Pub Date : 2024-11-01Epub Date: 2024-10-22DOI: 10.1016/j.biopha.2024.117560
Rui Huang, Xing Zhong, Pusong Tang, Qingning Huang, Xin Chen, Lu Ye, Dan Luo, Yaqin Yang, Yuhua Lei
Background: Acute myocardial ischemia/reperfusion injury (MIRI) with complicated mechanisms contributes to a high risk of ventricular arrhythmia, high lethality, and even sudden death. In vitro, Fraxinellone (FRA) exhibits an array of biologic activities and may possess cardioprotective effects. However, no relevant studies have examined FRA's protective potential against MIRI and related ventricular arrhythmias. The present study was undertaken to determine the effectiveness of FRA on MIRI and ventricular fibrillation (VF) susceptibility in rats and to elucidate the underlying mechanisms.
Methods: 48 healthy male Sprague-Dawley (SD) rats were randomly divided into the following four groups: Sham+vehicle(n=12), Sham+FRA(n=12), I/R+vehicle(n=12) and I/R+FRA(n=12). Histopathology, electrophysiological examination, HRV analysis in combination with molecular biology were used to investigate the therapeutic benefits of FRA on cardiac injury and VF susceptibility during myocardial IR. Finally, the potential mechanism by which FRA protects myocardium from MIRI was explored.
Results: Pretreatment with FRA ameliorated myocardial fibrosis after MIRI in vivo, alleviated myocardial injury, inflammation, oxidative stress and apoptosis in vivo and in vitro, thereby protecting myocardium from MIRI injury. In addition, FRA administration could improve HRV, prolong ventricular effective refractory period (ERP) and action potential duration (APD), attenuate VF induction rate, and contribute to improving ventricular sympathetic nerve remodeling and ion channel remodeling. Mechanistically, FRA may reduce MIRI via the PI3K/AKT pathway.
Conclusion: FRA may exert cardioprotective effects during MIRI by inhibiting myocardial inflammation, oxidative stress and apoptosis, and decrease VF susceptibility by improving sympathetic remodeling and ion channel remodeling, which might represent a potential therapeutic strategy for attenuation of MIRI.
背景:急性心肌缺血再灌注损伤(MIRI)机制复杂,导致室性心律失常、高致死率甚至猝死的风险很高。在体外,梣酮(FRA)表现出一系列生物活性,可能具有保护心脏的作用。然而,目前还没有相关研究探讨 FRA 对 MIRI 和相关室性心律失常的保护潜力。本研究旨在确定 FRA 对大鼠 MIRI 和室颤(VF)易感性的有效性,并阐明其潜在机制:方法:将48只健康雄性Sprague-Dawley(SD)大鼠随机分为以下四组:Sham+车辆组(n=12)、Sham+FRA组(n=12)、I/R+车辆组(n=12)和I/R+FRA组(n=12)。组织病理学、电生理检查、心率变异分析与分子生物学相结合,研究了FRA对心肌IR时心脏损伤和室颤易感性的治疗作用。最后,还探讨了 FRA 保护心肌免于 MIRI 的潜在机制:结果:预处理 FRA 可改善体内 MIRI 后的心肌纤维化,减轻体内和体外的心肌损伤、炎症、氧化应激和细胞凋亡,从而保护心肌免受 MIRI 损伤。此外,服用 FRA 还能改善心率变异,延长心室有效折返期(ERP)和动作电位持续时间(APD),降低室颤诱发率,并有助于改善心室交感神经重塑和离子通道重塑。从机制上讲,FRA可通过PI3K/AKT途径降低MIRI:结论:FRA 可通过抑制心肌炎症、氧化应激和细胞凋亡在 MIRI 期间发挥心脏保护作用,并通过改善交感神经重塑和离子通道重塑降低 VF 易感性,这可能是减轻 MIRI 的一种潜在治疗策略。
{"title":"Fraxinellone protects against cardiac injury and decreases ventricular fibrillation susceptibility during myocardial ischemia-reperfusion.","authors":"Rui Huang, Xing Zhong, Pusong Tang, Qingning Huang, Xin Chen, Lu Ye, Dan Luo, Yaqin Yang, Yuhua Lei","doi":"10.1016/j.biopha.2024.117560","DOIUrl":"10.1016/j.biopha.2024.117560","url":null,"abstract":"<p><strong>Background: </strong>Acute myocardial ischemia/reperfusion injury (MIRI) with complicated mechanisms contributes to a high risk of ventricular arrhythmia, high lethality, and even sudden death. In vitro, Fraxinellone (FRA) exhibits an array of biologic activities and may possess cardioprotective effects. However, no relevant studies have examined FRA's protective potential against MIRI and related ventricular arrhythmias. The present study was undertaken to determine the effectiveness of FRA on MIRI and ventricular fibrillation (VF) susceptibility in rats and to elucidate the underlying mechanisms.</p><p><strong>Methods: </strong>48 healthy male Sprague-Dawley (SD) rats were randomly divided into the following four groups: Sham+vehicle(n=12), Sham+FRA(n=12), I/R+vehicle(n=12) and I/R+FRA(n=12). Histopathology, electrophysiological examination, HRV analysis in combination with molecular biology were used to investigate the therapeutic benefits of FRA on cardiac injury and VF susceptibility during myocardial IR. Finally, the potential mechanism by which FRA protects myocardium from MIRI was explored.</p><p><strong>Results: </strong>Pretreatment with FRA ameliorated myocardial fibrosis after MIRI in vivo, alleviated myocardial injury, inflammation, oxidative stress and apoptosis in vivo and in vitro, thereby protecting myocardium from MIRI injury. In addition, FRA administration could improve HRV, prolong ventricular effective refractory period (ERP) and action potential duration (APD), attenuate VF induction rate, and contribute to improving ventricular sympathetic nerve remodeling and ion channel remodeling. Mechanistically, FRA may reduce MIRI via the PI3K/AKT pathway.</p><p><strong>Conclusion: </strong>FRA may exert cardioprotective effects during MIRI by inhibiting myocardial inflammation, oxidative stress and apoptosis, and decrease VF susceptibility by improving sympathetic remodeling and ion channel remodeling, which might represent a potential therapeutic strategy for attenuation of MIRI.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"180 ","pages":"117560"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-30DOI: 10.1016/j.biopha.2024.117600
Ray Silva de Almeida, Priscilla Ramos Freitas, Ana Carolina Justino de Araujo, Saulo Relison Tintino, Jaime Ribeiro-Filho, Gustavo Marinho Miranda, Gustavo Miguel Sigueira, Sheila Alves Gonçalves, Diogo Teixeira Carvalho, Thiago Belarmino de Souza, Laís Regina Dos Santos Folquitto, Danielle Ferreira Dias, António Raposo, Ariana Saraiva, Heesup Han, Henrique Douglas Melo Coutinho
This study aimed to evaluate the effects of liposome-encapsulated eugenol-based thiazolic derivatives against efflux pump-carrying bacteria. The Minimum Inhibitory Concentration (MIC) was determined to evaluate the antibacterial activity and antibiotic potentiation against Pseudomonas aeruginosa and Staphylococcus aureus, as well as to analyze the inhibition of efflux pumps in S. aureus strains 1199B and K2068 in the ethidium bromide assay. The direct antibacterial activity analysis showed no clinically relevant results since the compounds presented MICs ≥1024 µg/mL. Regarding the analysis of antibiotic potentiation against multidrug-resistant (MDR) strains of S. aureus, compound LF16 reduced norfloxacin MIC from 128 µg/mL to 64 µg/mL. All associated with gentamicin caused a significant antibiotic MIC reduction. None of the compounds could potentate the activity of norfloxacin against P. aeruginosa. However, all of them potentiated the activity of gentamicin against the same strain. Only the LF 26 caused a significant MIC reduction in the ethidium bromide assay, suggesting efflux inhibition in the S. aureus 1199B strain. Similar results were observed with the K2068 strain. Observing antibiotic MIC reduction S. aureus strains carrying the NorA and MepA proteins brought additional evidence of efflux pump inhibition. Our results indicate that while eugenol-based thiazoles didn't exhibit direct activity, they can potentiate the antibiotics activity against MDR strains of P. aeruginosa and S. aureus. Among them, compound LF 26 potentiated the inhibitory effects of ethidium bromide and antibiotics against S. aureus strains carrying the NorA and MepA proteins, indicating a potential role of this class of compounds as efflux pump inhibitors.
{"title":"Liposomal formulation with thiazolic compounds against bacterial efflux pumps.","authors":"Ray Silva de Almeida, Priscilla Ramos Freitas, Ana Carolina Justino de Araujo, Saulo Relison Tintino, Jaime Ribeiro-Filho, Gustavo Marinho Miranda, Gustavo Miguel Sigueira, Sheila Alves Gonçalves, Diogo Teixeira Carvalho, Thiago Belarmino de Souza, Laís Regina Dos Santos Folquitto, Danielle Ferreira Dias, António Raposo, Ariana Saraiva, Heesup Han, Henrique Douglas Melo Coutinho","doi":"10.1016/j.biopha.2024.117600","DOIUrl":"10.1016/j.biopha.2024.117600","url":null,"abstract":"<p><p>This study aimed to evaluate the effects of liposome-encapsulated eugenol-based thiazolic derivatives against efflux pump-carrying bacteria. The Minimum Inhibitory Concentration (MIC) was determined to evaluate the antibacterial activity and antibiotic potentiation against Pseudomonas aeruginosa and Staphylococcus aureus, as well as to analyze the inhibition of efflux pumps in S. aureus strains 1199B and K2068 in the ethidium bromide assay. The direct antibacterial activity analysis showed no clinically relevant results since the compounds presented MICs ≥1024 µg/mL. Regarding the analysis of antibiotic potentiation against multidrug-resistant (MDR) strains of S. aureus, compound LF16 reduced norfloxacin MIC from 128 µg/mL to 64 µg/mL. All associated with gentamicin caused a significant antibiotic MIC reduction. None of the compounds could potentate the activity of norfloxacin against P. aeruginosa. However, all of them potentiated the activity of gentamicin against the same strain. Only the LF 26 caused a significant MIC reduction in the ethidium bromide assay, suggesting efflux inhibition in the S. aureus 1199B strain. Similar results were observed with the K2068 strain. Observing antibiotic MIC reduction S. aureus strains carrying the NorA and MepA proteins brought additional evidence of efflux pump inhibition. Our results indicate that while eugenol-based thiazoles didn't exhibit direct activity, they can potentiate the antibiotics activity against MDR strains of P. aeruginosa and S. aureus. Among them, compound LF 26 potentiated the inhibitory effects of ethidium bromide and antibiotics against S. aureus strains carrying the NorA and MepA proteins, indicating a potential role of this class of compounds as efflux pump inhibitors.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"180 ","pages":"117600"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Imbalances in Th1/Th2 and Th17/Treg immune axes, coupled with disruptions in the gut microbiota (GM), play a pivotal role in the pathogenesis of inflammatory bowel disease (IBD). Cordycepin, a natural anti-inflammatory compound, holds promise in mitigating IBD by rebalancing these immune axes in conjunction with modulating the GM. The aim of this experiment is to investigate the potential of cordycepin in mitigating enteritis and elucidate the underlying mechanisms associated with its ameliorative effects on enteritis.
Methods: On the day of inducing experimental colitis with Dextran Sulfate Sodium (DSS), mice in the DSS + Cordycepin and Cordycepin groups received 50 mg/kg/day Cordycepin via intra-gastric administration (i.g.) for seven consecutive days, respectively. Mice in the DSS and control groups were treated with equal volumes of saline. On day 8, all mice were euthanized under pentobarbital sodium anesthesia.
Results: In a DSS-induced colitis mouse model, Cordycepin treatment led to a significant reduction in the disease activity index (DAI), splenic weight, and colonic pathological injury while simultaneously improving body weight and colonic length. Furthermore, it positively impacted GM composition, resulting in decreased Th1 and Th17 cells, alongside an increase in Th2 and Treg cells. The contents of the mouse colon were extracted for microbial community analysis. Mouse blood was prepared into a single-cell suspension, and flow cytometry was used to assess the expressio of Treg, Th17, Th1, and Th2 immune cells.
Conclusions: These results underscored the effective intervention of cordycepin in ameliorating DSS-induced colitis by harmonizing the interplay between GM and immune homeostasis.
{"title":"Cordycepin mitigates dextran sulfate sodium-induced colitis through improving gut microbiota composition and modulating Th1/Th2 and Th17/Treg balance.","authors":"Zhilin Liu, Shaoxian Wu, Wenting Zhang, Hengwei Cui, Jingfeng Zhang, Xuan Yin, Xiao Zheng, Tao Shen, Hanjie Ying, Lujun Chen, Haitao Wang, Jingting Jiang","doi":"10.1016/j.biopha.2024.117394","DOIUrl":"10.1016/j.biopha.2024.117394","url":null,"abstract":"<p><strong>Background: </strong>Imbalances in Th1/Th2 and Th17/Treg immune axes, coupled with disruptions in the gut microbiota (GM), play a pivotal role in the pathogenesis of inflammatory bowel disease (IBD). Cordycepin, a natural anti-inflammatory compound, holds promise in mitigating IBD by rebalancing these immune axes in conjunction with modulating the GM. The aim of this experiment is to investigate the potential of cordycepin in mitigating enteritis and elucidate the underlying mechanisms associated with its ameliorative effects on enteritis.</p><p><strong>Methods: </strong>On the day of inducing experimental colitis with Dextran Sulfate Sodium (DSS), mice in the DSS + Cordycepin and Cordycepin groups received 50 mg/kg/day Cordycepin via intra-gastric administration (i.g.) for seven consecutive days, respectively. Mice in the DSS and control groups were treated with equal volumes of saline. On day 8, all mice were euthanized under pentobarbital sodium anesthesia.</p><p><strong>Results: </strong>In a DSS-induced colitis mouse model, Cordycepin treatment led to a significant reduction in the disease activity index (DAI), splenic weight, and colonic pathological injury while simultaneously improving body weight and colonic length. Furthermore, it positively impacted GM composition, resulting in decreased Th1 and Th17 cells, alongside an increase in Th2 and Treg cells. The contents of the mouse colon were extracted for microbial community analysis. Mouse blood was prepared into a single-cell suspension, and flow cytometry was used to assess the expressio of Treg, Th17, Th1, and Th2 immune cells.</p><p><strong>Conclusions: </strong>These results underscored the effective intervention of cordycepin in ameliorating DSS-induced colitis by harmonizing the interplay between GM and immune homeostasis.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"180 ","pages":"117394"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pancreatic cancer, characterized by a dismal prognosis and limited treatment options, persists as a formidable challenge in oncology. Trophoblast cell surface antigen 2 (TROP2)-directed antibody-drug conjugates have achieved great success in solid tumors such as breast cancer and uroepithelial carcinoma. However, their efficacy against pancreatic cancer was insufficient in clinical trials, necessitating an imperative exploration of underlying mechanisms and new therapeutic strategies. In this study, we indicated that αTROP2-MMAE, an antibody-drug conjugate targeting TROP2, induced apoptosis through the caspase-9/PARP pathway and exerted potent antitumor effects against TROP2-positive pancreatic cancer. Simultaneously, RNA sequencing suggested significant changes in autophagy after αTROP2-MMAE treatment. The formation of autophagosomes and activation of autophagic flux were markedly induced through mechanisms associated with suppressing the activation of the Akt/mTOR pathway. The addition of pharmacological inhibitors of autophagy enhanced the cytotoxicity and apoptosis caused by αTROP2-MMAE, revealing the cytoprotective role of autophagy in TROP2-positive pancreatic cancer. In the subcutaneous xenograft model using BxPC3 cells, the combined administration of αTROP2-MMAE and an autophagy inhibitor elevated the tumor inhibition rate of αTROP2-MMAE from 71.6 % to 99.0 %, resulting in the eradication of tumors in half of the mice. Collectively, our research demonstrated for the first time the cytoprotective role of autophagy in TROP2-targeted antibody-drug conjugate therapy for pancreatic cancer, providing new perspectives for mechanistic exploration and therapeutic strategies in the treatment of pancreatic cancer.
{"title":"Modulating autophagy to boost the antitumor efficacy of TROP2-directed antibody-drug conjugate in pancreatic cancer.","authors":"Caili Xu, Xiting Huang, Qinchao Hu, Wenjing Xue, Kaicheng Zhou, Xingxiu Li, Yanyang Nan, Dianwen Ju, Ziyu Wang, Xuyao Zhang","doi":"10.1016/j.biopha.2024.117550","DOIUrl":"10.1016/j.biopha.2024.117550","url":null,"abstract":"<p><p>Pancreatic cancer, characterized by a dismal prognosis and limited treatment options, persists as a formidable challenge in oncology. Trophoblast cell surface antigen 2 (TROP2)-directed antibody-drug conjugates have achieved great success in solid tumors such as breast cancer and uroepithelial carcinoma. However, their efficacy against pancreatic cancer was insufficient in clinical trials, necessitating an imperative exploration of underlying mechanisms and new therapeutic strategies. In this study, we indicated that αTROP2-MMAE, an antibody-drug conjugate targeting TROP2, induced apoptosis through the caspase-9/PARP pathway and exerted potent antitumor effects against TROP2-positive pancreatic cancer. Simultaneously, RNA sequencing suggested significant changes in autophagy after αTROP2-MMAE treatment. The formation of autophagosomes and activation of autophagic flux were markedly induced through mechanisms associated with suppressing the activation of the Akt/mTOR pathway. The addition of pharmacological inhibitors of autophagy enhanced the cytotoxicity and apoptosis caused by αTROP2-MMAE, revealing the cytoprotective role of autophagy in TROP2-positive pancreatic cancer. In the subcutaneous xenograft model using BxPC3 cells, the combined administration of αTROP2-MMAE and an autophagy inhibitor elevated the tumor inhibition rate of αTROP2-MMAE from 71.6 % to 99.0 %, resulting in the eradication of tumors in half of the mice. Collectively, our research demonstrated for the first time the cytoprotective role of autophagy in TROP2-targeted antibody-drug conjugate therapy for pancreatic cancer, providing new perspectives for mechanistic exploration and therapeutic strategies in the treatment of pancreatic cancer.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"180 ","pages":"117550"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effective treatment regimens of triple-negative breast cancer (TNBC), a specific subtype of breast cancer (BC) with proneness to relapse and poor prognosis, are still lacking. Simeprevir (SIM), approved for hepatitis C infection treatment, has been proved to be a competitive drug for the treatment of various solid tumors recently. However, the anti-tumor mechanisms of SIM and therapeutic effects on TNBC are uncertain. In this study, we suggested that SIM effectively restrained the growth of MDA-MB-231 and BT-549 cells, two cell lines from TNBC. The RNA sequencing revealed that ferroptosis signaling was activated in SIM-treated TNBC cells. SIM induced ferroptosis in TNBC cells through reduced glutathione (GSH) levels, increased iron levels, ROS and lipid peroxidation. Mechanistically, SIM promoted the expression of β-TrCP to inhibit the Nrf2/GPX4 axis in TNBC cells, leading to ferroptosis. Moreover, SIM administration into the xenografts formed by MDA-MB-231 dramatically suppressed the tumor progression by inducing ferroptosis in vivo. Collectively, this finding reveals that SIM may serve as a competitive therapeutic strategy to inhibit TNBC.
{"title":"Simeprevir induces ferroptosis through β-TrCP/Nrf2/GPX4 axis in triple-negative breast cancer cells.","authors":"Zhirong Lin, Zifei Liu, Xinyu Yang, Zhilong Pan, Yaxin Feng, Yunyi Zhang, Huiping Chen, Liyan Lao, Jianing Chen, Fujun Shi, Chang Gong, Wenfeng Zeng","doi":"10.1016/j.biopha.2024.117558","DOIUrl":"10.1016/j.biopha.2024.117558","url":null,"abstract":"<p><p>The effective treatment regimens of triple-negative breast cancer (TNBC), a specific subtype of breast cancer (BC) with proneness to relapse and poor prognosis, are still lacking. Simeprevir (SIM), approved for hepatitis C infection treatment, has been proved to be a competitive drug for the treatment of various solid tumors recently. However, the anti-tumor mechanisms of SIM and therapeutic effects on TNBC are uncertain. In this study, we suggested that SIM effectively restrained the growth of MDA-MB-231 and BT-549 cells, two cell lines from TNBC. The RNA sequencing revealed that ferroptosis signaling was activated in SIM-treated TNBC cells. SIM induced ferroptosis in TNBC cells through reduced glutathione (GSH) levels, increased iron levels, ROS and lipid peroxidation. Mechanistically, SIM promoted the expression of β-TrCP to inhibit the Nrf2/GPX4 axis in TNBC cells, leading to ferroptosis. Moreover, SIM administration into the xenografts formed by MDA-MB-231 dramatically suppressed the tumor progression by inducing ferroptosis in vivo. Collectively, this finding reveals that SIM may serve as a competitive therapeutic strategy to inhibit TNBC.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"180 ","pages":"117558"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-23DOI: 10.1016/j.biopha.2024.117576
Ming Shao, Yunran Gao, Xiling Xu, Jiyuan Shi, Zunyun Wang, Juan Du
Background: 5-Fluorouracil (5-FU) is a cornerstone in colorectal cancer therapy, but resistance has compromised its efficacy, necessitating detailed research into resistance mechanisms. Traditional methods for developing 5-FU-resistant cell lines are lengthy, unstable, and often unrepresentative of clinical scenarios.
Methods: We devised a rapid approach to create 5-FU-resistant colorectal cancer cells using an integrated in vivo/in vitro methodology. HCT116 cells were pretreated with 5-FU, then implanted into nude mice. Tumor growth was monitored, and cells from the tumors were cultured to establish the HCT116-Tumor cell line. Cells from 5-FU-exposed tumors received increasing 5-FU doses to induce resistance, creating the tumor-derived resistant (TR) cell line. Cells cultured without 5-FU were termed tumor-derived parental (TP) cells. An in vitro 5-FU resistance model, CR, served as a benchmark. Resistance metrics were evaluated using CCK-8 assays, Western Blotting, flow cytometry, and in vivo studies. Proteomics identified resistance-related differentially expressed proteins (DEPs).
Results: Low-dose 5-FU pretreatment accelerated tumor growth. Combining in vivo and in vitro methods, we developed 5-FU-resistant TR cells within two and a half months, faster than the ten-month conventional protocol. TR cells showed stronger and more durable 5-FU resistance than CR cells, with inhibited apoptosis, autophagy, and ferroptosis, and activation of MDR1. Proteomic analysis indicated more DEPs in TR cells, suggesting unique resistance mechanisms. Animal studies confirmed enhanced drug resistance in TR cells.
Conclusions: Our integrated approach rapidly develops colorectal cancer cells with robust 5-FU resistance, offering a potent model for exploring multiple resistance pathways and counter-resistance strategies.
{"title":"Expediting the development of robust 5-FU-resistant colorectal cancer models using innovative combined in vivo and in vitro strategies.","authors":"Ming Shao, Yunran Gao, Xiling Xu, Jiyuan Shi, Zunyun Wang, Juan Du","doi":"10.1016/j.biopha.2024.117576","DOIUrl":"10.1016/j.biopha.2024.117576","url":null,"abstract":"<p><strong>Background: </strong>5-Fluorouracil (5-FU) is a cornerstone in colorectal cancer therapy, but resistance has compromised its efficacy, necessitating detailed research into resistance mechanisms. Traditional methods for developing 5-FU-resistant cell lines are lengthy, unstable, and often unrepresentative of clinical scenarios.</p><p><strong>Methods: </strong>We devised a rapid approach to create 5-FU-resistant colorectal cancer cells using an integrated in vivo/in vitro methodology. HCT116 cells were pretreated with 5-FU, then implanted into nude mice. Tumor growth was monitored, and cells from the tumors were cultured to establish the HCT116-Tumor cell line. Cells from 5-FU-exposed tumors received increasing 5-FU doses to induce resistance, creating the tumor-derived resistant (TR) cell line. Cells cultured without 5-FU were termed tumor-derived parental (TP) cells. An in vitro 5-FU resistance model, CR, served as a benchmark. Resistance metrics were evaluated using CCK-8 assays, Western Blotting, flow cytometry, and in vivo studies. Proteomics identified resistance-related differentially expressed proteins (DEPs).</p><p><strong>Results: </strong>Low-dose 5-FU pretreatment accelerated tumor growth. Combining in vivo and in vitro methods, we developed 5-FU-resistant TR cells within two and a half months, faster than the ten-month conventional protocol. TR cells showed stronger and more durable 5-FU resistance than CR cells, with inhibited apoptosis, autophagy, and ferroptosis, and activation of MDR1. Proteomic analysis indicated more DEPs in TR cells, suggesting unique resistance mechanisms. Animal studies confirmed enhanced drug resistance in TR cells.</p><p><strong>Conclusions: </strong>Our integrated approach rapidly develops colorectal cancer cells with robust 5-FU resistance, offering a potent model for exploring multiple resistance pathways and counter-resistance strategies.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"180 ","pages":"117576"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The high metabolic requirements of cancer cells result in excess accumulation of H+ in the tumor microenvironment. Therefore, the extracellular pH of solid tumors is acidic, whereas the pH of normal tissues is more alkaline. The acidic tumor environment is correlated with tumor metastasis, immune escape, and chemoresistance, but the underlying mechanisms remain elusive. Herein, we demonstrate that sodium bicarbonate, a weakly alkaline compound, induces cytotoxicity in ovarian cancer cells and hinders cancer migration and invasion in vitro. The anti-cancer efficacy of Olaparib can be significantly augmented when combined with sodium bicarbonate. In vivo experiments suggest that the combinatorial treatment of sodium bicarbonate and Olaparib is biocompatible and more effective at inhibiting ovarian cancer growth than either treatment alone. Additionally, RNA-sequencing results reveal that the differentially expressed genes are enriched in pathways related to reactive oxygen species (ROS) generation, such as the cGMP/PKG pathway. The combined treatment increases M1 macrophage composition in tumors and reduces the accumulation of excessive ROS. These findings strongly suggest that sodium bicarbonate holds great potential as an adjuvant treatment by scavenging ROS accumulation and promoting M1 macrophage composition, thereby enhancing Olaparib's anti-cancer activity.
{"title":"Sodium bicarbonate potentiates the antitumor effects of Olaparib in ovarian cancer via cGMP/PKG-mediated ROS scavenging and M1 macrophage transformation.","authors":"Xiao Li, Yaoqi Sun, Jing Guo, Yujie Cheng, Wei Lu, Weihong Yang, Lian Wang, Zhongping Cheng","doi":"10.1016/j.biopha.2024.117509","DOIUrl":"10.1016/j.biopha.2024.117509","url":null,"abstract":"<p><p>The high metabolic requirements of cancer cells result in excess accumulation of H<sup>+</sup> in the tumor microenvironment. Therefore, the extracellular pH of solid tumors is acidic, whereas the pH of normal tissues is more alkaline. The acidic tumor environment is correlated with tumor metastasis, immune escape, and chemoresistance, but the underlying mechanisms remain elusive. Herein, we demonstrate that sodium bicarbonate, a weakly alkaline compound, induces cytotoxicity in ovarian cancer cells and hinders cancer migration and invasion in vitro. The anti-cancer efficacy of Olaparib can be significantly augmented when combined with sodium bicarbonate. In vivo experiments suggest that the combinatorial treatment of sodium bicarbonate and Olaparib is biocompatible and more effective at inhibiting ovarian cancer growth than either treatment alone. Additionally, RNA-sequencing results reveal that the differentially expressed genes are enriched in pathways related to reactive oxygen species (ROS) generation, such as the cGMP/PKG pathway. The combined treatment increases M1 macrophage composition in tumors and reduces the accumulation of excessive ROS. These findings strongly suggest that sodium bicarbonate holds great potential as an adjuvant treatment by scavenging ROS accumulation and promoting M1 macrophage composition, thereby enhancing Olaparib's anti-cancer activity.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"180 ","pages":"117509"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-14DOI: 10.1016/j.biopha.2024.117523
Lukša Popović, Ben Brankatschk, Giulia Palladino, Moritz J Rossner, Michael C Wehr
Selectivity profiling is key for assessing the pharmacological properties of multi-target drugs. We have developed a cell-based and barcoded assay encompassing ten druggable targets, including G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs), nuclear receptors, a protease as well as their key downstream pathways and profiled 17 drugs in living cells for efficacy, potency, and side effects. Notably, this multiplex assay, termed safetyProfiler assay, enabled the simultaneous assessment of multiple target and pathway activities, shedding light on the polypharmacological profile of compounds. For example, the neuroleptics clozapine, paliperidone, and risperidone potently inhibited primary targets DRD2 and HTR2A as well as cAMP and calcium pathways. However, while paliperidone and risperidone also potently inhibited the secondary target ADRA1A and mitogen-activated protein kinase (MAPK) downstream pathways, clozapine only exhibited mild antagonistic effects on ADRA1A and lacked MAPK inhibition downstream of DRD2 and HTR2A. Furthermore, we present data on the selectivity for bazedoxifene, an estrogen receptor antagonist currently undergoing clinical phase 2 trials for breast cancer, on MAPK signaling. Additionally, precise potency data for LY2452473, an androgen receptor antagonist, that completed a phase 2 clinical trial for prostate cancer, are presented. The non-selective kinase inhibitor staurosporine was observed to potently inactivate the two RTKs EGFR and ERBB4 as well as MAPK signaling, while eliciting stress-related cAMP responses. Our findings underscore the value of comprehensive profiling in elucidating the pharmacological properties of established and novel therapeutics, thereby facilitating the development of novel multi-target drugs with enhanced efficacy and selectivity.
{"title":"Polypharmacological profiling across protein target families and cellular pathways using the multiplexed cell-based assay platform safetyProfiler reveals efficacy, potency and side effects of drugs.","authors":"Lukša Popović, Ben Brankatschk, Giulia Palladino, Moritz J Rossner, Michael C Wehr","doi":"10.1016/j.biopha.2024.117523","DOIUrl":"10.1016/j.biopha.2024.117523","url":null,"abstract":"<p><p>Selectivity profiling is key for assessing the pharmacological properties of multi-target drugs. We have developed a cell-based and barcoded assay encompassing ten druggable targets, including G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs), nuclear receptors, a protease as well as their key downstream pathways and profiled 17 drugs in living cells for efficacy, potency, and side effects. Notably, this multiplex assay, termed safetyProfiler assay, enabled the simultaneous assessment of multiple target and pathway activities, shedding light on the polypharmacological profile of compounds. For example, the neuroleptics clozapine, paliperidone, and risperidone potently inhibited primary targets DRD2 and HTR2A as well as cAMP and calcium pathways. However, while paliperidone and risperidone also potently inhibited the secondary target ADRA1A and mitogen-activated protein kinase (MAPK) downstream pathways, clozapine only exhibited mild antagonistic effects on ADRA1A and lacked MAPK inhibition downstream of DRD2 and HTR2A. Furthermore, we present data on the selectivity for bazedoxifene, an estrogen receptor antagonist currently undergoing clinical phase 2 trials for breast cancer, on MAPK signaling. Additionally, precise potency data for LY2452473, an androgen receptor antagonist, that completed a phase 2 clinical trial for prostate cancer, are presented. The non-selective kinase inhibitor staurosporine was observed to potently inactivate the two RTKs EGFR and ERBB4 as well as MAPK signaling, while eliciting stress-related cAMP responses. Our findings underscore the value of comprehensive profiling in elucidating the pharmacological properties of established and novel therapeutics, thereby facilitating the development of novel multi-target drugs with enhanced efficacy and selectivity.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"180 ","pages":"117523"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemotherapy treatment faces a major obstacle with the emergence of multidrug resistance (MDR), often attributed to the elevated expression of ATP-binding cassette (ABC) transporters such as ABCG2 and ABCB1 in cancer cells. These transporters hinder the efficacy of cytotoxic drugs via ATP hydrolysis-dependent efflux, leading to diminished intracellular drug levels. The scarcity of approved treatments for multidrug resistant cancers necessitates exploration of alternative strategies, including drug repositioning of molecular targeted agents to counteract ABCG2-mediated MDR in multidrug-resistant cancer cells. This study investigates the potential of edicotinib, a selective colony-stimulating factor-1 receptor (CSF-1R) tyrosine kinase inhibitor that is currently undergoing clinical trials for various diseases, to reverse MDR in ABCG2-overexpressing cancer cells. Our findings reveal that by attenuating the drug-efflux function of ABCG2 without altering its expression, edicotinib improves drug-induced apoptosis and reverses MDR in ABCG2-overexpressing multidrug-resistant cancer cells at non-toxic concentrations. Through ATPase activity analysis and molecular docking, potential interaction sites for edicotinib on ABCG2 were identified. These results underscore an additional pharmacological benefit of edicotinib against ABCG2 activity, suggesting its potential incorporation into combination therapies for patients with ABCG2-overexpressing tumors. Further research is warranted to validate these findings and explore their clinical implications.
多药耐药性(MDR)的出现是化疗面临的一大障碍,这通常归因于癌细胞中ATP结合盒(ABC)转运体(如ABCG2和ABCB1)的表达量升高。这些转运体通过 ATP 水解依赖性外流阻碍细胞毒性药物的疗效,导致细胞内药物水平降低。由于经批准可用于治疗耐多药癌症的药物很少,因此有必要探索替代策略,包括对分子靶向药物进行药物重新定位,以对抗耐多药癌细胞中 ABCG2 介导的 MDR。埃迪科替尼是一种选择性集落刺激因子-1受体(CSF-1R)酪氨酸激酶抑制剂,目前正用于多种疾病的临床试验,本研究探讨了埃迪科替尼逆转ABCG2表达癌细胞MDR的潜力。我们的研究结果表明,埃迪科替尼在不改变ABCG2表达的情况下削弱了其药物外流功能,从而改善了药物诱导的细胞凋亡,并在无毒浓度下逆转了ABCG2外表达多重耐药癌细胞的MDR。通过 ATPase 活性分析和分子对接,确定了埃迪替尼与 ABCG2 的潜在相互作用位点。这些结果强调了埃迪替尼对ABCG2活性的额外药理作用,表明它有可能被纳入针对ABCG2表达缺失肿瘤患者的联合疗法中。为了验证这些发现并探索其临床意义,我们有必要开展进一步的研究。
{"title":"The colony-stimulating factor-1 receptor inhibitor edicotinib counteracts multidrug resistance in cancer cells by inhibiting ABCG2-mediated drug efflux.","authors":"Yen-Ching Li, Yun-Chieh Lee, Megumi Murakami, Yang-Hui Huang, Tai-Ho Hung, Yu-Shan Wu, Suresh V Ambudkar, Chung-Pu Wu","doi":"10.1016/j.biopha.2024.117554","DOIUrl":"10.1016/j.biopha.2024.117554","url":null,"abstract":"<p><p>Chemotherapy treatment faces a major obstacle with the emergence of multidrug resistance (MDR), often attributed to the elevated expression of ATP-binding cassette (ABC) transporters such as ABCG2 and ABCB1 in cancer cells. These transporters hinder the efficacy of cytotoxic drugs via ATP hydrolysis-dependent efflux, leading to diminished intracellular drug levels. The scarcity of approved treatments for multidrug resistant cancers necessitates exploration of alternative strategies, including drug repositioning of molecular targeted agents to counteract ABCG2-mediated MDR in multidrug-resistant cancer cells. This study investigates the potential of edicotinib, a selective colony-stimulating factor-1 receptor (CSF-1R) tyrosine kinase inhibitor that is currently undergoing clinical trials for various diseases, to reverse MDR in ABCG2-overexpressing cancer cells. Our findings reveal that by attenuating the drug-efflux function of ABCG2 without altering its expression, edicotinib improves drug-induced apoptosis and reverses MDR in ABCG2-overexpressing multidrug-resistant cancer cells at non-toxic concentrations. Through ATPase activity analysis and molecular docking, potential interaction sites for edicotinib on ABCG2 were identified. These results underscore an additional pharmacological benefit of edicotinib against ABCG2 activity, suggesting its potential incorporation into combination therapies for patients with ABCG2-overexpressing tumors. Further research is warranted to validate these findings and explore their clinical implications.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"180 ","pages":"117554"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}