首页 > 最新文献

Brain communications最新文献

英文 中文
Cortical involvement of lateral trunk flexion and verticality misperception in Parkinson's disease.
IF 4.1 Q1 CLINICAL NEUROLOGY Pub Date : 2025-01-27 eCollection Date: 2025-01-01 DOI: 10.1093/braincomms/fcaf040
Masayuki Kohsaka, Tomoko Oeda, Shigetoshi Takaya, Satoshi Tomita, Kwiyoung Park, Kenji Yamamoto, Hidenao Fukuyama, Hideyuki Sawada

Lateral trunk flexion is a common form of postural abnormality in Parkinson's disease and could be associated with verticality misperception. However, the mechanisms underlying lateral trunk flexion and verticality misperception in Parkinson's disease remain unclear. In the current study, we examined whether lateral trunk flexion is associated with verticality misperception in patients with Parkinson's disease. We also identified the brain regions involved in lateral trunk flexion and altered verticality perception. In this cross-sectional study, we evaluated the verticality perception using the subjective visual vertical test in 81 patients with Parkinson's disease and 14 age-matched healthy controls. According to the 97.5th percentile upper reference limit of the body tilt angle in the healthy controls, patients with Parkinson's disease were grouped into 37 patients with lateral trunk flexion and 44 patients without lateral trunk flexion. The mean of absolute subjective visual vertical angles was compared between patients with Parkinson's disease with lateral trunk flexion, those without lateral trunk flexion, and the healthy controls, and the impact of verticality misperception on lateral trunk flexion was evaluated using multivariate logistic regression models. We further performed a voxel-wise comparison of regional cerebral blood flow using N-isopropyl-p-[123I] iodoamphetamine single-photon emission computed tomography (height threshold of P < 0.001, uncorrected for multiple comparisons, extent threshold of 100 voxels) to identify the brain regions associated with lateral trunk flexion, and to investigate the relationship between verticality misperception and regional hypoperfusion. The mean of absolute subjective visual vertical angles was larger in patients with Parkinson's disease with and without lateral trunk flexion than in healthy controls (P < 0.001 and P < 0.001). Additionally, the subjective visual vertical angle was associated with the presence of lateral trunk flexion (odds ratio 2.25, 95% confidence interval 1.51-3.36, P < 0.001). The regional cerebral blood flow in patients with Parkinson's disease with lateral trunk flexion was decreased in the right inferior parietal lobule, right superior parietal lobule, right superior temporal gyrus, and right dorsal posterior cingulate cortex compared with those without lateral trunk flexion. The subjective visual vertical angle was inversely correlated with regional cerebral blood flow in these regions, except for the dorsal posterior cingulate cortex. Our study reveals that hypofunction in the right temporoparietal association cortices is involved in verticality misperception and the development of lateral trunk flexion in patients with Parkinson's disease. These results provide insights into potential therapeutic targets for addressing lateral trunk flexion.

{"title":"Cortical involvement of lateral trunk flexion and verticality misperception in Parkinson's disease.","authors":"Masayuki Kohsaka, Tomoko Oeda, Shigetoshi Takaya, Satoshi Tomita, Kwiyoung Park, Kenji Yamamoto, Hidenao Fukuyama, Hideyuki Sawada","doi":"10.1093/braincomms/fcaf040","DOIUrl":"10.1093/braincomms/fcaf040","url":null,"abstract":"<p><p>Lateral trunk flexion is a common form of postural abnormality in Parkinson's disease and could be associated with verticality misperception. However, the mechanisms underlying lateral trunk flexion and verticality misperception in Parkinson's disease remain unclear. In the current study, we examined whether lateral trunk flexion is associated with verticality misperception in patients with Parkinson's disease. We also identified the brain regions involved in lateral trunk flexion and altered verticality perception. In this cross-sectional study, we evaluated the verticality perception using the subjective visual vertical test in 81 patients with Parkinson's disease and 14 age-matched healthy controls. According to the 97.5th percentile upper reference limit of the body tilt angle in the healthy controls, patients with Parkinson's disease were grouped into 37 patients with lateral trunk flexion and 44 patients without lateral trunk flexion. The mean of absolute subjective visual vertical angles was compared between patients with Parkinson's disease with lateral trunk flexion, those without lateral trunk flexion, and the healthy controls, and the impact of verticality misperception on lateral trunk flexion was evaluated using multivariate logistic regression models. We further performed a voxel-wise comparison of regional cerebral blood flow using N-isopropyl-p-[<sup>123</sup>I] iodoamphetamine single-photon emission computed tomography (height threshold of <i>P</i> < 0.001, uncorrected for multiple comparisons, extent threshold of 100 voxels) to identify the brain regions associated with lateral trunk flexion, and to investigate the relationship between verticality misperception and regional hypoperfusion. The mean of absolute subjective visual vertical angles was larger in patients with Parkinson's disease with and without lateral trunk flexion than in healthy controls (<i>P</i> < 0.001 and <i>P</i> < 0.001). Additionally, the subjective visual vertical angle was associated with the presence of lateral trunk flexion (odds ratio 2.25, 95% confidence interval 1.51-3.36, <i>P</i> < 0.001). The regional cerebral blood flow in patients with Parkinson's disease with lateral trunk flexion was decreased in the right inferior parietal lobule, right superior parietal lobule, right superior temporal gyrus, and right dorsal posterior cingulate cortex compared with those without lateral trunk flexion. The subjective visual vertical angle was inversely correlated with regional cerebral blood flow in these regions, except for the dorsal posterior cingulate cortex. Our study reveals that hypofunction in the right temporoparietal association cortices is involved in verticality misperception and the development of lateral trunk flexion in patients with Parkinson's disease. These results provide insights into potential therapeutic targets for addressing lateral trunk flexion.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcaf040"},"PeriodicalIF":4.1,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143384490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myths and facts about alcohol use disorder: a Delphi consensus study.
IF 4.1 Q1 CLINICAL NEUROLOGY Pub Date : 2025-01-27 eCollection Date: 2025-01-01 DOI: 10.1093/braincomms/fcaf035
Sophie Hytner, Daphne Josselin, David Belin, Owen Bowden Jones

Educational interventions that counter myths about alcohol use disorder with facts have the potential to reduce public stigma. Few such interventions have hitherto been rigorously developed. Using a Delphi expert consensus method, this study identified myths and facts to include in an intervention targeting the public stigma of alcohol use disorder. Sixteen UK-based experts (four academics, five clinicians and seven experts-by-experience) completed three sequential online survey rounds. The first round was used alongside a systematic review of the literature on public alcohol use disorder stereotypes to develop 13 myth-fact pairs, which participants quantitively scored in subsequent rounds to determine their importance for inclusion. Pairs reaching consensus (>70% agreement) on high importance (mean score, 7-9) challenged beliefs that alcohol use disorder 'only affects certain groups', and that people with alcohol use disorder 'cannot recover', are 'to blame' for, and 'able to control', their drinking. The myth-fact pairs scored as most important relate to responsibility- and recovery-based themes and provide a basis for future educational interventions for public alcohol use disorder stigma.

{"title":"Myths and facts about alcohol use disorder: a Delphi consensus study.","authors":"Sophie Hytner, Daphne Josselin, David Belin, Owen Bowden Jones","doi":"10.1093/braincomms/fcaf035","DOIUrl":"10.1093/braincomms/fcaf035","url":null,"abstract":"<p><p>Educational interventions that counter myths about alcohol use disorder with facts have the potential to reduce public stigma. Few such interventions have hitherto been rigorously developed. Using a Delphi expert consensus method, this study identified myths and facts to include in an intervention targeting the public stigma of alcohol use disorder. Sixteen UK-based experts (four academics, five clinicians and seven experts-by-experience) completed three sequential online survey rounds. The first round was used alongside a systematic review of the literature on public alcohol use disorder stereotypes to develop 13 myth-fact pairs, which participants quantitively scored in subsequent rounds to determine their importance for inclusion. Pairs reaching consensus (>70% agreement) on high importance (mean score, 7-9) challenged beliefs that alcohol use disorder '<i>only affects certain groups'</i>, and that people with alcohol use disorder '<i>cannot recover'</i>, are '<i>to blame'</i> for, and '<i>able to control'</i>, their drinking. The myth-fact pairs scored as most important relate to responsibility- and recovery-based themes and provide a basis for future educational interventions for public alcohol use disorder stigma.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcaf035"},"PeriodicalIF":4.1,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806414/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143384508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The genetic landscape and classification of infantile epileptic spasms syndrome requiring surgery due to suspected focal brain malformations.
IF 4.1 Q1 CLINICAL NEUROLOGY Pub Date : 2025-01-25 eCollection Date: 2025-01-01 DOI: 10.1093/braincomms/fcaf034
Matthew Coleman, Min Wang, Penny Snell, Wei Shern Lee, Colleen D'Arcy, Cristina Mignone, Kate Pope, Greta Gillies, Wirginia Maixner, Alison Wray, A Simon Harvey, Cas Simons, Richard J Leventer, Sarah E M Stephenson, Paul J Lockhart, Katherine B Howell

Infantile epileptic spasms syndrome is a severe epilepsy of infancy that is often associated with focal malformations of cortical development. This study aimed to elucidate the genetic landscape and histopathologic aetiologies of infantile epileptic spasms syndrome due to focal malformations of cortical development requiring surgery. Fifty-nine children with a history of infantile epileptic spasms syndrome and focal malformations of cortical development on MRI were studied. Genetic testing of resected brain tissue was performed by high-coverage targeted panel sequencing or exome sequencing. Histopathology and MRI were reviewed, and integrated clinico-pathological diagnoses were established. A genetic diagnosis was achieved in 47 children (80% of cohort). Germline pathogenic variants were identified in 27/59 (46%) children, in TSC2 (x19), DEPDC5 (x2), CDKL5 (x2), NPRL3 (x1), FGFR1 (x1), TSC1 (x1), and one child with both a TUBB2A/TUBB2B deletion and a pathogenic variant in COL4A1 (x1). Pathogenic brain somatic variants were identified in 21/59 (36%) children, in SLC35A2 (x9), PIK3CA (x3), AKT3 (x2), TSC2 (x2), MTOR (x2), OFD1 (x1), TSC1 (x1) and DEPDC5 (x1). One child had 'two-hit' diagnosis, with both germline and somatic pathogenic DEPDC5 variants in trans. Multimodal data integration resulted in clinical diagnostic reclassifications in 24% of children, emphasizing the importance of combining genetic, histopathologic and imaging findings. Mammalian target of rapamycin pathway variants were identified in most children with tuberous sclerosis or focal cortical dysplasia type II. All nine children with somatic SLC35A2 variants in brain were reclassified to mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy. Somatic mosaicism was a major cause of focal cortical dysplasia type II/hemimegalencephaly (81%) and mild malformation of cortical development with oligodendroglial hyperplasia (100%). The genetic landscape of infantile epileptic spasms syndrome due to focal malformations comprises germline and somatic variants in a range of genes, with mTORopathies and SLC35A2-related mild malformation of cortical development with oligodendroglial hyperplasia being the major causes. Multimodal data integration incorporating genetic data aids in optimizing diagnostic pathways and can guide surgical decision-making and inform future research and therapeutic interventions.

{"title":"The genetic landscape and classification of infantile epileptic spasms syndrome requiring surgery due to suspected focal brain malformations.","authors":"Matthew Coleman, Min Wang, Penny Snell, Wei Shern Lee, Colleen D'Arcy, Cristina Mignone, Kate Pope, Greta Gillies, Wirginia Maixner, Alison Wray, A Simon Harvey, Cas Simons, Richard J Leventer, Sarah E M Stephenson, Paul J Lockhart, Katherine B Howell","doi":"10.1093/braincomms/fcaf034","DOIUrl":"10.1093/braincomms/fcaf034","url":null,"abstract":"<p><p>Infantile epileptic spasms syndrome is a severe epilepsy of infancy that is often associated with focal malformations of cortical development. This study aimed to elucidate the genetic landscape and histopathologic aetiologies of infantile epileptic spasms syndrome due to focal malformations of cortical development requiring surgery. Fifty-nine children with a history of infantile epileptic spasms syndrome and focal malformations of cortical development on MRI were studied. Genetic testing of resected brain tissue was performed by high-coverage targeted panel sequencing or exome sequencing. Histopathology and MRI were reviewed, and integrated clinico-pathological diagnoses were established. A genetic diagnosis was achieved in 47 children (80% of cohort). Germline pathogenic variants were identified in 27/59 (46%) children, in <i>TSC2</i> (x19), <i>DEPDC5</i> (x2), <i>CDKL5</i> (x2), <i>NPRL3</i> (x1), <i>FGFR1</i> (x1), <i>TSC1</i> (x1), and one child with both a <i>TUBB2A</i>/<i>TUBB2B</i> deletion and a pathogenic variant in <i>COL4A1</i> (x1). Pathogenic brain somatic variants were identified in 21/59 (36%) children, in <i>SLC35A2</i> (x9), <i>PIK3CA</i> (x3), <i>AKT3</i> (x2), <i>TSC2</i> (x2), <i>MTOR</i> (x2), <i>OFD1</i> (x1), <i>TSC1</i> (x1) and <i>DEPDC5</i> (x1). One child had 'two-hit' diagnosis, with both germline and somatic pathogenic <i>DEPDC5</i> variants in trans. Multimodal data integration resulted in clinical diagnostic reclassifications in 24% of children, emphasizing the importance of combining genetic, histopathologic and imaging findings. Mammalian target of rapamycin pathway variants were identified in most children with tuberous sclerosis or focal cortical dysplasia type II. All nine children with somatic <i>SLC35A2</i> variants in brain were reclassified to mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy. Somatic mosaicism was a major cause of focal cortical dysplasia type II/hemimegalencephaly (81%) and mild malformation of cortical development with oligodendroglial hyperplasia (100%). The genetic landscape of infantile epileptic spasms syndrome due to focal malformations comprises germline and somatic variants in a range of genes, with mTORopathies and <i>SLC35A2</i>-related mild malformation of cortical development with oligodendroglial hyperplasia being the major causes. Multimodal data integration incorporating genetic data aids in optimizing diagnostic pathways and can guide surgical decision-making and inform future research and therapeutic interventions.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcaf034"},"PeriodicalIF":4.1,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806418/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CSF biomarkers are differentially linked to brain areas high and low in noradrenaline, dopamine and serotonin across the Alzheimer's disease spectrum.
IF 4.1 Q1 CLINICAL NEUROLOGY Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI: 10.1093/braincomms/fcaf031
Lena Haag, Elisa Lancini, Renat Yakupov, Gabriel Ziegler, Yeo-Jin Yi, Falk Lüsebrink, Wenzel Glanz, Oliver Peters, Eike Jakob Spruth, Slawek Altenstein, Josef Priller, Luisa Sophie Schneider, Xiao Wang, Lukas Preis, Frederic Brosseron, Nina Roy-Kluth, Klaus Fliessbach, Michael Wagner, Steffen Wolfsgruber, Luca Kleineidam, Alfredo Ramirez, Annika Spottke, Frank Jessen, Jens Wiltfang, Anja Schneider, Niels Hansen, Ayda Rostamzadeh, Katharina Buerger, Michael Ewers, Robert Perneczky, Daniel Janowitz, Boris-Stephan Rauchmann, Stefan Teipel, Ingo Kilimann, Doreen Goerss, Christoph Laske, Matthias H Munk, Michael Heneka, Peter Dechent, Stefan Hetzer, Klaus Scheffler, Emrah Düzel, Matthew J Betts, Dorothea Hämmerer

Neurotransmitter systems of noradrenaline, dopamine, serotonin and acetylcholine are implicated in cognitive functions such as memory, learning and attention and are known to be altered in neurodegenerative diseases like Alzheimer's disease. Specific brain structures involved in these systems, e.g. the locus coeruleus, the main source of noradrenaline in the cortex, are in fact affected earliest by Alzheimer's disease tau pathology. Preserved volumetric neurotransmitter specific brain areas could therefore be an important neural resource for cognitive reserve in aging. The aim of this study was to determine whether volumes of brain areas known to be high in neurotransmitter receptors are relatively preserved in individuals with lower levels of Alzheimer's disease pathology. Based on the Human Protein Atlas for neurotransmitter receptor distribution, we distinguished between 'areas high and low' in noradrenaline, dopamine, serotonin and acetylcholine and assessed associations of atrophy in those areas with CSF amyloid-ß 42/40, CSF phosphorylated tau protein and cognitive function across healthy controls (n = 122), individuals with subjective cognitive decline (n = 156), mild cognitive impairment or mild Alzheimer's disease dementia (n = 126) using structural equation modelling. CSF pathology markers were inversely correlated and showed a stronger association with disease severity, suggesting distinguishable interrelatedness of these biomarkers depending on the stage of Alzheimer's disease dementia. Across groups, amyloid pathology was linked to atrophy in areas high as well as low in neurotransmitter receptor densities, while tau pathology did not show any significant link to brain area volumes for any of the neurotransmitters. Within disease severity groups, individuals with more amyloid pathology showed more atrophy only in 'areas high in noradrenaline', whereas for dopamine tau pathology was linked to higher volumes in areas low in receptor density possibly indicating compensatory mechanisms. Furthermore, individuals with more tau pathology showed a selective decrease in memory function while amyloid pathology was related to a decline in executive function and language capacity as well as memory function. In summary, our analyses highlight the benefits of investigating disease-relevant factors in Alzheimer's disease using a multivariate multigroup approach. Assessing multivariate dependencies in different disease stages and across individuals revealed selective links of pathologies, cognitive decline and atrophy in particular for areas modulated by noradrenaline, dopamine and serotonin.

{"title":"CSF biomarkers are differentially linked to brain areas high and low in noradrenaline, dopamine and serotonin across the Alzheimer's disease spectrum.","authors":"Lena Haag, Elisa Lancini, Renat Yakupov, Gabriel Ziegler, Yeo-Jin Yi, Falk Lüsebrink, Wenzel Glanz, Oliver Peters, Eike Jakob Spruth, Slawek Altenstein, Josef Priller, Luisa Sophie Schneider, Xiao Wang, Lukas Preis, Frederic Brosseron, Nina Roy-Kluth, Klaus Fliessbach, Michael Wagner, Steffen Wolfsgruber, Luca Kleineidam, Alfredo Ramirez, Annika Spottke, Frank Jessen, Jens Wiltfang, Anja Schneider, Niels Hansen, Ayda Rostamzadeh, Katharina Buerger, Michael Ewers, Robert Perneczky, Daniel Janowitz, Boris-Stephan Rauchmann, Stefan Teipel, Ingo Kilimann, Doreen Goerss, Christoph Laske, Matthias H Munk, Michael Heneka, Peter Dechent, Stefan Hetzer, Klaus Scheffler, Emrah Düzel, Matthew J Betts, Dorothea Hämmerer","doi":"10.1093/braincomms/fcaf031","DOIUrl":"10.1093/braincomms/fcaf031","url":null,"abstract":"<p><p>Neurotransmitter systems of noradrenaline, dopamine, serotonin and acetylcholine are implicated in cognitive functions such as memory, learning and attention and are known to be altered in neurodegenerative diseases like Alzheimer's disease. Specific brain structures involved in these systems, e.g. the locus coeruleus, the main source of noradrenaline in the cortex, are in fact affected earliest by Alzheimer's disease tau pathology. Preserved volumetric neurotransmitter specific brain areas could therefore be an important neural resource for cognitive reserve in aging. The aim of this study was to determine whether volumes of brain areas known to be high in neurotransmitter receptors are relatively preserved in individuals with lower levels of Alzheimer's disease pathology. Based on the Human Protein Atlas for neurotransmitter receptor distribution, we distinguished between 'areas high and low' in noradrenaline, dopamine, serotonin and acetylcholine and assessed associations of atrophy in those areas with CSF amyloid-ß 42/40, CSF phosphorylated tau protein and cognitive function across healthy controls (<i>n</i> = 122), individuals with subjective cognitive decline (<i>n</i> = 156), mild cognitive impairment or mild Alzheimer's disease dementia (<i>n</i> = 126) using structural equation modelling. CSF pathology markers were inversely correlated and showed a stronger association with disease severity, suggesting distinguishable interrelatedness of these biomarkers depending on the stage of Alzheimer's disease dementia. Across groups, amyloid pathology was linked to atrophy in areas high as well as low in neurotransmitter receptor densities, while tau pathology did not show any significant link to brain area volumes for any of the neurotransmitters. Within disease severity groups, individuals with more amyloid pathology showed more atrophy only in 'areas high in noradrenaline', whereas for dopamine tau pathology was linked to higher volumes in areas low in receptor density possibly indicating compensatory mechanisms. Furthermore, individuals with more tau pathology showed a selective decrease in memory function while amyloid pathology was related to a decline in executive function and language capacity as well as memory function. In summary, our analyses highlight the benefits of investigating disease-relevant factors in Alzheimer's disease using a multivariate multigroup approach. Assessing multivariate dependencies in different disease stages and across individuals revealed selective links of pathologies, cognitive decline and atrophy in particular for areas modulated by noradrenaline, dopamine and serotonin.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcaf031"},"PeriodicalIF":4.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143384523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The challenge of long-term stroke outcome prediction and how statistical correlates do not imply predictive value.
IF 4.1 Q1 CLINICAL NEUROLOGY Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI: 10.1093/braincomms/fcaf003
Christoph Sperber, Laura Gallucci, Marcel Arnold, Roza M Umarova

Personalized prediction of stroke outcome using lesion imaging markers is still too imprecise to make a breakthrough in clinical practice. We performed a combined prediction and brain mapping study on topographic and connectomic lesion imaging data to evaluate (i) the relationship between lesion-deficit associations and their predictive value and (ii) the influence of time since stroke. In patients with first-ever ischaemic stroke, we first applied high-dimensional machine learning models on lesion topographies or structural disconnection data to model stroke severity (National Institutes of Health Stroke Scale 24 h/3 months) and functional outcome (modified Rankin Scale 3 months) in cross-validation. Second, we mapped the topographic and connectomic lesion impact on both clinical measures. We retrospectively included 685 patients [age 67.4 ± 15.1, National Institutes of Health Stroke Scale 24 h median(IQR) = 3(1; 6), modified Rankin Scale 3 months = 1(0; 2), National Institutes of Health Stroke Scale 3 months = 0(0; 2)]. Predictions for acute stroke severity (National Institutes of Health Stroke Scale 24 h) were better with topographic lesion imaging (R² = 0.41) than with disconnection data (R² = 0.29, P = 0.0015), whereas predictions at 3 months (National Institutes of Health Stroke Scale/modified Rankin Scale) were generally close to chance level. In the analysis of lesion-deficit associations, the correlates of more severe acute stroke (National Institutes of Health Stroke Scale 24 h > 4) and poor functional outcome (modified Rankin Scale 3 months ≥ 2) were left-lateralized. The lesion location impact of both variables corresponded in right-hemisphere stroke with peaks in primary motor regions, but it markedly differed in left-hemisphere stroke. Topographic and disconnection lesion features predict acute stroke severity better than the 3-months outcome. This suggests a likely higher impact of lesion-independent factors in the longer term and highlights challenges in the prediction of global functional outcome. Prediction and brain mapping diverge, and the existence of statistically significant associations-as here for 3-months outcomes-does not imply predictive value. Routine neurological scores better capture left- than right-hemispheric lesions, further complicating the challenge of outcome prediction.

{"title":"The challenge of long-term stroke outcome prediction and how statistical correlates do not imply predictive value.","authors":"Christoph Sperber, Laura Gallucci, Marcel Arnold, Roza M Umarova","doi":"10.1093/braincomms/fcaf003","DOIUrl":"10.1093/braincomms/fcaf003","url":null,"abstract":"<p><p>Personalized prediction of stroke outcome using lesion imaging markers is still too imprecise to make a breakthrough in clinical practice. We performed a combined prediction and brain mapping study on topographic and connectomic lesion imaging data to evaluate (i) the relationship between lesion-deficit associations and their predictive value and (ii) the influence of time since stroke. In patients with first-ever ischaemic stroke, we first applied high-dimensional machine learning models on lesion topographies or structural disconnection data to model stroke severity (National Institutes of Health Stroke Scale 24 h/3 months) and functional outcome (modified Rankin Scale 3 months) in cross-validation. Second, we mapped the topographic and connectomic lesion impact on both clinical measures. We retrospectively included 685 patients [age 67.4 ± 15.1, National Institutes of Health Stroke Scale 24 h median(IQR) = 3(1; 6), modified Rankin Scale 3 months = 1(0; 2), National Institutes of Health Stroke Scale 3 months = 0(0; 2)]. <i>Predictions</i> for acute stroke severity (National Institutes of Health Stroke Scale 24 h) were better with topographic lesion imaging (<i>R</i>² = 0.41) than with disconnection data (<i>R</i>² = 0.29, <i>P</i> = 0.0015), whereas predictions at 3 months (National Institutes of Health Stroke Scale/modified Rankin Scale) were generally close to chance level. In the analysis of lesion-deficit <i>associations</i>, the correlates of more severe acute stroke (National Institutes of Health Stroke Scale 24 h > 4) and poor functional outcome (modified Rankin Scale 3 months ≥ 2) were left-lateralized. The lesion location impact of both variables corresponded in right-hemisphere stroke with peaks in primary motor regions, but it markedly differed in left-hemisphere stroke. Topographic and disconnection lesion features predict <i>acute</i> stroke severity better than the <i>3-months</i> outcome. This suggests a likely higher impact of lesion-independent factors in the longer term and highlights challenges in the prediction of global functional outcome. Prediction and brain mapping diverge, and the existence of statistically significant associations-as here for 3-months outcomes-does not imply predictive value. Routine neurological scores better capture left- than right-hemispheric lesions, further complicating the challenge of outcome prediction.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcaf003"},"PeriodicalIF":4.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756379/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Causal relationships between hippocampal volumetric traits and the risk of Alzheimer's disease: a Mendelian randomization study.
IF 4.1 Q1 CLINICAL NEUROLOGY Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI: 10.1093/braincomms/fcaf030
Lining Guo, Yayuan Chen, Zuhao Sun, Jiaxuan Zhao, Jia Yao, Zhihui Zhang, Minghuan Lei, Ying Zhai, Jinglei Xu, Yurong Jiang, Ying Wang, Hui Xue, Mengge Liu, Feng Liu

Alzheimer's disease, a common and progressive neurodegenerative disorder, is associated with alterations in hippocampal volume, as revealed by neuroimaging research. However, the causal links between the volumes of the hippocampus and its subfield structures with Alzheimer's disease remain unknown. A genetic correlation analysis using linkage disequilibrium score regression was conducted to identify hippocampal volumetric traits linked to Alzheimer's disease. Following this, to examine the causal links between Alzheimer's disease and hippocampal volumetric traits, we applied a two-sample Mendelian randomization approach, utilizing a bidirectional framework. Seven hippocampal volumetric traits were found as genetically correlated with Alzheimer's disease in the genetic correlation analysis and were then included in the Mendelian randomization analyses. Inverse variance weighted Mendelian randomization analyses revealed that increased volumes in the left whole hippocampus, left hippocampal body, right presubiculum head and right cornu ammonis 1 head were causally related to higher risks of Alzheimer's disease. Conversely, a higher risk of Alzheimer's disease was causally associated with decreased volumes of the left hippocampal body and left whole hippocampus. These results were validated through other Mendelian randomization approaches and sensitivity analysis. Our findings uncover bidirectional causal relationships between Alzheimer's disease and hippocampal volumetric traits, suggesting not only the potential significance of these traits in predicting Alzheimer's disease but also the reciprocal influence of Alzheimer's disease on hippocampal volumes.

{"title":"Causal relationships between hippocampal volumetric traits and the risk of Alzheimer's disease: a Mendelian randomization study.","authors":"Lining Guo, Yayuan Chen, Zuhao Sun, Jiaxuan Zhao, Jia Yao, Zhihui Zhang, Minghuan Lei, Ying Zhai, Jinglei Xu, Yurong Jiang, Ying Wang, Hui Xue, Mengge Liu, Feng Liu","doi":"10.1093/braincomms/fcaf030","DOIUrl":"10.1093/braincomms/fcaf030","url":null,"abstract":"<p><p>Alzheimer's disease, a common and progressive neurodegenerative disorder, is associated with alterations in hippocampal volume, as revealed by neuroimaging research. However, the causal links between the volumes of the hippocampus and its subfield structures with Alzheimer's disease remain unknown. A genetic correlation analysis using linkage disequilibrium score regression was conducted to identify hippocampal volumetric traits linked to Alzheimer's disease. Following this, to examine the causal links between Alzheimer's disease and hippocampal volumetric traits, we applied a two-sample Mendelian randomization approach, utilizing a bidirectional framework. Seven hippocampal volumetric traits were found as genetically correlated with Alzheimer's disease in the genetic correlation analysis and were then included in the Mendelian randomization analyses. Inverse variance weighted Mendelian randomization analyses revealed that increased volumes in the left whole hippocampus, left hippocampal body, right presubiculum head and right cornu ammonis 1 head were causally related to higher risks of Alzheimer's disease. Conversely, a higher risk of Alzheimer's disease was causally associated with decreased volumes of the left hippocampal body and left whole hippocampus. These results were validated through other Mendelian randomization approaches and sensitivity analysis. Our findings uncover bidirectional causal relationships between Alzheimer's disease and hippocampal volumetric traits, suggesting not only the potential significance of these traits in predicting Alzheimer's disease but also the reciprocal influence of Alzheimer's disease on hippocampal volumes.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcaf030"},"PeriodicalIF":4.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783321/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143082576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Substantia nigra and locus coeruleus microstructural abnormalities in isolated rapid eye movement sleep behaviour disorder and Parkinson's disease.
IF 4.1 Q1 CLINICAL NEUROLOGY Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI: 10.1093/braincomms/fcaf023
Jacopo Pasquini, Michael J Firbank, Laura Best, Victoria Foster, Charlotte Stewart, Vincenzo Silani, Rory Durcan, Gemma Roberts, George Petrides, Roberto Ceravolo, David J Brooks, Kirstie N Anderson, Nicola Pavese

Substantia nigra (SN) and locus coeruleus (LC) are two catecholaminergic, neuromelanin-rich nuclei that are affected in Parkinson's disease (PD) and may show neuroimaging abnormalities before the onset of motor manifestations. The simultaneous, multimodal investigation of their microstructural abnormalities may provide useful insights on the spatial diffusion and tissue characteristics of neurodegeneration, and this may in turn help develop markers for disease-modifying clinical trials. Therefore, through neuromelanin-sensitive and diffusion MRI, we aimed to investigate microstructural abnormalities in those nuclei in isolated REM sleep behaviour disorder (iRBD) and PD. Fourteen participants with polysomnography-confirmed iRBD, 18 with PD and 18 healthy controls were scanned with structural, neuromelanin-sensitive and neurite orientation dispersion and density imaging (NODDI) MRI. iRBD participants also underwent dopamine transporter imaging. SN neuromelanin and NODDI diffusion parameters and LC neuromelanin signals were extracted. Motor and global cognitive assessments were also collected. iRBD and PD participants showed significantly reduced neuromelanin contrast in the LC middle section compared with healthy controls. PD also showed significantly reduced caudal LC and posterior SN neuromelanin signal. No differences in SN NODDI parameters were detected between iRBD and healthy controls. Five iRBD participants showed reduced striatal dopamine transporter. In the combined disease groups (iRBD and PD), significant associations were shown between SN neuromelanin signal and neurite density index (r = -0.610, corr-p = 0.001) and between SN neurite density index and free water fraction (r = 0.417, corr-p = 0.042). In the same group, motor scores were negatively associated with nigral neuromelanin signal (r = -0.404, corr-p = 0.044) and free water fraction (r = 0.486, corr-p = 0.018). In conclusion, iRBD participants showed significant neuromelanin loss in the LC, with a minority showing initial nigrostriatal dopaminergic abnormalities. Across the entire iRBD-PD spectrum, the association between SN neuromelanin signal loss, diffusion parameters and motor scores has the potential to capture different yet related aspects of SN degeneration.

{"title":"Substantia nigra and locus coeruleus microstructural abnormalities in isolated rapid eye movement sleep behaviour disorder and Parkinson's disease.","authors":"Jacopo Pasquini, Michael J Firbank, Laura Best, Victoria Foster, Charlotte Stewart, Vincenzo Silani, Rory Durcan, Gemma Roberts, George Petrides, Roberto Ceravolo, David J Brooks, Kirstie N Anderson, Nicola Pavese","doi":"10.1093/braincomms/fcaf023","DOIUrl":"10.1093/braincomms/fcaf023","url":null,"abstract":"<p><p>Substantia nigra (SN) and locus coeruleus (LC) are two catecholaminergic, neuromelanin-rich nuclei that are affected in Parkinson's disease (PD) and may show neuroimaging abnormalities before the onset of motor manifestations. The simultaneous, multimodal investigation of their microstructural abnormalities may provide useful insights on the spatial diffusion and tissue characteristics of neurodegeneration, and this may in turn help develop markers for disease-modifying clinical trials. Therefore, through neuromelanin-sensitive and diffusion MRI, we aimed to investigate microstructural abnormalities in those nuclei in isolated REM sleep behaviour disorder (iRBD) and PD. Fourteen participants with polysomnography-confirmed iRBD, 18 with PD and 18 healthy controls were scanned with structural, neuromelanin-sensitive and neurite orientation dispersion and density imaging (NODDI) MRI. iRBD participants also underwent dopamine transporter imaging. SN neuromelanin and NODDI diffusion parameters and LC neuromelanin signals were extracted. Motor and global cognitive assessments were also collected. iRBD and PD participants showed significantly reduced neuromelanin contrast in the LC middle section compared with healthy controls. PD also showed significantly reduced caudal LC and posterior SN neuromelanin signal. No differences in SN NODDI parameters were detected between iRBD and healthy controls. Five iRBD participants showed reduced striatal dopamine transporter. In the combined disease groups (iRBD and PD), significant associations were shown between SN neuromelanin signal and neurite density index (<i>r</i> = -0.610, corr-<i>p</i> = 0.001) and between SN neurite density index and free water fraction (<i>r</i> = 0.417, corr-<i>p</i> = 0.042). In the same group, motor scores were negatively associated with nigral neuromelanin signal (<i>r</i> = -0.404, corr-<i>p</i> = 0.044) and free water fraction (<i>r</i> = 0.486, corr-<i>p</i> = 0.018). In conclusion, iRBD participants showed significant neuromelanin loss in the LC, with a minority showing initial nigrostriatal dopaminergic abnormalities. Across the entire iRBD-PD spectrum, the association between SN neuromelanin signal loss, diffusion parameters and motor scores has the potential to capture different yet related aspects of SN degeneration.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcaf023"},"PeriodicalIF":4.1,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806417/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural pathway activation in the subthalamic region depends on stimulation polarity.
IF 4.1 Q1 CLINICAL NEUROLOGY Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI: 10.1093/braincomms/fcaf006
Seyyed Bahram Borgheai, Enrico Opri, Faical Isbaine, Eric R Cole, Roohollah Jafari Deligani, Nealen G Laxpati, Benjamin B Risk, Jon T Willie, Robert E Gross, Nicholas AuYong, Cameron C McIntyre, Svjetlana Miocinovic

Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease; however, there is limited understanding of which subthalamic pathways are recruited in response to stimulation. Here, by focusing on the polarity of the stimulus waveform (cathodic versus anodic), our goal was to elucidate biophysical mechanisms that underlie electrical stimulation in the human brain. In clinical studies, cathodic stimulation more easily triggers behavioural responses, but anodic DBS broadens the therapeutic window. This suggests that neural pathways involved respond preferentially depending on stimulus polarity. To experimentally compare the activation of therapeutically relevant pathways during cathodic and anodic subthalamic nucleus (STN) DBS, pathway activation was quantified by measuring evoked potentials resulting from antidromic or orthodromic activation in 15 Parkinson's disease patients undergoing DBS implantation. Cortical evoked potentials (cEPs) were recorded using subdural electrocorticography, DBS local evoked potentials (DLEPs) were recorded from non-stimulating contacts, and electromyography activity was recorded from arm and face muscles. We measured (i) the amplitude of short-latency cEP, previously demonstrated to reflect activation of the cortico-STN hyperdirect pathway, (ii) DLEP amplitude thought to reflect activation of STN-globus pallidus (GP) pathway and (iii) amplitudes of very short-latency cEPs and motor evoked potentials for activation of corticospinal/bulbar tract (CSBT). We constructed recruitment and strength-duration curves for each EP/pathway to compare the excitability for different stimulation polarities. We compared experimental data with the most advanced DBS computational models. Our results provide experimental evidence that subcortical cathodic and anodic stimulation activate the same pathways in the STN region and that cathodic stimulation is in general more efficient. However, relative efficiency varies for different pathways so that anodic stimulation is the least efficient in activating CSBT, more efficient in activating the hyperdirect pathway and as efficient as cathodic in activating STN-GP pathway. Our experiments confirm biophysical model predictions regarding neural activations in the central nervous system and provide evidence that stimulus polarity has differential effects on passing axons, terminal synapses, and local neurons. Comparison of experimental results with clinical DBS studies provides further evidence that the hyperdirect pathway may be involved in the therapeutic mechanisms of DBS.

深部脑刺激(DBS)是治疗帕金森病的一种有效方法;然而,人们对哪些丘脑下通路会对刺激做出反应的了解还很有限。在这里,通过关注刺激波形的极性(阴极与阳极),我们的目标是阐明人脑电刺激的生物物理机制。在临床研究中,阴极刺激更容易引发行为反应,而阳极 DBS 则扩大了治疗窗口。这表明,根据刺激极性的不同,相关神经通路会优先做出反应。为了在实验中比较阴极和阳极间脑下核(STN)DBS 期间激活治疗相关通路的情况,我们对 15 名接受 DBS 植入的帕金森病患者进行了量化,测量了反向或正向激活产生的诱发电位。皮层诱发电位(cEPs)通过硬膜下皮层电图记录,DBS 局部诱发电位(DLEPs)通过非刺激性接触记录,肌电图活动通过手臂和脸部肌肉记录。我们测量了:(i) 短延时 cEP 的振幅(之前已证明它反映了皮质-STN 超直达通路的激活);(ii) DLEP 的振幅(认为它反映了 STN-苍白球(GP)通路的激活);(iii) 极短延时 cEP 和运动诱发电位的振幅(反映了皮质脊髓/球束(CSBT)的激活)。我们为每个 EP/通路构建了招募和强度-持续时间曲线,以比较不同刺激极性的兴奋性。我们将实验数据与最先进的 DBS 计算模型进行了比较。我们的结果提供了实验证据,证明皮层下阴极和阳极刺激激活了 STN 区域的相同通路,而且阴极刺激一般更有效。但是,不同通路的相对效率不同,因此阳极刺激激活 CSBT 的效率最低,激活 hyperdirect 通路的效率较高,激活 STN-GP 通路的效率与阴极刺激相当。我们的实验证实了生物物理模型对中枢神经系统神经激活的预测,并提供了刺激极性对通过的轴突、末端突触和局部神经元有不同影响的证据。实验结果与临床 DBS 研究结果的比较进一步证明了超直接通路可能参与了 DBS 的治疗机制。
{"title":"Neural pathway activation in the subthalamic region depends on stimulation polarity.","authors":"Seyyed Bahram Borgheai, Enrico Opri, Faical Isbaine, Eric R Cole, Roohollah Jafari Deligani, Nealen G Laxpati, Benjamin B Risk, Jon T Willie, Robert E Gross, Nicholas AuYong, Cameron C McIntyre, Svjetlana Miocinovic","doi":"10.1093/braincomms/fcaf006","DOIUrl":"10.1093/braincomms/fcaf006","url":null,"abstract":"<p><p>Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease; however, there is limited understanding of which subthalamic pathways are recruited in response to stimulation. Here, by focusing on the polarity of the stimulus waveform (cathodic versus anodic), our goal was to elucidate biophysical mechanisms that underlie electrical stimulation in the human brain. In clinical studies, cathodic stimulation more easily triggers behavioural responses, but anodic DBS broadens the therapeutic window. This suggests that neural pathways involved respond preferentially depending on stimulus polarity. To experimentally compare the activation of therapeutically relevant pathways during cathodic and anodic subthalamic nucleus (STN) DBS, pathway activation was quantified by measuring evoked potentials resulting from antidromic or orthodromic activation in 15 Parkinson's disease patients undergoing DBS implantation. Cortical evoked potentials (cEPs) were recorded using subdural electrocorticography, DBS local evoked potentials (DLEPs) were recorded from non-stimulating contacts, and electromyography activity was recorded from arm and face muscles. We measured (i) the amplitude of short-latency cEP, previously demonstrated to reflect activation of the cortico-STN hyperdirect pathway, (ii) DLEP amplitude thought to reflect activation of STN-globus pallidus (GP) pathway and (iii) amplitudes of very short-latency cEPs and motor evoked potentials for activation of corticospinal/bulbar tract (CSBT). We constructed recruitment and strength-duration curves for each EP/pathway to compare the excitability for different stimulation polarities. We compared experimental data with the most advanced DBS computational models. Our results provide experimental evidence that subcortical cathodic and anodic stimulation activate the same pathways in the STN region and that cathodic stimulation is in general more efficient. However, relative efficiency varies for different pathways so that anodic stimulation is the least efficient in activating CSBT, more efficient in activating the hyperdirect pathway and as efficient as cathodic in activating STN-GP pathway. Our experiments confirm biophysical model predictions regarding neural activations in the central nervous system and provide evidence that stimulus polarity has differential effects on passing axons, terminal synapses, and local neurons. Comparison of experimental results with clinical DBS studies provides further evidence that the hyperdirect pathway may be involved in the therapeutic mechanisms of DBS.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcaf006"},"PeriodicalIF":4.1,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839843/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143470296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating conversion from mild cognitive impairment to Alzheimer's disease with structural MRI: a machine learning study.
IF 4.1 Q1 CLINICAL NEUROLOGY Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI: 10.1093/braincomms/fcaf027
Daniela Vecchio, Federica Piras, Federica Natalizi, Nerisa Banaj, Clelia Pellicano, Fabrizio Piras

Alzheimer's disease is a disabling neurodegenerative disorder for which no effective treatment currently exists. To predict the diagnosis of Alzheimer's disease could be crucial for patients' outcome, but current Alzheimer's disease biomarkers are invasive, time consuming or expensive. Thus, developing MRI-based computational methods for Alzheimer's disease early diagnosis would be essential to narrow down the phenotypic measures predictive of cognitive decline. Amnestic mild cognitive impairment (aMCI) is associated with higher risk for Alzheimer's disease, and here, we aimed to identify MRI-based quantitative rules to predict aMCI to possible Alzheimer's disease conversion, applying different machine learning algorithms sequentially. At baseline, T1-weighted brain images were collected for 104 aMCI patients and processed to obtain 146 volumetric measures of cerebral grey matter regions [regions of interest (ROIs)]. One year later, patients were classified as converters (aMCI-c = 32) or non-converters, i.e. clinically and neuropsychologically stable (aMCI-s = 72) based on cognitive performance. Feature selection was performed by random forest (RF), and the identified seven ROIs volumetric data were used to implement support vector machine (SVM) and decision tree (DT) classification algorithms. Both SVM and DT reached an average accuracy of 86% in identifying aMCI-c and aMCI-s. DT found a critical threshold volume of the right entorhinal cortex (EC-r) as the first feature for differentiating aMCI-c/aMCI-s. Almost all aMCI-c had an EC-r volume <1286 mm3, while more than half of the aMCI-s patients had a volume above the identified threshold for this structure. Other key regions for the classification between aMCI-c/aMCI-s were the left lateral occipital (LOC-l), the middle temporal gyrus and the temporal pole cortices. Our study reinforces previous evidence suggesting that the morphometry of the EC-r and LOC-l best predicts aMCI to Alzheimer's disease conversion. Further investigations are needed prior to deeming our findings as a broadly applicable predictive framework. However, here, a first indication was derived for volumetric thresholds that, being easy to obtain, may assist in early identification of Alzheimer's disease in clinical practice, thus contributing to establishing MRI as a useful non-invasive prognostic instrument for dementia onset.

{"title":"Evaluating conversion from mild cognitive impairment to Alzheimer's disease with structural MRI: a machine learning study.","authors":"Daniela Vecchio, Federica Piras, Federica Natalizi, Nerisa Banaj, Clelia Pellicano, Fabrizio Piras","doi":"10.1093/braincomms/fcaf027","DOIUrl":"10.1093/braincomms/fcaf027","url":null,"abstract":"<p><p>Alzheimer's disease is a disabling neurodegenerative disorder for which no effective treatment currently exists. To predict the diagnosis of Alzheimer's disease could be crucial for patients' outcome, but current Alzheimer's disease biomarkers are invasive, time consuming or expensive. Thus, developing MRI-based computational methods for Alzheimer's disease early diagnosis would be essential to narrow down the phenotypic measures predictive of cognitive decline. Amnestic mild cognitive impairment (aMCI) is associated with higher risk for Alzheimer's disease, and here, we aimed to identify MRI-based quantitative rules to predict aMCI to possible Alzheimer's disease conversion, applying different machine learning algorithms sequentially. At baseline, T1-weighted brain images were collected for 104 aMCI patients and processed to obtain 146 volumetric measures of cerebral grey matter regions [regions of interest (ROIs)]. One year later, patients were classified as converters (aMCI-c = 32) or non-converters, i.e. clinically and neuropsychologically stable (aMCI-s = 72) based on cognitive performance. Feature selection was performed by random forest (RF), and the identified seven ROIs volumetric data were used to implement support vector machine (SVM) and decision tree (DT) classification algorithms. Both SVM and DT reached an average accuracy of 86% in identifying aMCI-c and aMCI-s. DT found a critical threshold volume of the right entorhinal cortex (EC-r) as the first feature for differentiating aMCI-c/aMCI-s. Almost all aMCI-c had an EC-r volume <1286 mm<sup>3</sup>, while more than half of the aMCI-s patients had a volume above the identified threshold for this structure. Other key regions for the classification between aMCI-c/aMCI-s were the left lateral occipital (LOC-l), the middle temporal gyrus and the temporal pole cortices. Our study reinforces previous evidence suggesting that the morphometry of the EC-r and LOC-l best predicts aMCI to Alzheimer's disease conversion. Further investigations are needed prior to deeming our findings as a broadly applicable predictive framework. However, here, a first indication was derived for volumetric thresholds that, being easy to obtain, may assist in early identification of Alzheimer's disease in clinical practice, thus contributing to establishing MRI as a useful non-invasive prognostic instrument for dementia onset.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcaf027"},"PeriodicalIF":4.1,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780885/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early subacute frontal callosal microstructure and language outcomes after stroke.
IF 4.1 Q1 CLINICAL NEUROLOGY Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI: 10.1093/braincomms/fcae370
Veronika Vadinova, Sonia L E Brownsett, Kimberley L Garden, Tracy Roxbury, Katherine O'Brien, David A Copland, Katie L McMahon, Aleksi J Sihvonen

The integrity of the frontal segment of the corpus callosum, forceps minor, is particularly susceptible to age-related degradation and has been associated with cognitive outcomes in both healthy and pathological ageing. The predictive relevance of forceps minor integrity in relation to cognitive outcomes following a stroke remains unexplored. Our goal was to evaluate whether the heterogeneity of forceps minor integrity, assessed early after stroke onset (2-6 weeks), contributes to explaining variance in longitudinal outcomes in post-stroke aphasia. Both word- and sentence-level tasks were employed to assess language comprehension and language production skills in individuals with first-ever left-hemisphere stroke during the early subacute and chronic phases of recovery (n = 25). Structural and diffusion neuroimaging data from the early subacute phase were used to quantify stroke lesion load and bilateral forceps minor radial diffusivity. Multiple linear regression models examined whether early subacute radial diffusivity within the forceps minor, along with other factors (stroke lesion load, age, sex and education), explained variance in early subacute performance and longitudinal recovery (i.e. change in behavioural performance). Increased early subacute radial diffusivity in the forceps minor was associated with poor early subacute comprehension (t = -2.36, P = 0.02) but not production (P = 0.35) when controlling for stroke lesion load, age, sex and education. When considering longitudinal recovery, early subacute radial diffusivity in the forceps minor was not linked to changes in performance in either comprehension (P = 0.11) or production (P = 0.36) under the same control variables. The examination of various language components and processes led to novel insights: (i) language comprehension may be more susceptible to white matter brain health than language production and (ii) the influence of white matter brain health is reflected in early comprehension performance rather than longitudinal changes in comprehension. These results suggest that evaluating baseline callosal integrity is a valuable approach for assessing the risk of impaired language comprehension post-stroke, while also underscoring the importance of nuanced analyses of behavioural outcomes to enhance our understanding of the clinical applicability of baseline brain health measures.

{"title":"Early subacute frontal callosal microstructure and language outcomes after stroke.","authors":"Veronika Vadinova, Sonia L E Brownsett, Kimberley L Garden, Tracy Roxbury, Katherine O'Brien, David A Copland, Katie L McMahon, Aleksi J Sihvonen","doi":"10.1093/braincomms/fcae370","DOIUrl":"10.1093/braincomms/fcae370","url":null,"abstract":"<p><p>The integrity of the frontal segment of the corpus callosum, forceps minor, is particularly susceptible to age-related degradation and has been associated with cognitive outcomes in both healthy and pathological ageing. The predictive relevance of forceps minor integrity in relation to cognitive outcomes following a stroke remains unexplored. Our goal was to evaluate whether the heterogeneity of forceps minor integrity, assessed early after stroke onset (2-6 weeks), contributes to explaining variance in longitudinal outcomes in post-stroke aphasia. Both word- and sentence-level tasks were employed to assess language comprehension and language production skills in individuals with first-ever left-hemisphere stroke during the early subacute and chronic phases of recovery (<i>n</i> = 25). Structural and diffusion neuroimaging data from the early subacute phase were used to quantify stroke lesion load and bilateral forceps minor radial diffusivity. Multiple linear regression models examined whether early subacute radial diffusivity within the forceps minor, along with other factors (stroke lesion load, age, sex and education), explained variance in early subacute performance and longitudinal recovery (i.e. change in behavioural performance). Increased early subacute radial diffusivity in the forceps minor was associated with poor early subacute comprehension (<i>t</i> = -2.36, <i>P</i> = 0.02) but not production (<i>P</i> = 0.35) when controlling for stroke lesion load, age, sex and education. When considering longitudinal recovery, early subacute radial diffusivity in the forceps minor was not linked to changes in performance in either comprehension (<i>P</i> = 0.11) or production (<i>P</i> = 0.36) under the same control variables. The examination of various language components and processes led to novel insights: (i) language comprehension may be more susceptible to white matter brain health than language production and (ii) the influence of white matter brain health is reflected in early comprehension performance rather than longitudinal changes in comprehension. These results suggest that evaluating baseline callosal integrity is a valuable approach for assessing the risk of impaired language comprehension post-stroke, while also underscoring the importance of nuanced analyses of behavioural outcomes to enhance our understanding of the clinical applicability of baseline brain health measures.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcae370"},"PeriodicalIF":4.1,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143025712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Brain communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1