immune responses to DEM implants. Moreover, the contribution of macrophages in angiogenesis has been elucidated, which includes but is not limited to the secretion of angiogenic growth factors and extracellular matrix (ECM) remodeling. The findings challenge the traditional view of immune cells as solely destructive entities in biomaterials and indicate their multifaceted roles in tissue regeneration. Furthermore, the review discusses how the compositional factors of DEMs, such as the presence of growth factors and matrikines, can influence angiogenesis, cell fate, and differentiation during the recellularization process. It is also shown that the biomechanical properties of DEMs, including tissue stiffness, modulate cell responses through mechanotransduction pathways, and the structural properties of DEMs, such as scaffold porosity, impact cell-cell and cell-ECM interactions. Finally, we pointed out the current clinical applications, the bottlenecks in the clinical translation of DEM biomaterials into soft tissue fillers, as well as the naïve research areas of the field.
随着软组织填充物的研究范式从空间填充转向生物活性材料,脱细胞细胞外基质(DEM)填充物因其卓越的生物活性而受到更多关注。然而,人们对宿主组织与脱细胞细胞外基质(DEM)之间相互作用的复杂机制还不甚了解。本综述首先探讨了决定 DEM 植入宿主组织后的免疫原性、血管生成和脉管生成以及再细胞化和重塑的机制,尤其侧重于填充材料的相关研究结果。因此,本综述深入探讨了巨噬细胞的双重作用及其 M1/M2 极化范式,从而形成对 DEM 植入物的建设性和破坏性免疫反应。此外,还阐明了巨噬细胞在血管生成中的作用,包括但不限于分泌血管生成生长因子和细胞外基质(ECM)重塑。这些发现挑战了免疫细胞在生物材料中只起破坏作用的传统观点,表明了它们在组织再生中的多方面作用。此外,综述还讨论了 DEM 的组成因素(如生长因子和母质的存在)如何在再细胞化过程中影响血管生成、细胞命运和分化。文章还指出,DEMs 的生物力学特性(包括组织硬度)会通过机械传导途径调节细胞反应,而 DEMs 的结构特性(如支架孔隙率)则会影响细胞-细胞和细胞-ECM 之间的相互作用。最后,我们指出了目前的临床应用、DEM 生物材料临床转化为软组织填充物的瓶颈以及该领域的幼稚研究领域。
{"title":"Decellularized Extracellular Matrix Scaffolds for Soft Tissue Augmentation: From Host-Scaffold Interactions to Bottlenecks in Clinical Translation.","authors":"Yasamin Ostadi, Javad Khanali, Fatemeh A Tehrani, Ghasem Yazdanpanah, Soheyl Bahrami, Feizollah Niazi, Hassan Niknejad","doi":"10.34133/bmr.0071","DOIUrl":"10.34133/bmr.0071","url":null,"abstract":"<p><p>Along with a paradigm shift in looking at soft tissue fillers from space-filling to bioactive materials, decellularized extracellular matrix (DEM) fillers have gained more attention considering their superior bioactivity. However, the complex mechanisms that govern the interaction between host tissues and DEMs have been partially understood. This review first covers the mechanisms that determine immunogenicity, angiogenesis and vasculogenesis, and recellularization and remodeling after DEM implantation into host tissue, with a particular focus on related findings from filler materials. Accordingly, the review delves into the dual role of macrophages and their M1/M2 polarization paradigm to form both constructive and destructive immune responses to DEM implants. Moreover, the contribution of macrophages in angiogenesis has been elucidated, which includes but is not limited to the secretion of angiogenic growth factors and extracellular matrix (ECM) remodeling. The findings challenge the traditional view of immune cells as solely destructive entities in biomaterials and indicate their multifaceted roles in tissue regeneration. Furthermore, the review discusses how the compositional factors of DEMs, such as the presence of growth factors and matrikines, can influence angiogenesis, cell fate, and differentiation during the recellularization process. It is also shown that the biomechanical properties of DEMs, including tissue stiffness, modulate cell responses through mechanotransduction pathways, and the structural properties of DEMs, such as scaffold porosity, impact cell-cell and cell-ECM interactions. Finally, we pointed out the current clinical applications, the bottlenecks in the clinical translation of DEM biomaterials into soft tissue fillers, as well as the naïve research areas of the field.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0071"},"PeriodicalIF":8.1,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378302/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06eCollection Date: 2024-01-01DOI: 10.34133/bmr.0074
Shiguo Yuan, Boyuan Zheng, Kai Zheng, Zhiheng Lai, Zihang Chen, Jing Zhao, Shaoping Li, Xiaofei Zheng, Peng Wu, Huajun Wang
Skull defect repair is a complex and critical medical challenge, and there is an urgent need to develop multifunctional tissue engineering scaffolds for skull regeneration. The success of bone tissue engineering depends on the construction of scaffolds that can regulate the immune microenvironment of bone regeneration and mimic the liquid crystal and viscoelastic properties of natural bone extracellular matrix. Hence, a smart hydrogel (PEGDA5/AM15/CLC-BMP-4@MBG) with good biocompatibility and the ability to modulate the wound immune microenvironment has been developed for the repair of skull defects. The hydrogel consists of chitin liquid crystal hydrogel (PEGDA5/AM15/CLC) and mesoporous bioactive glasses (MBGs) loaded with bone morphogenetic protein-4 (BMP-4). The liquid crystal hydrogel not only offers the necessary biological support and mechanical properties but also maintains the stability of the liquid crystal state, facilitating adhesion and regeneration of surrounding bone tissue. In addition, BMP-4@MBG intelligently regulates the release rate of BMP-4 in response to changes in wound microenvironment, thus effectively promoting the transformation of macrophages from M1 to M2 macrophages. At the same time, Ca2+ and Si4+ released by MBG degradation and BMP-4 synergically promote bone repair process. The PEGDA5/AM15/CLC-BMP-4@MBG hydrogel shows excellent immunomodulatory and osteogenic properties of bone microenvironment and is a promising scaffold material for bone tissue engineering.
{"title":"Immunoregulation in Skull Defect Repair with a Smart Hydrogel Loaded with Mesoporous Bioactive Glasses.","authors":"Shiguo Yuan, Boyuan Zheng, Kai Zheng, Zhiheng Lai, Zihang Chen, Jing Zhao, Shaoping Li, Xiaofei Zheng, Peng Wu, Huajun Wang","doi":"10.34133/bmr.0074","DOIUrl":"10.34133/bmr.0074","url":null,"abstract":"<p><p>Skull defect repair is a complex and critical medical challenge, and there is an urgent need to develop multifunctional tissue engineering scaffolds for skull regeneration. The success of bone tissue engineering depends on the construction of scaffolds that can regulate the immune microenvironment of bone regeneration and mimic the liquid crystal and viscoelastic properties of natural bone extracellular matrix. Hence, a smart hydrogel (PEGDA5/AM15/CLC-BMP-4@MBG) with good biocompatibility and the ability to modulate the wound immune microenvironment has been developed for the repair of skull defects. The hydrogel consists of chitin liquid crystal hydrogel (PEGDA5/AM15/CLC) and mesoporous bioactive glasses (MBGs) loaded with bone morphogenetic protein-4 (BMP-4). The liquid crystal hydrogel not only offers the necessary biological support and mechanical properties but also maintains the stability of the liquid crystal state, facilitating adhesion and regeneration of surrounding bone tissue. In addition, BMP-4@MBG intelligently regulates the release rate of BMP-4 in response to changes in wound microenvironment, thus effectively promoting the transformation of macrophages from M1 to M2 macrophages. At the same time, Ca<sup>2+</sup> and Si<sup>4+</sup> released by MBG degradation and BMP-4 synergically promote bone repair process. The PEGDA5/AM15/CLC-BMP-4@MBG hydrogel shows excellent immunomodulatory and osteogenic properties of bone microenvironment and is a promising scaffold material for bone tissue engineering.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0074"},"PeriodicalIF":8.1,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378080/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The rapid identification of bacterial Gram types and their viability, as well as efficient bacterial elimination are crucial for managing bacterial infections yet present important challenges. In this research, we utilized long-chain-tailed BODIPY derivatives to address these hurdles. Our data indicated that these derivatives can distinguish bacteria types and their viability in aqueous solutions through a concise turn-on fluorescent response. Among them, B-8 stained both live and dead bacteria, and B-14 offered a wash-free staining. B-18 demonstrated the highest affinity to selectively fluorescent label viable gram-positive bacteria with a 53.2-fold fluorescent enhancement. Confocal imaging confirmed that B-18 can serve as an effective membrane-specific probe for facilitating the typing between gram-negative and gram-positive bacteria in a wash-free manner. Additionally, B-18 displayed selective photodynamic inactivation at 1 μM toward gram-positive bacteria. In vivo studies variformed the ideal photodynamic therapeutic efficacy of B-18 against methicillin-resistant Staphylococcus aureus in mice wound infections.
{"title":"Wash-Free Bacterial Gram-Typing and Photodynamic Inactivation with Long-Chain-Tailed BODIPY Derivatives.","authors":"Yuefeng Ji, Jigai Li, Chunping Chen, Chunxiang Piao, Xin Zhou, Juyoung Yoon","doi":"10.34133/bmr.0069","DOIUrl":"10.34133/bmr.0069","url":null,"abstract":"<p><p>The rapid identification of bacterial Gram types and their viability, as well as efficient bacterial elimination are crucial for managing bacterial infections yet present important challenges. In this research, we utilized long-chain-tailed BODIPY derivatives to address these hurdles. Our data indicated that these derivatives can distinguish bacteria types and their viability in aqueous solutions through a concise turn-on fluorescent response. Among them, <b>B-8</b> stained both live and dead bacteria, and <b>B-14</b> offered a wash-free staining. <b>B-18</b> demonstrated the highest affinity to selectively fluorescent label viable gram-positive bacteria with a 53.2-fold fluorescent enhancement. Confocal imaging confirmed that <b>B-18</b> can serve as an effective membrane-specific probe for facilitating the typing between gram-negative and gram-positive bacteria in a wash-free manner. Additionally, <b>B-18</b> displayed selective photodynamic inactivation at 1 μM toward gram-positive bacteria. In vivo studies variformed the ideal photodynamic therapeutic efficacy of <b>B-18</b> against methicillin-resistant <i>Staphylococcus aureus</i> in mice wound infections.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0069"},"PeriodicalIF":8.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370751/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30eCollection Date: 2024-01-01DOI: 10.34133/bmr.0072
Zhen Zhang, Xu Hu, Min Jin, Yulei Mu, Huiqun Zhou, Cheng Ma, Liang Ma, Bangheng Liu, Hang Yao, Ye Huang, Dong-An Wang
Repairing and regenerating articular cartilage defects (ACDs) have long been challenging for physicians and scientists. The rise of injectable materials provides a novel strategy for minimally invasive surgery to repair ACDs. In this study, we successfully developed injectable materials based on collagen type II, achieving hyaline cartilage repair and regeneration of ACDs. Analysis was conducted on the regenerated cartilage after materials injection. The histology staining demonstrated complete healing of the ACDs with the attainment of a hyaline cartilage phenotype. The biochemical and biomechanical properties are similar to the adjacent native cartilage without noticeable adverse effects on the subchondral bone. Further transcriptome analysis found that compared with the Native cartilage adjacent to the defect area, the Regenerated cartilage in the defect area repaired with type II collagen-based injection materials showed changes in cartilage-related pathways, as well as down-regulation of T cell receptor signaling pathways and interleukin-17 signaling pathways, which changed the immune microenvironment of the ACD area. Overall, these findings offer a promising injectable approach to treating ACDs, providing a potential solution to the challenges associated with achieving hyaline cartilage in situ repair and regeneration while minimizing damage to the surrounding cartilage.
长期以来,修复和再生关节软骨缺损(ACD)一直是医生和科学家面临的挑战。可注射材料的兴起为微创手术修复 ACD 提供了一种新策略。在这项研究中,我们成功开发了基于 II 型胶原蛋白的可注射材料,实现了 ACD 的透明软骨修复和再生。我们对注射材料后的再生软骨进行了分析。组织学染色显示 ACD 完全愈合,并达到了透明软骨表型。其生化和生物力学特性与邻近的原生软骨相似,对软骨下骨没有明显的不良影响。进一步的转录组分析发现,与缺损区邻近的原生软骨相比,用 II 型胶原注射材料修复的缺损区再生软骨显示出软骨相关通路的变化,以及 T 细胞受体信号通路和白细胞介素-17 信号通路的下调,这改变了 ACD 区的免疫微环境。总之,这些研究结果为治疗 ACD 提供了一种前景广阔的注射方法,为解决与实现透明软骨原位修复和再生相关的挑战提供了一种潜在的解决方案,同时最大限度地减少了对周围软骨的损伤。
{"title":"Collagen Type II-Based Injectable Materials for In situ Repair and Regeneration of Articular Cartilage Defect.","authors":"Zhen Zhang, Xu Hu, Min Jin, Yulei Mu, Huiqun Zhou, Cheng Ma, Liang Ma, Bangheng Liu, Hang Yao, Ye Huang, Dong-An Wang","doi":"10.34133/bmr.0072","DOIUrl":"10.34133/bmr.0072","url":null,"abstract":"<p><p>Repairing and regenerating articular cartilage defects (ACDs) have long been challenging for physicians and scientists. The rise of injectable materials provides a novel strategy for minimally invasive surgery to repair ACDs. In this study, we successfully developed injectable materials based on collagen type II, achieving hyaline cartilage repair and regeneration of ACDs. Analysis was conducted on the regenerated cartilage after materials injection. The histology staining demonstrated complete healing of the ACDs with the attainment of a hyaline cartilage phenotype. The biochemical and biomechanical properties are similar to the adjacent native cartilage without noticeable adverse effects on the subchondral bone. Further transcriptome analysis found that compared with the Native cartilage adjacent to the defect area, the Regenerated cartilage in the defect area repaired with type II collagen-based injection materials showed changes in cartilage-related pathways, as well as down-regulation of T cell receptor signaling pathways and interleukin-17 signaling pathways, which changed the immune microenvironment of the ACD area. Overall, these findings offer a promising injectable approach to treating ACDs, providing a potential solution to the challenges associated with achieving hyaline cartilage in situ repair and regeneration while minimizing damage to the surrounding cartilage.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0072"},"PeriodicalIF":8.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362811/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-15eCollection Date: 2024-01-01DOI: 10.34133/bmr.0067
Janine Waletzko-Hellwig, Jan-Oliver Sass, Rainer Bader, Bernhard Frerich, Michael Dau
Processing of bone allografts with strong acids and γ-sterilization results in decreased biomechanical properties and reduction in osteogenecity and osteoconductivity. High hydrostatic pressure (HHP) treatment could be a gentle alternative to processing techniques usually applied. HHP is known to induce devitalization of cancellous bone while preserving biomechanical stability and molecules that induce cell differentiation. Here, a specific HHP protocol for devitalization of cancellous bone was applied to rabbit femoral bone. Allogeneic bone cylinders were subsequently implanted into a defect in the lateral condyles of rabbit femora and were compared to autologous bone grafts. Analysis of bone integration 4 and 12 weeks postoperatively revealed no differences between autografts and HHP-treated allografts regarding the expression of genes characteristic for bone remodeling, showing expression niveous comparable to original bone cylinder. Furthermore, biomechanical properties were evaluated 12 weeks postoperatively. Autografts and HHP-treated allografts both showed a yield strength ranging between 2 and 2.5 MPa and an average bone mass density of 250 mg/cm2. Furthermore, histological analysis of the region of interest revealed a rate of 5 to 10% BPM-2 and approximately 40% osteocalcin-positive staining, with no marked differences between allografts and autografts demonstrating comparable matrix deposition in the graft region. A suitable graft integrity was pointed out by μCT imaging in both groups, supporting the biomechanical data. In summary, the integrity of HHP-treated cancellous bone allografts showed similar results to untreated autografts. Hence, HHP treatment may represent a gentle and effective alternative to existing processing techniques for bone allografts.
{"title":"Evaluation of Integrity of Allogeneic Bone Processed with High Hydrostatic Pressure: A Pilot Animal Study.","authors":"Janine Waletzko-Hellwig, Jan-Oliver Sass, Rainer Bader, Bernhard Frerich, Michael Dau","doi":"10.34133/bmr.0067","DOIUrl":"10.34133/bmr.0067","url":null,"abstract":"<p><p>Processing of bone allografts with strong acids and γ-sterilization results in decreased biomechanical properties and reduction in osteogenecity and osteoconductivity. High hydrostatic pressure (HHP) treatment could be a gentle alternative to processing techniques usually applied. HHP is known to induce devitalization of cancellous bone while preserving biomechanical stability and molecules that induce cell differentiation. Here, a specific HHP protocol for devitalization of cancellous bone was applied to rabbit femoral bone. Allogeneic bone cylinders were subsequently implanted into a defect in the lateral condyles of rabbit femora and were compared to autologous bone grafts. Analysis of bone integration 4 and 12 weeks postoperatively revealed no differences between autografts and HHP-treated allografts regarding the expression of genes characteristic for bone remodeling, showing expression niveous comparable to original bone cylinder. Furthermore, biomechanical properties were evaluated 12 weeks postoperatively. Autografts and HHP-treated allografts both showed a yield strength ranging between 2 and 2.5 MPa and an average bone mass density of 250 mg/cm<sup>2</sup>. Furthermore, histological analysis of the region of interest revealed a rate of 5 to 10% BPM-2 and approximately 40% osteocalcin-positive staining, with no marked differences between allografts and autografts demonstrating comparable matrix deposition in the graft region. A suitable graft integrity was pointed out by μCT imaging in both groups, supporting the biomechanical data. In summary, the integrity of HHP-treated cancellous bone allografts showed similar results to untreated autografts. Hence, HHP treatment may represent a gentle and effective alternative to existing processing techniques for bone allografts.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0067"},"PeriodicalIF":8.1,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02eCollection Date: 2024-01-01DOI: 10.34133/bmr.0050
Pengcheng Zhou, Xian'guang Ding, Xuanlong Du, Lianhui Wang, Yewei Zhang
Background: As one of the most aggressive and lethal cancers, pancreatic cancer is highly associated with cancer-associated fibroblasts (CAFs) that influence the development and progression of cancer. Targeted reprogramming of CAFs may be a promising strategy for pancreatic cancer. This study aims to construct engineered extracellular vesicles (EVs) with surface modification of integrin α5 (ITGA5)-targeting peptide and high internal expression of miR-148a-3p by endogenous modification for targeted reprogramming of pancreatic CAFs. Methods: Bone marrow mesenchymal stem cells (BMSCs) and pancreatic CAFs were cocultured to examine the effect of BMSC-derived EVs on the expression levels of CAF markers. miR-148a-3p was identified as a functional molecule. The mechanism of miR-148a-3p was elucidated using the dual-luciferase reporter assay. BMSCs were infected with TERT-encoding and miR-148a-3p-encoding lentiviruses. Subsequently, BMSCs were modified with ITGA5-specific targeting peptide. The supernatant was ultracentrifuged to obtain the engineered EVs (ITGA5-EVs-148a), which were used to reprogram CAFs. Results: BMSCs modulated CAF marker expressions through EVs. miR-148a-3p was up-regulated in BMSCs. The expression of miR-148a-3p in pancreatic CAFs was down-regulated when compared with that in normal fibroblasts (NFs). Mechanistically, ITGA5-EVs-148a effectively suppressed the proliferation and migration of pancreatic CAFs by targeting ITGA5 through the TGF-β/SMAD pathway. ITGA5-EVs-148a was associated with enhanced cellular uptake and exhibited enhanced in vitro and in vivo targeting ability. Moreover, ITGA5-EVs-148a exerted strong reconfiguration effects in inactivating CAFs and reversing tumor-promoting effects in 3D heterospheroid and xenograft pancreatic cancer models. Conclusions: This targeted CAF reprogramming strategy with genetically engineered ITGA5-EVs-148a holds great promise as a precision therapeutics in clinical settings.
{"title":"Targeting Reprogrammed Cancer-Associated Fibroblasts with Engineered Mesenchymal Stem Cell Extracellular Vesicles for Pancreatic Cancer Treatment.","authors":"Pengcheng Zhou, Xian'guang Ding, Xuanlong Du, Lianhui Wang, Yewei Zhang","doi":"10.34133/bmr.0050","DOIUrl":"10.34133/bmr.0050","url":null,"abstract":"<p><p><b>Background:</b> As one of the most aggressive and lethal cancers, pancreatic cancer is highly associated with cancer-associated fibroblasts (CAFs) that influence the development and progression of cancer. Targeted reprogramming of CAFs may be a promising strategy for pancreatic cancer. This study aims to construct engineered extracellular vesicles (EVs) with surface modification of integrin α5 (ITGA5)-targeting peptide and high internal expression of miR-148a-3p by endogenous modification for targeted reprogramming of pancreatic CAFs. <b>Methods:</b> Bone marrow mesenchymal stem cells (BMSCs) and pancreatic CAFs were cocultured to examine the effect of BMSC-derived EVs on the expression levels of CAF markers. miR-148a-3p was identified as a functional molecule. The mechanism of miR-148a-3p was elucidated using the dual-luciferase reporter assay. BMSCs were infected with TERT-encoding and miR-148a-3p-encoding lentiviruses. Subsequently, BMSCs were modified with ITGA5-specific targeting peptide. The supernatant was ultracentrifuged to obtain the engineered EVs (ITGA5-EVs<sup>-148a</sup>), which were used to reprogram CAFs. <b>Results:</b> BMSCs modulated CAF marker expressions through EVs. miR-148a-3p was up-regulated in BMSCs. The expression of miR-148a-3p in pancreatic CAFs was down-regulated when compared with that in normal fibroblasts (NFs). Mechanistically, ITGA5-EVs<sup>-148a</sup> effectively suppressed the proliferation and migration of pancreatic CAFs by targeting ITGA5 through the TGF-β/SMAD pathway. ITGA5-EVs<sup>-148a</sup> was associated with enhanced cellular uptake and exhibited enhanced in vitro and in vivo targeting ability. Moreover, ITGA5-EVs<sup>-148a</sup> exerted strong reconfiguration effects in inactivating CAFs and reversing tumor-promoting effects in 3D heterospheroid and xenograft pancreatic cancer models. <b>Conclusions:</b> This targeted CAF reprogramming strategy with genetically engineered ITGA5-EVs<sup>-148a</sup> holds great promise as a precision therapeutics in clinical settings.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0050"},"PeriodicalIF":8.1,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29eCollection Date: 2024-01-01DOI: 10.34133/bmr.0057
Xuechun Wang, Qing Wang, Jian Wang, Xuan Wang, Linling Yin, Changping Wang, Guangjian Fan, Jinsong Pan
Periodontitis is a chronic inflammatory disease characterized by plaque accumulation, resulting in immune microenvironment disorders and resorption of alveolar bone. To promote bone healing under inflammatory environments, a functional biomaterial based on disease pathophysiology is designed. A novel fatty acid C10-modified polypeptide, C10-KR8, is discovered to have excellent abilities in modulating macrophage repolarization and promoting bone regeneration in periodontitis. To build a multifunctional material localized drug delivery system, C10-KR8@ZIF-8 (C10-KR8-loaded zeolitic imidazolate framework-8) nanoparticles are constructed to sustainedly release the C10-KR8 peptide and Zn elements. By synergistic effects of providing a dynamic immuno-modulatory environment and promoting osteogenesis under pathological conditions, the obtained pH-responsive nanoparticles display excellent bone regeneration capability. Furthermore, coimmunoprecipitation/liquid chromatography-tandem mass spectrometry analysis and proteomics analysis revealed that the C10-KR8 peptide directly interacts with the high-temperature requirement protein A1 (Htra1), and C10-KR8@ZIF-8 nanoparticles promote the osteogenic differentiation of bone mesenchymal stem cells by activating the focal adhesion kinase (FAK)/phosphatidylinositide 3-kinase (PI3K)/AKT pathway and enhancing the nuclear localization of Yes-associated protein (YAP). Taken together, this study demonstrates C10-KR8 peptide regulate osteoimmunology and bone regeneration by Htra1/FAK/YAP pathway and that ZIF-8-based peptide loading platform is a promising strategy for periodontitis.
{"title":"A Novel Lipopeptide-Functionalized Metal-Organic Framework for Periodontitis Therapy through the Htra1/FAK/YAP Pathway.","authors":"Xuechun Wang, Qing Wang, Jian Wang, Xuan Wang, Linling Yin, Changping Wang, Guangjian Fan, Jinsong Pan","doi":"10.34133/bmr.0057","DOIUrl":"10.34133/bmr.0057","url":null,"abstract":"<p><p>Periodontitis is a chronic inflammatory disease characterized by plaque accumulation, resulting in immune microenvironment disorders and resorption of alveolar bone. To promote bone healing under inflammatory environments, a functional biomaterial based on disease pathophysiology is designed. A novel fatty acid C10-modified polypeptide, C<sub>10</sub>-KR8, is discovered to have excellent abilities in modulating macrophage repolarization and promoting bone regeneration in periodontitis. To build a multifunctional material localized drug delivery system, C<sub>10</sub>-KR8@ZIF-8 (C<sub>10</sub>-KR8-loaded zeolitic imidazolate framework-8) nanoparticles are constructed to sustainedly release the C<sub>10</sub>-KR8 peptide and Zn elements. By synergistic effects of providing a dynamic immuno-modulatory environment and promoting osteogenesis under pathological conditions, the obtained pH-responsive nanoparticles display excellent bone regeneration capability. Furthermore, coimmunoprecipitation/liquid chromatography-tandem mass spectrometry analysis and proteomics analysis revealed that the C<sub>10</sub>-KR8 peptide directly interacts with the high-temperature requirement protein A1 (Htra1), and C<sub>10</sub>-KR8@ZIF-8 nanoparticles promote the osteogenic differentiation of bone mesenchymal stem cells by activating the focal adhesion kinase (FAK)/phosphatidylinositide 3-kinase (PI3K)/AKT pathway and enhancing the nuclear localization of Yes-associated protein (YAP). Taken together, this study demonstrates C<sub>10</sub>-KR8 peptide regulate osteoimmunology and bone regeneration by Htra1/FAK/YAP pathway and that ZIF-8-based peptide loading platform is a promising strategy for periodontitis.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0057"},"PeriodicalIF":8.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283871/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}