Pub Date : 2024-03-15eCollection Date: 2024-01-01DOI: 10.34133/bmr.0011
Boram Son, Sora Park, Sungwoo Cho, Jeong Ah Kim, Seung-Ho Baek, Ki Hyun Yoo, Dongoh Han, Jinmyoung Joo, Hee Ho Park, Tai Hyun Park
Background: To improve the efficiency of neural development from human embryonic stem cells, human embryoid body (hEB) generation is vital through 3-dimensional formation. However, conventional approaches still have limitations: long-term cultivation and laborious steps for lineage determination. Methods: In this study, we controlled the size of hEBs for ectodermal lineage specification using cell-penetrating magnetic nanoparticles (MNPs), which resulted in reduced time required for initial neural induction. The magnetized cells were applied to concentrated magnetic force for magnet-derived multicellular organization. The uniformly sized hEBs were differentiated in neural induction medium (NIM) and suspended condition. This neurally induced MNP-hEBs were compared with other groups. Results: As a result, the uniformly sized MNP-hEBs in NIM showed significantly improved neural inductivity through morphological analysis and expression of neural markers. Signaling pathways of the accelerated neural induction were detected via expression of representative proteins; Wnt signaling, dopaminergic neuronal pathway, intercellular communications, and mechanotransduction. Consequently, we could shorten the time necessary for early neurogenesis, thereby enhancing the neural induction efficiency. Conclusion: Overall, this study suggests not only the importance of size regulation of hEBs at initial differentiation stage but also the efficacy of MNP-based neural induction method and stimulations for enhanced neural tissue regeneration.
{"title":"Improved Neural Inductivity of Size-Controlled 3D Human Embryonic Stem Cells Using Magnetic Nanoparticles.","authors":"Boram Son, Sora Park, Sungwoo Cho, Jeong Ah Kim, Seung-Ho Baek, Ki Hyun Yoo, Dongoh Han, Jinmyoung Joo, Hee Ho Park, Tai Hyun Park","doi":"10.34133/bmr.0011","DOIUrl":"10.34133/bmr.0011","url":null,"abstract":"<p><p><b>Background:</b> To improve the efficiency of neural development from human embryonic stem cells, human embryoid body (hEB) generation is vital through 3-dimensional formation. However, conventional approaches still have limitations: long-term cultivation and laborious steps for lineage determination. <b>Methods:</b> In this study, we controlled the size of hEBs for ectodermal lineage specification using cell-penetrating magnetic nanoparticles (MNPs), which resulted in reduced time required for initial neural induction. The magnetized cells were applied to concentrated magnetic force for magnet-derived multicellular organization. The uniformly sized hEBs were differentiated in neural induction medium (NIM) and suspended condition. This neurally induced MNP-hEBs were compared with other groups. <b>Results:</b> As a result, the uniformly sized MNP-hEBs in NIM showed significantly improved neural inductivity through morphological analysis and expression of neural markers. Signaling pathways of the accelerated neural induction were detected via expression of representative proteins; Wnt signaling, dopaminergic neuronal pathway, intercellular communications, and mechanotransduction. Consequently, we could shorten the time necessary for early neurogenesis, thereby enhancing the neural induction efficiency. <b>Conclusion:</b> Overall, this study suggests not only the importance of size regulation of hEBs at initial differentiation stage but also the efficacy of MNP-based neural induction method and stimulations for enhanced neural tissue regeneration.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0011"},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-07eCollection Date: 2024-01-01DOI: 10.34133/bmr.0010
Gyuho Choi, Hyunkoo Kang, Jung-Soo Suh, Haksoo Lee, Kiseok Han, Gaeun Yoo, Hyejin Jo, Yeong Min Shin, Tae-Jin Kim, BuHyun Youn
The increasing prevalence of endocrine-disrupting chemicals (EDCs) in our environment is a growing concern, with numerous studies highlighting their adverse effects on the human endocrine system. Among the EDCs, estrogenic endocrine-disrupting chemicals (eEDCs) are exogenous compounds that perturb estrogenic hormone function by interfering with estrogen receptor (ER) homo (α/α, β/β) or hetero (α/β) dimerization. To date, a comprehensive screening approach for eEDCs affecting all ER dimer forms in live cells is lacking. Here, we developed ER dimerization-detecting biosensors (ERDDBs), based on bioluminescence resonance energy transfer, for dimerization detection and rapid eEDC identification. To enhance the performance of these biosensors, we determined optimal donor and acceptor locations using computational analysis. Additionally, employing HaloTag as the acceptor and incorporating the P2A peptide as a linker yielded the highest sensitivity among the prototypes. We also established stable cell lines to screen potential ER dimerization inducers among estrogen analogs (EAs). The EAs were categorized through cross-comparison of ER dimer responses, utilizing EC values derived from a standard curve established with 17β-estradiol. We successfully classified 26 of 72 EAs, identifying which ER dimerization types they induce. Overall, our study underscores the effectiveness of the optimized ERDDB for detecting ER dimerization and its applicability in screening and identifying eEDCs.
干扰内分泌的化学品(EDCs)在我们的环境中越来越普遍,引起了越来越多的关注,许多研究都强调了它们对人体内分泌系统的不利影响。在 EDCs 中,雌激素类内分泌干扰化学物(eEDCs)是一种外源化合物,通过干扰雌激素受体(ER)的同源(α/α、β/β)或异源(α/β)二聚化来扰乱雌激素的功能。迄今为止,还缺乏一种全面筛选活细胞中影响所有ER二聚体形式的eEDCs的方法。在此,我们开发了基于生物发光共振能量转移的ER二聚化检测生物传感器(ERDDBs),用于二聚化检测和eEDC的快速鉴定。为了提高这些生物传感器的性能,我们通过计算分析确定了最佳供体和受体位置。此外,采用 HaloTag 作为受体并加入 P2A 肽作为连接体,在各种原型中灵敏度最高。我们还建立了稳定的细胞系来筛选雌激素类似物(EAs)中潜在的ER二聚化诱导剂。通过交叉比较ER二聚体反应,利用从17β-雌二醇标准曲线中得出的EC值对EA进行分类。我们成功地对 72 种 EAs 中的 26 种进行了分类,确定了它们诱导的 ER 二聚化类型。总之,我们的研究强调了优化的ERDDB在检测ER二聚化方面的有效性及其在筛选和鉴定eEDC方面的适用性。
{"title":"Novel Estrogen Receptor Dimerization BRET-Based Biosensors for Screening Estrogenic Endocrine-Disrupting Chemicals.","authors":"Gyuho Choi, Hyunkoo Kang, Jung-Soo Suh, Haksoo Lee, Kiseok Han, Gaeun Yoo, Hyejin Jo, Yeong Min Shin, Tae-Jin Kim, BuHyun Youn","doi":"10.34133/bmr.0010","DOIUrl":"10.34133/bmr.0010","url":null,"abstract":"<p><p>The increasing prevalence of endocrine-disrupting chemicals (EDCs) in our environment is a growing concern, with numerous studies highlighting their adverse effects on the human endocrine system. Among the EDCs, estrogenic endocrine-disrupting chemicals (eEDCs) are exogenous compounds that perturb estrogenic hormone function by interfering with estrogen receptor (ER) homo (α/α, β/β) or hetero (α/β) dimerization. To date, a comprehensive screening approach for eEDCs affecting all ER dimer forms in live cells is lacking. Here, we developed ER dimerization-detecting biosensors (ERDDBs), based on bioluminescence resonance energy transfer, for dimerization detection and rapid eEDC identification. To enhance the performance of these biosensors, we determined optimal donor and acceptor locations using computational analysis. Additionally, employing HaloTag as the acceptor and incorporating the P2A peptide as a linker yielded the highest sensitivity among the prototypes. We also established stable cell lines to screen potential ER dimerization inducers among estrogen analogs (EAs). The EAs were categorized through cross-comparison of ER dimer responses, utilizing EC values derived from a standard curve established with 17β-estradiol. We successfully classified 26 of 72 EAs, identifying which ER dimerization types they induce. Overall, our study underscores the effectiveness of the optimized ERDDB for detecting ER dimerization and its applicability in screening and identifying eEDCs.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0010"},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10923609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140095323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-04eCollection Date: 2024-01-01DOI: 10.34133/bmr.0007
Hye Ran Jeon, Jeon Il Kang, Suk Ho Bhang, Kyung Min Park, Dong-Ik Kim
Myocardial infarction (MI) is treated with stem cell transplantation using various biomaterials and methods, such as stem cell/spheroid injections, cell sheets, and cardiac patches. However, current treatment methods have some limitations, including low stem cell engraftment and poor therapeutic effects. Furthermore, these methods cause secondary damage to heart due to injection and suturing to immobilize them in the heart, inducing side effects. In this study, we developed stem cell spheroid-laden 3-dimensional (3D) patches (S_3DP) with biosealant to treat MI. This 3D patch has dual modules, such as open pockets to directly deliver the spheroids with their paracrine effects and closed pockets to improve the engraft rate by protecting the spheroid from harsh microenvironments. The spheroids formed within S_3DP showed increased viability and expression of angiogenic factors compared to 2-dimensional cultured cells. We also fabricated gelatin-based tissue adhesive biosealants via a thiol-ene reaction and disulfide bond formation. This biosealant showed stronger tissue adhesiveness than commercial fibrin glue. Furthermore, we successfully applied S_3DP using a biosealant in a rat MI model without suturing in vivo, thereby improving cardiac function and reducing heart fibrosis. In summary, S_3DP and biosealant have excellent potential as advanced stem cell therapies with a sutureless approach to MI treatment.
{"title":"Transplantation of Stem Cell Spheroid-Laden 3-Dimensional Patches with Bioadhesives for the Treatment of Myocardial Infarction.","authors":"Hye Ran Jeon, Jeon Il Kang, Suk Ho Bhang, Kyung Min Park, Dong-Ik Kim","doi":"10.34133/bmr.0007","DOIUrl":"10.34133/bmr.0007","url":null,"abstract":"<p><p>Myocardial infarction (MI) is treated with stem cell transplantation using various biomaterials and methods, such as stem cell/spheroid injections, cell sheets, and cardiac patches. However, current treatment methods have some limitations, including low stem cell engraftment and poor therapeutic effects. Furthermore, these methods cause secondary damage to heart due to injection and suturing to immobilize them in the heart, inducing side effects. In this study, we developed stem cell spheroid-laden 3-dimensional (3D) patches (S_3DP) with biosealant to treat MI. This 3D patch has dual modules, such as open pockets to directly deliver the spheroids with their paracrine effects and closed pockets to improve the engraft rate by protecting the spheroid from harsh microenvironments. The spheroids formed within S_3DP showed increased viability and expression of angiogenic factors compared to 2-dimensional cultured cells. We also fabricated gelatin-based tissue adhesive biosealants via a thiol-ene reaction and disulfide bond formation. This biosealant showed stronger tissue adhesiveness than commercial fibrin glue. Furthermore, we successfully applied S_3DP using a biosealant in a rat MI model without suturing in vivo, thereby improving cardiac function and reducing heart fibrosis. In summary, S_3DP and biosealant have excellent potential as advanced stem cell therapies with a sutureless approach to MI treatment.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0007"},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140029728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-04eCollection Date: 2024-01-01DOI: 10.34133/bmr.0006
Pengcheng Tu, Yalan Pan, Lining Wang, Bin Li, Xiaoxian Sun, Zhongqing Liang, Mengmin Liu, Zitong Zhao, Chengjie Wu, Jianwei Wang, Zhifang Wang, Yu Song, Yafeng Zhang, Yong Ma, Yang Guo
Background: In the environment of cartilage injury, the activation of vascular endothelial cell (VEC), marked with excessive CD62E and reactive oxygen species (ROS), can affect the formation of hyaluronic cartilage. Therefore, we developed a CD62E- and ROS-responsive drug delivery system using E-selectin binding peptide, Thioketal, and silk fibroin (ETS) to achieve targeted delivery and controlled release of Clematis triterpenoid saponins (CS) against activated VEC, and thus promote cartilage regeneration. Methods: We prepared and characterized ETS/CS and verified their CD62E- and ROS-responsive properties in vitro. We investigated the effect and underlying mechanism of ETS/CS on inhibiting VEC activation and promoting chondrogenic differentiation of bone marrow stromal cells (BMSCs). We also analyzed the effect of ETS/CS on suppressing the activated VEC-macrophage inflammatory cascade in vitro. Additionally, we constructed a rat knee cartilage defect model and administered ETS/CS combined with BMSC-containing hydrogels. We detected the cartilage differentiation, the level of VEC activation and macrophage in the new tissue, and synovial tissue. Results: ETS/CS was able to interact with VEC and inhibit VEC activation through the carried CS. Coculture experiments verified ETS/CS promoted chondrogenic differentiation of BMSCs by inhibiting the activated VEC-induced inflammatory cascade of macrophages via OPA1-mediated mitochondrial homeostasis. In the rat knee cartilage defect model, ETS/CS reduced VEC activation, migration, angiogenesis in new tissues, inhibited macrophage infiltration and inflammation, promoted chondrogenic differentiation of BMSCs in the defective areas. Conclusions: CD62E- and ROS-responsive ETS/CS promoted cartilage repair by inhibiting VEC activation and macrophage inflammation and promoting BMSC chondrogenesis. Therefore, it is a promising therapeutic strategy to promote articular cartilage repair.
{"title":"CD62E- and ROS-Responsive ETS Improves Cartilage Repair by Inhibiting Endothelial Cell Activation through OPA1-Mediated Mitochondrial Homeostasis.","authors":"Pengcheng Tu, Yalan Pan, Lining Wang, Bin Li, Xiaoxian Sun, Zhongqing Liang, Mengmin Liu, Zitong Zhao, Chengjie Wu, Jianwei Wang, Zhifang Wang, Yu Song, Yafeng Zhang, Yong Ma, Yang Guo","doi":"10.34133/bmr.0006","DOIUrl":"10.34133/bmr.0006","url":null,"abstract":"<p><p><b>Background:</b> In the environment of cartilage injury, the activation of vascular endothelial cell (VEC), marked with excessive CD62E and reactive oxygen species (ROS), can affect the formation of hyaluronic cartilage. Therefore, we developed a CD62E- and ROS-responsive drug delivery system using E-selectin binding peptide, Thioketal, and silk fibroin (ETS) to achieve targeted delivery and controlled release of Clematis triterpenoid saponins (CS) against activated VEC, and thus promote cartilage regeneration. <b>Methods:</b> We prepared and characterized ETS/CS and verified their CD62E- and ROS-responsive properties in vitro. We investigated the effect and underlying mechanism of ETS/CS on inhibiting VEC activation and promoting chondrogenic differentiation of bone marrow stromal cells (BMSCs). We also analyzed the effect of ETS/CS on suppressing the activated VEC-macrophage inflammatory cascade in vitro. Additionally, we constructed a rat knee cartilage defect model and administered ETS/CS combined with BMSC-containing hydrogels. We detected the cartilage differentiation, the level of VEC activation and macrophage in the new tissue, and synovial tissue. <b>Results:</b> ETS/CS was able to interact with VEC and inhibit VEC activation through the carried CS. Coculture experiments verified ETS/CS promoted chondrogenic differentiation of BMSCs by inhibiting the activated VEC-induced inflammatory cascade of macrophages via OPA1-mediated mitochondrial homeostasis. In the rat knee cartilage defect model, ETS/CS reduced VEC activation, migration, angiogenesis in new tissues, inhibited macrophage infiltration and inflammation, promoted chondrogenic differentiation of BMSCs in the defective areas. <b>Conclusions:</b> CD62E- and ROS-responsive ETS/CS promoted cartilage repair by inhibiting VEC activation and macrophage inflammation and promoting BMSC chondrogenesis. Therefore, it is a promising therapeutic strategy to promote articular cartilage repair.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0006"},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911934/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140029727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Random flap grafting is a routine procedure used in plastic and reconstructive surgery to repair and reconstruct large tissue defects. Flap necrosis is primarily caused by ischemia-reperfusion injury and inadequate blood supply to the distal flap. Ischemia-reperfusion injury leads to the production of excessive reactive oxygen species, creating a pathological microenvironment that impairs cellular function and angiogenesis. In this study, we developed a microenvironment remodeling self-healing hydrogel [laminarin-chitosan-based hydrogel-loaded extracellular vesicles and ceria nanozymes (LCH@EVs&CNZs)] to improve the flap microenvironment and synergistically promote flap regeneration and survival. The natural self-healing hydrogel (LCH) was created by the oxidation laminarin and carboxymethylated chitosan via a Schiff base reaction. We loaded this hydrogel with CNZs and EVs. CNZs are a class of nanomaterials with enzymatic activity known for their strong scavenging capacity for reactive oxygen species, thus alleviating oxidative stress. EVs are cell-secreted vesicular structures containing thousands of bioactive substances that can promote cell proliferation, migration, differentiation, and angiogenesis. The constructed LCH@EVs&CNZs demonstrated a robust capacity for scavenging excess reactive oxygen species, thereby conferring cellular protection in oxidative stress environments. Moreover, these constructs notably enhance cell migration and angiogenesis. Our results demonstrate that LCH@EVs&CNZs effectively remodel the pathological skin flap microenvironment and marked improve flap survival. This approach introduces a new therapeutic strategy combining microenvironmental remodeling with EV therapy, which holds promise for promoting flap survival.
{"title":"Microenvironment Remodeling Self-Healing Hydrogel for Promoting Flap Survival.","authors":"Yikun Ju, Pu Yang, Xiangjun Liu, Zhihua Qiao, Naisi Shen, Lanjie Lei, Bairong Fang","doi":"10.34133/bmr.0001","DOIUrl":"10.34133/bmr.0001","url":null,"abstract":"<p><p>Random flap grafting is a routine procedure used in plastic and reconstructive surgery to repair and reconstruct large tissue defects. Flap necrosis is primarily caused by ischemia-reperfusion injury and inadequate blood supply to the distal flap. Ischemia-reperfusion injury leads to the production of excessive reactive oxygen species, creating a pathological microenvironment that impairs cellular function and angiogenesis. In this study, we developed a microenvironment remodeling self-healing hydrogel [laminarin-chitosan-based hydrogel-loaded extracellular vesicles and ceria nanozymes (LCH@EVs&CNZs)] to improve the flap microenvironment and synergistically promote flap regeneration and survival. The natural self-healing hydrogel (LCH) was created by the oxidation laminarin and carboxymethylated chitosan via a Schiff base reaction. We loaded this hydrogel with CNZs and EVs. CNZs are a class of nanomaterials with enzymatic activity known for their strong scavenging capacity for reactive oxygen species, thus alleviating oxidative stress. EVs are cell-secreted vesicular structures containing thousands of bioactive substances that can promote cell proliferation, migration, differentiation, and angiogenesis. The constructed LCH@EVs&CNZs demonstrated a robust capacity for scavenging excess reactive oxygen species, thereby conferring cellular protection in oxidative stress environments. Moreover, these constructs notably enhance cell migration and angiogenesis. Our results demonstrate that LCH@EVs&CNZs effectively remodel the pathological skin flap microenvironment and marked improve flap survival. This approach introduces a new therapeutic strategy combining microenvironmental remodeling with EV therapy, which holds promise for promoting flap survival.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0001"},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10882600/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139934698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-02eCollection Date: 2024-01-01DOI: 10.34133/bmr.0005
Wu Young Kang, Eun Kyoung Shin, Eun Hee Kim, Min-Ho Kang, Chi Young Bang, Oh Young Bang, Jae Min Cha
Stem-cell-derived extracellular vesicles (EVs) are emerging as an alternative approach to stem cell therapy. Successful lyophilization of EVs could enable convenient storage and distribution of EV medicinal products at room temperature for long periods, thus considerably increasing the accessibility of EV therapeutics to patients. In this study, we aimed to identify an appropriate lyoprotectant composition for the lyophilization and reconstitution of stem-cell-derived EVs. MSC-derived EVs were lyophilized using different lyoprotectants, such as dimethyl sulfoxide, mannitol, trehalose, and sucrose, at varying concentrations. Our results revealed that a mixture of trehalose and sucrose at high concentrations could support the formation of amorphous ice by enriching the amorphous phase of the solution, which successfully inhibited the acceleration of buffer component crystallization during lyophilization. Lyophilized and reconstituted EVs were thoroughly evaluated for concentration and size, morphology, and protein and RNA content. The therapeutic effects of the reconstituted EVs were examined using a tube formation assay with human umbilical vein endothelial cells. After rehydration of the lyophilized EVs, most of their generic characteristics were well-maintained, and their therapeutic capacity recovered to levels similar to those of freshly collected EVs. The concentrations and morphologies of the lyophilized EVs were similar to the initial features of the fresh EV group until day 30 at room temperature, although their therapeutic capacity appeared to decrease after 7 days. Our study suggests an appropriate composition of lyoprotectants, particularly for EV lyophilization, which could encourage the applications of stem-cell-derived EV therapeutics in the health industry.
{"title":"Lyoprotectant Constituents Suited for Lyophilization and Reconstitution of Stem-Cell-Derived Extracellular Vesicles.","authors":"Wu Young Kang, Eun Kyoung Shin, Eun Hee Kim, Min-Ho Kang, Chi Young Bang, Oh Young Bang, Jae Min Cha","doi":"10.34133/bmr.0005","DOIUrl":"10.34133/bmr.0005","url":null,"abstract":"<p><p>Stem-cell-derived extracellular vesicles (EVs) are emerging as an alternative approach to stem cell therapy. Successful lyophilization of EVs could enable convenient storage and distribution of EV medicinal products at room temperature for long periods, thus considerably increasing the accessibility of EV therapeutics to patients. In this study, we aimed to identify an appropriate lyoprotectant composition for the lyophilization and reconstitution of stem-cell-derived EVs. MSC-derived EVs were lyophilized using different lyoprotectants, such as dimethyl sulfoxide, mannitol, trehalose, and sucrose, at varying concentrations. Our results revealed that a mixture of trehalose and sucrose at high concentrations could support the formation of amorphous ice by enriching the amorphous phase of the solution, which successfully inhibited the acceleration of buffer component crystallization during lyophilization. Lyophilized and reconstituted EVs were thoroughly evaluated for concentration and size, morphology, and protein and RNA content. The therapeutic effects of the reconstituted EVs were examined using a tube formation assay with human umbilical vein endothelial cells. After rehydration of the lyophilized EVs, most of their generic characteristics were well-maintained, and their therapeutic capacity recovered to levels similar to those of freshly collected EVs. The concentrations and morphologies of the lyophilized EVs were similar to the initial features of the fresh EV group until day 30 at room temperature, although their therapeutic capacity appeared to decrease after 7 days. Our study suggests an appropriate composition of lyoprotectants, particularly for EV lyophilization, which could encourage the applications of stem-cell-derived EV therapeutics in the health industry.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0005"},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10845601/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139704249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-24DOI: 10.1186/s40824-023-00460-0
Han Chen, Huaqian Xue, Huanxuan Zeng, Minghai Dai, Chengxuan Tang, Liangle Liu
Hyaluronic acid (HA) is widely distributed in human connective tissue, and its unique biological and physicochemical properties and ability to facilitate biological structure repair make it a promising candidate for three-dimensional (3D) bioprinting in the field of tissue regeneration and biomedical engineering. Moreover, HA is an ideal raw material for bioinks in tissue engineering because of its histocompatibility, non-immunogenicity, biodegradability, anti-inflammatory properties, anti-angiogenic properties, and modifiability. Tissue engineering is a multidisciplinary field focusing on in vitro reconstructions of mammalian tissues, such as cartilage tissue engineering, neural tissue engineering, skin tissue engineering, and other areas that require further clinical applications. In this review, we first describe the modification methods, cross-linking methods, and bioprinting strategies for HA and its derivatives as bioinks and then critically discuss the strengths, shortcomings, and feasibility of each method. Subsequently, we reviewed the practical clinical applications and outcomes of HA bioink in 3D bioprinting. Finally, we describe the challenges and opportunities in the development of HA bioink to provide further research references and insights.
透明质酸(HA)广泛分布于人体结缔组织中,其独特的生物和物理化学特性以及促进生物结构修复的能力使其成为组织再生和生物医学工程领域三维(3D)生物打印的理想候选材料。此外,HA 还具有组织相容性、非免疫原性、生物可降解性、抗炎性、抗血管生成性和可调控性,是组织工程中理想的生物墨水原料。组织工程是一个多学科领域,侧重于哺乳动物组织的体外重建,如软骨组织工程、神经组织工程、皮肤组织工程以及其他需要进一步临床应用的领域。在这篇综述中,我们首先介绍了作为生物材料的 HA 及其衍生物的改性方法、交联方法和生物打印策略,然后批判性地讨论了每种方法的优点、缺点和可行性。随后,我们回顾了 HA 生物墨水在三维生物打印中的实际临床应用和成果。最后,我们阐述了 HA 生物墨水开发过程中面临的挑战和机遇,为进一步的研究提供参考和启示。
{"title":"3D printed scaffolds based on hyaluronic acid bioinks for tissue engineering: a review.","authors":"Han Chen, Huaqian Xue, Huanxuan Zeng, Minghai Dai, Chengxuan Tang, Liangle Liu","doi":"10.1186/s40824-023-00460-0","DOIUrl":"https://doi.org/10.1186/s40824-023-00460-0","url":null,"abstract":"<p><p>Hyaluronic acid (HA) is widely distributed in human connective tissue, and its unique biological and physicochemical properties and ability to facilitate biological structure repair make it a promising candidate for three-dimensional (3D) bioprinting in the field of tissue regeneration and biomedical engineering. Moreover, HA is an ideal raw material for bioinks in tissue engineering because of its histocompatibility, non-immunogenicity, biodegradability, anti-inflammatory properties, anti-angiogenic properties, and modifiability. Tissue engineering is a multidisciplinary field focusing on in vitro reconstructions of mammalian tissues, such as cartilage tissue engineering, neural tissue engineering, skin tissue engineering, and other areas that require further clinical applications. In this review, we first describe the modification methods, cross-linking methods, and bioprinting strategies for HA and its derivatives as bioinks and then critically discuss the strengths, shortcomings, and feasibility of each method. Subsequently, we reviewed the practical clinical applications and outcomes of HA bioink in 3D bioprinting. Finally, we describe the challenges and opportunities in the development of HA bioink to provide further research references and insights.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"27 1","pages":"137"},"PeriodicalIF":0.0,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139032965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-18DOI: 10.1186/s40824-023-00469-5
Sijin Park, Dong Yeon Nam, Hee-Jae Jeon, Jae Hoon Han, Dawon Jang, Juil Hwang, Yeong-Seo Park, Young-Geun Han, Young Bin Choy, Dong Yun Lee
Background: Noninvasive monitoring of tear glucose levels can be convenient for patients to manage their diabetes mellitus. However, there are issues with monitoring tear glucose levels, such as the invasiveness of some methods, the miniaturization, inaccuracy, or the high cost of wearable devices. To overcome the issues, we newly designed a sucking disk-type (SD) strip biosensor that can quickly suck tear fluid and contains cerium oxide nanoparticle (CNP) that causes a unique color change according to the glucose level of the tear without complicated electronic components.
Methods: The SD strip biosensor composed of three distinct parts (tip, channel, and reaction chamber) was designed to contain the sensing paper, onto which tear fluid can be collected and delivered. The sensing paper treated with CNP/APTS (aminopropyltriethoxysilane) /GOx (glucose oxidase) was characterized. Then we carried out the reliability of the SD strip biosensor in the diabetic rabbit animals. We quantitatively analyzed the color values of the SD strip biosensor through the colorimetric analysis algorithm.
Results: We contacted the inferior palpebral conjunctiva (IPC) of a diabetic rabbit eye using an SD strip biosensor to collect tears without eye irritation and successfully verified the performance and quantitative efficacy of the sensor. An image processing algorithm that can optimize measurement accuracy is developed for accurate color change measurement of SD strip biosensors. The validation tests show a good correlation between glucose concentrations measured in the tear and blood.
Conclusion: Our findings demonstrate that the CNP-embedded SD strip biosensor and the associated image processing can simply monitor tear glucose to manage diabetes mellitus.
{"title":"Chromophoric cerium oxide nanoparticle-loaded sucking disk-type strip sensor for optical measurement of glucose in tear fluid.","authors":"Sijin Park, Dong Yeon Nam, Hee-Jae Jeon, Jae Hoon Han, Dawon Jang, Juil Hwang, Yeong-Seo Park, Young-Geun Han, Young Bin Choy, Dong Yun Lee","doi":"10.1186/s40824-023-00469-5","DOIUrl":"10.1186/s40824-023-00469-5","url":null,"abstract":"<p><strong>Background: </strong>Noninvasive monitoring of tear glucose levels can be convenient for patients to manage their diabetes mellitus. However, there are issues with monitoring tear glucose levels, such as the invasiveness of some methods, the miniaturization, inaccuracy, or the high cost of wearable devices. To overcome the issues, we newly designed a sucking disk-type (SD) strip biosensor that can quickly suck tear fluid and contains cerium oxide nanoparticle (CNP) that causes a unique color change according to the glucose level of the tear without complicated electronic components.</p><p><strong>Methods: </strong>The SD strip biosensor composed of three distinct parts (tip, channel, and reaction chamber) was designed to contain the sensing paper, onto which tear fluid can be collected and delivered. The sensing paper treated with CNP/APTS (aminopropyltriethoxysilane) /GOx (glucose oxidase) was characterized. Then we carried out the reliability of the SD strip biosensor in the diabetic rabbit animals. We quantitatively analyzed the color values of the SD strip biosensor through the colorimetric analysis algorithm.</p><p><strong>Results: </strong>We contacted the inferior palpebral conjunctiva (IPC) of a diabetic rabbit eye using an SD strip biosensor to collect tears without eye irritation and successfully verified the performance and quantitative efficacy of the sensor. An image processing algorithm that can optimize measurement accuracy is developed for accurate color change measurement of SD strip biosensors. The validation tests show a good correlation between glucose concentrations measured in the tear and blood.</p><p><strong>Conclusion: </strong>Our findings demonstrate that the CNP-embedded SD strip biosensor and the associated image processing can simply monitor tear glucose to manage diabetes mellitus.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"27 1","pages":"135"},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729336/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138810049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-18DOI: 10.1186/s40824-023-00470-y
Jaehyun Kim, Minjeong Kim, Seok-Beom Yong, Heesoo Han, Seyoung Kang, Shayan Fakhraei Lahiji, Sangjin Kim, Juhyeong Hong, Yuha Seo, Yong-Hee Kim
Background: The emergence of cancer immunotherapies, notably immune checkpoint inhibitors, has revolutionized anti-cancer treatments. These treatments, however, have been reported to be effective in a limited range of cancers and cause immune-related adverse effects. Thus, for a broader applicability and enhanced responsiveness to solid tumor immunotherapy, immunomodulation of the tumor microenvironment is crucial. Transforming growth factor-β (TGF-β) has been implicated in reducing immunotherapy responsiveness by promoting M2-type differentiation of macrophages and facilitating cancer cell metastasis.
Methods: In this study, we developed macrophage membrane-coated nanoparticles loaded with a TGF-βR1 kinase inhibitor, SD-208 (M[Formula: see text]-SDNP). Inhibitions of M2 macrophage polarization and epithelial-to-mesenchymal transition (EMT) of cancer cells were comprehensively evaluated through in vitro and in vivo experiments. Bio-distribution study and in vivo therapeutic effects of M[Formula: see text]-SDNP were investigated in orthotopic breast cancer model and intraveneously injected metastasis model.
Results: M[Formula: see text]-SDNPs effectively inhibited cancer metastasis and converted the immunosuppressive tumor microenvironment (cold tumor) into an immunostimulatory tumor microenvironment (hot tumor), through specific tumor targeting and blockade of M2-type macrophage differentiation. Administration of M[Formula: see text]-SDNPs considerably augmented the population of cytotoxic T lymphocytes (CTLs) in the tumor tissue, thereby significantly enhancing responsiveness to immune checkpoint inhibitors, which demonstrates a robust anti-cancer effect in conjunction with anti-PD-1 antibodies.
Conclusion: Collectively, responsiveness to immune checkpoint inhibitors was considerably enhanced and a robust anti-cancer effect was demonstrated with the combination treatment of M[Formula: see text]-SDNPs and anti-PD-1 antibody. This suggests a promising direction for future therapeutic strategies, utilizing bio-inspired nanotechnology to improve the efficacy of cancer immunotherapy.
{"title":"Engineering TGF-β inhibitor-encapsulated macrophage-inspired multi-functional nanoparticles for combination cancer immunotherapy.","authors":"Jaehyun Kim, Minjeong Kim, Seok-Beom Yong, Heesoo Han, Seyoung Kang, Shayan Fakhraei Lahiji, Sangjin Kim, Juhyeong Hong, Yuha Seo, Yong-Hee Kim","doi":"10.1186/s40824-023-00470-y","DOIUrl":"10.1186/s40824-023-00470-y","url":null,"abstract":"<p><strong>Background: </strong>The emergence of cancer immunotherapies, notably immune checkpoint inhibitors, has revolutionized anti-cancer treatments. These treatments, however, have been reported to be effective in a limited range of cancers and cause immune-related adverse effects. Thus, for a broader applicability and enhanced responsiveness to solid tumor immunotherapy, immunomodulation of the tumor microenvironment is crucial. Transforming growth factor-β (TGF-β) has been implicated in reducing immunotherapy responsiveness by promoting M2-type differentiation of macrophages and facilitating cancer cell metastasis.</p><p><strong>Methods: </strong>In this study, we developed macrophage membrane-coated nanoparticles loaded with a TGF-βR1 kinase inhibitor, SD-208 (M[Formula: see text]-SDNP). Inhibitions of M2 macrophage polarization and epithelial-to-mesenchymal transition (EMT) of cancer cells were comprehensively evaluated through in vitro and in vivo experiments. Bio-distribution study and in vivo therapeutic effects of M[Formula: see text]-SDNP were investigated in orthotopic breast cancer model and intraveneously injected metastasis model.</p><p><strong>Results: </strong>M[Formula: see text]-SDNPs effectively inhibited cancer metastasis and converted the immunosuppressive tumor microenvironment (cold tumor) into an immunostimulatory tumor microenvironment (hot tumor), through specific tumor targeting and blockade of M2-type macrophage differentiation. Administration of M[Formula: see text]-SDNPs considerably augmented the population of cytotoxic T lymphocytes (CTLs) in the tumor tissue, thereby significantly enhancing responsiveness to immune checkpoint inhibitors, which demonstrates a robust anti-cancer effect in conjunction with anti-PD-1 antibodies.</p><p><strong>Conclusion: </strong>Collectively, responsiveness to immune checkpoint inhibitors was considerably enhanced and a robust anti-cancer effect was demonstrated with the combination treatment of M[Formula: see text]-SDNPs and anti-PD-1 antibody. This suggests a promising direction for future therapeutic strategies, utilizing bio-inspired nanotechnology to improve the efficacy of cancer immunotherapy.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"27 1","pages":"136"},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138810114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-15DOI: 10.1186/s40824-023-00467-7
Seung Min Lee, Jeongin Cho, Sujin Choi, Dong Ha Kim, Je-Won Ryu, Inki Kim, Dong-Cheol Woo, Young Hoon Sung, Jin-Yong Jeong, In-Jeoung Baek, Chan-Gi Pack, Jin Kyung Rho, Sang-Wook Lee, Chang Hoon Ha
Background: Tumor-derived exosomes are critical elements of the cell-cell communication response to various stimuli. This study aims to reveal that the histone deacetylase 5 (HDAC5) and p53 interaction upon radiation in hepatocellular carcinoma intricately regulates the secretion and composition of exosomes.
Methods: We observed that HDAC5 and p53 expression were significantly increased by 2 Gy and 4 Gy radiation exposure in HCC. Normal- and radiation-derived exosomes released by HepG2 were purified to investigate the exosomal components.
Results: We found that in the radiation-derived exosome, exosomal Maspin was notably increased. Maspin is known as an anti-angiogenic gene. The expression of Maspin was regulated at the cellular level by HDAC5, and it was elaborately regulated and released in the exosome. Radiation-derived exosome treatment caused significant inhibition of angiogenesis in HUVECs and mouse aortic tissues. Meanwhile, we confirmed that miR-151a-3p was significantly reduced in the radiation-derived exosome through exosomal miRNA sequencing, and three HCC-specific exosomal miRNAs were also decreased. In particular, miR-151a-3p induced an anti-apoptotic response by inhibiting p53, and it was shown to induce EMT and promote tumor growth by regulating p53-related tumor progression genes. In the HCC xenograft model, radiation-induced exosome injection significantly reduced angiogenesis and tumor size.
Conclusions: Our present findings demonstrated HDAC5 is a vital gene of the p53-mediated release of exosomes resulting in tumor suppression through anti-cancer exosomal components in response to radiation. Finally, we highlight the important role of exosomal Maspin and mi-151a-3p as a biomarker in enhancing radiation treatment sensitivity. Therapeutic potential of HDAC5 through p53-mediated exosome modulation in radiation treatment of hepatocellular carcinoma.
{"title":"HDAC5-mediated exosomal Maspin and miR-151a-3p as biomarkers for enhancing radiation treatment sensitivity in hepatocellular carcinoma.","authors":"Seung Min Lee, Jeongin Cho, Sujin Choi, Dong Ha Kim, Je-Won Ryu, Inki Kim, Dong-Cheol Woo, Young Hoon Sung, Jin-Yong Jeong, In-Jeoung Baek, Chan-Gi Pack, Jin Kyung Rho, Sang-Wook Lee, Chang Hoon Ha","doi":"10.1186/s40824-023-00467-7","DOIUrl":"https://doi.org/10.1186/s40824-023-00467-7","url":null,"abstract":"<p><strong>Background: </strong>Tumor-derived exosomes are critical elements of the cell-cell communication response to various stimuli. This study aims to reveal that the histone deacetylase 5 (HDAC5) and p53 interaction upon radiation in hepatocellular carcinoma intricately regulates the secretion and composition of exosomes.</p><p><strong>Methods: </strong>We observed that HDAC5 and p53 expression were significantly increased by 2 Gy and 4 Gy radiation exposure in HCC. Normal- and radiation-derived exosomes released by HepG2 were purified to investigate the exosomal components.</p><p><strong>Results: </strong>We found that in the radiation-derived exosome, exosomal Maspin was notably increased. Maspin is known as an anti-angiogenic gene. The expression of Maspin was regulated at the cellular level by HDAC5, and it was elaborately regulated and released in the exosome. Radiation-derived exosome treatment caused significant inhibition of angiogenesis in HUVECs and mouse aortic tissues. Meanwhile, we confirmed that miR-151a-3p was significantly reduced in the radiation-derived exosome through exosomal miRNA sequencing, and three HCC-specific exosomal miRNAs were also decreased. In particular, miR-151a-3p induced an anti-apoptotic response by inhibiting p53, and it was shown to induce EMT and promote tumor growth by regulating p53-related tumor progression genes. In the HCC xenograft model, radiation-induced exosome injection significantly reduced angiogenesis and tumor size.</p><p><strong>Conclusions: </strong>Our present findings demonstrated HDAC5 is a vital gene of the p53-mediated release of exosomes resulting in tumor suppression through anti-cancer exosomal components in response to radiation. Finally, we highlight the important role of exosomal Maspin and mi-151a-3p as a biomarker in enhancing radiation treatment sensitivity. Therapeutic potential of HDAC5 through p53-mediated exosome modulation in radiation treatment of hepatocellular carcinoma.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"27 1","pages":"134"},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10725039/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138810174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}