首页 > 最新文献

Chemical biology & drug design最新文献

英文 中文
Synthesis and Investigation of Peptide-Drug Conjugates Comprising Camptothecin and a Human Protein-Derived Cell-Penetrating Peptide. 喜树碱与人蛋白衍生细胞穿透肽肽-药物偶联物的合成与研究。
Pub Date : 2025-01-01 DOI: 10.1111/cbdd.70051
Isabella R Palombi, Andrew M White, Yasuko Koda, David J Craik, Nicole Lawrence, Lara R Malins

Drug targeting strategies, such as peptide-drug conjugates (PDCs), have arisen to combat the issue of off-target toxicity that is commonly associated with chemotherapeutic small molecule drugs. Here we investigated the ability of PDCs comprising a human protein-derived cell-penetrating peptide-platelet factor 4-derived internalization peptide (PDIP)-as a targeting strategy to improve the selectivity of camptothecin (CPT), a topoisomerase I inhibitor that suffers from off-target toxicity. The intranuclear target of CPT allowed exploration of PDC design features required for optimal potency. A suite of PDCs with various structural characteristics, including alternative conjugation strategies (such as azide-alkyne cycloaddition and disulfide conjugation) and linker types (non-cleavable or cleavable), were synthesized and investigated for their anticancer activity. Membrane permeability and cytotoxicity studies revealed that intact PDIP-CPT PDCs can cross membranes, and that PDCs with disulfide- and protease-cleavable linkers liberated free CPT and killed melanoma cells with nanomolar potency. However, selectivity of the PDIP carrier peptide for melanoma compared to noncancerous epidermal cells was not maintained for the PDCs. This study emphasizes the distinct role of the peptide, linker, and drug for optimal PDC activity and highlights the need to carefully match components when assembling PDCs as targeted therapies.

药物靶向策略,如肽-药物偶联物(PDCs),已经出现,以对抗通常与化疗小分子药物相关的脱靶毒性问题。在这里,我们研究了包含人类蛋白质衍生的细胞穿透肽-血小板因子4衍生的内化肽(PDIP)的PDCs作为一种靶向策略来提高喜树碱(CPT)的选择性的能力,喜树碱是一种具有脱靶毒性的拓扑异构酶I抑制剂。CPT的核内靶标允许探索最佳效力所需的PDC设计特征。合成了一组具有不同结构特征的pdc,包括可选择的偶联策略(如叠氮-炔环加成和二硫键偶联)和连接体类型(不可切割或可切割),并研究了它们的抗癌活性。细胞膜渗透性和细胞毒性研究表明,完整的PDIP-CPT PDCs可以跨膜,并且具有二硫和蛋白酶可切割连接体的PDCs释放游离的CPT并以纳米摩尔的效力杀死黑色素瘤细胞。然而,与非癌性表皮细胞相比,PDIP载体肽对黑色素瘤的选择性在PDCs中并没有保持。这项研究强调了肽、连接剂和药物在优化PDC活性方面的独特作用,并强调了在组装PDC作为靶向治疗时需要仔细匹配成分。
{"title":"Synthesis and Investigation of Peptide-Drug Conjugates Comprising Camptothecin and a Human Protein-Derived Cell-Penetrating Peptide.","authors":"Isabella R Palombi, Andrew M White, Yasuko Koda, David J Craik, Nicole Lawrence, Lara R Malins","doi":"10.1111/cbdd.70051","DOIUrl":"10.1111/cbdd.70051","url":null,"abstract":"<p><p>Drug targeting strategies, such as peptide-drug conjugates (PDCs), have arisen to combat the issue of off-target toxicity that is commonly associated with chemotherapeutic small molecule drugs. Here we investigated the ability of PDCs comprising a human protein-derived cell-penetrating peptide-platelet factor 4-derived internalization peptide (PDIP)-as a targeting strategy to improve the selectivity of camptothecin (CPT), a topoisomerase I inhibitor that suffers from off-target toxicity. The intranuclear target of CPT allowed exploration of PDC design features required for optimal potency. A suite of PDCs with various structural characteristics, including alternative conjugation strategies (such as azide-alkyne cycloaddition and disulfide conjugation) and linker types (non-cleavable or cleavable), were synthesized and investigated for their anticancer activity. Membrane permeability and cytotoxicity studies revealed that intact PDIP-CPT PDCs can cross membranes, and that PDCs with disulfide- and protease-cleavable linkers liberated free CPT and killed melanoma cells with nanomolar potency. However, selectivity of the PDIP carrier peptide for melanoma compared to noncancerous epidermal cells was not maintained for the PDCs. This study emphasizes the distinct role of the peptide, linker, and drug for optimal PDC activity and highlights the need to carefully match components when assembling PDCs as targeted therapies.</p>","PeriodicalId":93931,"journal":{"name":"Chemical biology & drug design","volume":"105 1","pages":"e70051"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747586/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143018370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antimicrobial and Antiproliferative Properties of 2-Phenyl-N-(Pyridin-2-yl)acetamides. 2-苯基- n-(吡啶-2-基)乙酰酰胺的抗菌和抗增殖性能。
Pub Date : 2025-01-01 DOI: 10.1111/cbdd.70030
Daria Nawrot, Barbora Koutníková, Ondřej Janďourek, Klára Konečná, Martin Novák, Pavla Paterová, Pavel Bárta, Ghada Bouz, Jan Zitko, Martin Doležal

Infectious diseases, including bacterial, fungal, and viral, have once again gained urgency in the drug development pipeline after the recent COVID-19 pandemic. Tuberculosis (TB) is an old infectious disease for which eradication has not yet been successful. Novel agents are required to have potential activity against both drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis (Mtb), the causative agent of TB. In this study, we present a series of 2-phenyl-N-(pyridin-2-yl)acetamides in an attempt to investigate their possible antimycobacterial activity, cytotoxicity on the HepG2 liver cancer cell line, and-as complementary testing-their antibacterial and antifungal properties against a panel of clinically important pathogens. This screening resulted in one compound with promising antimycobacterial activity-compound 12, MICMtb H37Ra = 15.625 μg/mL (56.26 μM). Compounds 17, 24, and 26 were further screened for their antiproliferative activity against human epithelial kidney cancer cell line A498, human prostate cancer cell line PC-3, and human glioblastoma cell line U-87MG, where they were found to possess interesting activity worth further exploration in the future.

在最近的COVID-19大流行之后,包括细菌、真菌和病毒在内的传染病再次成为药物开发管道中的紧迫问题。结核病是一种古老的传染病,迄今尚未成功根除。新型药物需要对结核病病原体结核分枝杆菌(Mtb)的药敏和耐药菌株具有潜在活性。在这项研究中,我们提出了一系列2-苯基- n-(吡啶-2-基)乙酰酰胺,试图研究它们可能的抗细菌活性,对HepG2肝癌细胞系的细胞毒性,以及作为补充测试,它们对一组临床重要病原体的抗菌和抗真菌特性。筛选得到具有抑菌活性的化合物MICMtb H37Ra = 15.625 μg/mL (56.26 μM),化合物12。进一步筛选化合物17、24、26对人上皮性肾癌细胞系A498、人前列腺癌细胞系PC-3、人胶质母细胞瘤细胞系U-87MG的抗增殖活性,发现具有值得进一步探索的有趣活性。
{"title":"Antimicrobial and Antiproliferative Properties of 2-Phenyl-N-(Pyridin-2-yl)acetamides.","authors":"Daria Nawrot, Barbora Koutníková, Ondřej Janďourek, Klára Konečná, Martin Novák, Pavla Paterová, Pavel Bárta, Ghada Bouz, Jan Zitko, Martin Doležal","doi":"10.1111/cbdd.70030","DOIUrl":"10.1111/cbdd.70030","url":null,"abstract":"<p><p>Infectious diseases, including bacterial, fungal, and viral, have once again gained urgency in the drug development pipeline after the recent COVID-19 pandemic. Tuberculosis (TB) is an old infectious disease for which eradication has not yet been successful. Novel agents are required to have potential activity against both drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis (Mtb), the causative agent of TB. In this study, we present a series of 2-phenyl-N-(pyridin-2-yl)acetamides in an attempt to investigate their possible antimycobacterial activity, cytotoxicity on the HepG2 liver cancer cell line, and-as complementary testing-their antibacterial and antifungal properties against a panel of clinically important pathogens. This screening resulted in one compound with promising antimycobacterial activity-compound 12, MIC<sub>Mtb H37Ra</sub> = 15.625 μg/mL (56.26 μM). Compounds 17, 24, and 26 were further screened for their antiproliferative activity against human epithelial kidney cancer cell line A498, human prostate cancer cell line PC-3, and human glioblastoma cell line U-87MG, where they were found to possess interesting activity worth further exploration in the future.</p>","PeriodicalId":93931,"journal":{"name":"Chemical biology & drug design","volume":"105 1","pages":"e70030"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748363/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143018311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Significance of Mono- and Dual-Effective Agents in the Development of New Antifungal Strategies.
Pub Date : 2025-01-01 DOI: 10.1111/cbdd.70045
Cengiz Zobi, Oztekin Algul

Invasive fungal infections (IFIs) pose significant challenges in clinical settings, particularly due to their high morbidity and mortality rates. The rising incidence of these infections, coupled with increasing antifungal resistance, underscores the urgent need for novel therapeutic strategies. Current antifungal drugs target the fungal cell membrane, cell wall, or intracellular components, but resistance mechanisms such as altered drug-target interactions, enhanced efflux, and adaptive cellular responses have diminished their efficacy. Recent research has highlighted the potential of dual inhibitors that simultaneously target multiple pathways or enzymes involved in fungal growth and survival. Combining pharmacophores, such as lanosterol 14α-demethylase (CYP51), heat shock protein 90 (HSP90), histone deacetylase (HDAC), and squalene epoxidase (SE) inhibitors, has led to the development of compounds with enhanced antifungal activity and reduced resistance. This dual-target approach, along with novel chemical scaffolds, not only represents a promising strategy for combating antifungal resistance but is also being utilized in the development of anticancer agents. This review explores the development of new antifungal agents that employ mono-, dual-, or multi-target strategies to combat IFIs. We discuss emerging antifungal targets, resistance mechanisms, and innovative therapeutic approaches that offer hope in managing these challenging infections.

{"title":"The Significance of Mono- and Dual-Effective Agents in the Development of New Antifungal Strategies.","authors":"Cengiz Zobi, Oztekin Algul","doi":"10.1111/cbdd.70045","DOIUrl":"10.1111/cbdd.70045","url":null,"abstract":"<p><p>Invasive fungal infections (IFIs) pose significant challenges in clinical settings, particularly due to their high morbidity and mortality rates. The rising incidence of these infections, coupled with increasing antifungal resistance, underscores the urgent need for novel therapeutic strategies. Current antifungal drugs target the fungal cell membrane, cell wall, or intracellular components, but resistance mechanisms such as altered drug-target interactions, enhanced efflux, and adaptive cellular responses have diminished their efficacy. Recent research has highlighted the potential of dual inhibitors that simultaneously target multiple pathways or enzymes involved in fungal growth and survival. Combining pharmacophores, such as lanosterol 14α-demethylase (CYP51), heat shock protein 90 (HSP90), histone deacetylase (HDAC), and squalene epoxidase (SE) inhibitors, has led to the development of compounds with enhanced antifungal activity and reduced resistance. This dual-target approach, along with novel chemical scaffolds, not only represents a promising strategy for combating antifungal resistance but is also being utilized in the development of anticancer agents. This review explores the development of new antifungal agents that employ mono-, dual-, or multi-target strategies to combat IFIs. We discuss emerging antifungal targets, resistance mechanisms, and innovative therapeutic approaches that offer hope in managing these challenging infections.</p>","PeriodicalId":93931,"journal":{"name":"Chemical biology & drug design","volume":"105 1","pages":"e70045"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143025785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, Synthesis, and Evaluation of Novel (-)-cis-N-Normetazocine Derivatives: In Vitro and Molecular Modeling Insights. 新型(-)-顺- n -去甲他佐辛衍生物的设计、合成和评价:体外和分子模型的见解。
Pub Date : 2024-12-01 DOI: 10.1111/cbdd.70037
Giuliana Costanzo, Alessandro Coco, Giuseppe Cosentino, Vincenzo Patamia, Carmela Parenti, Emanuele Amata, Agostino Marrazzo, Antonio Rescifina, Lorella Pasquinucci

Suitable structural modifications of the functional groups at N-substituent of (-)-cis-N-normetazocine nucleus modulate the affinity and activity profile of related ligands toward opioid receptors. Our research group has developed several compounds and the most interesting ligands, LP1 and LP2, exhibited a dual-target profile for mu-opioid receptor (MOR) and delta-opioid receptor (DOR). Recent structure-affinity relationship studies led to the discovery of novel LP2 analogs (compounds 1 and 2), which demonstrated high MOR affinity in the nanomolar range. Here, we reported the synthesis of the new (-)-cis-N-normetazocine derivatives (3-8) characterized by the absence of the phenyl ring in the N-substituent compared to all previous reported ligands. Compounds 3 and 4, featuring a methyl ester functional group in the N-substituent, retained significant MOR affinity and exhibited similar affinity for the kappa-opioid receptor (KOR). In contrast, compounds 7 and 8, which contain a hydroxamic acid functionality, maintained affinity exclusively toward MOR. Neither of compounds (3-8) showed DOR affinity. Molecular modeling studies confirmed a similar docking pose in the MOR binding pocket for these compounds. Additionally, the in silico ADME profile of the most interesting ligands (3, 4, 7, and 8) was investigated revealing a favorable profile for compound 7 regarding the blood-brain barrier permeability, suggesting its potential as a peripherally restricted opioid ligand.

(-)-顺-n -去甲他佐辛核n -取代基的适当结构修饰可调节相关配体对阿片受体的亲和力和活性谱。我们的研究小组已经开发了几种化合物,其中最有趣的配体LP1和LP2表现出对mu-阿片样受体(MOR)和delta-阿片样受体(DOR)的双靶点特征。最近的结构-亲和关系研究导致了新的LP2类似物(化合物1和2)的发现,它们在纳摩尔范围内具有较高的MOR亲和性。在这里,我们报道了新的(-)-顺-n -去甲氧佐辛衍生物(3-8)的合成,其特征是与所有先前报道的配体相比,n取代基上没有苯环。化合物3和4在n取代基上具有一个甲酯官能团,保留了显著的MOR亲和力,对kappa-阿片受体(KOR)具有相似的亲和力。相比之下,含有羟基肟酸功能的化合物7和8只对MOR保持亲和力。这两个化合物(3-8)都没有DOR亲和力。分子模型研究证实了这些化合物在MOR结合口袋中有类似的对接姿势。此外,对最有趣的配体(3、4、7和8)的硅ADME谱进行了研究,揭示了化合物7在血脑屏障通透性方面的有利谱,表明其作为外周限制性阿片配体的潜力。
{"title":"Design, Synthesis, and Evaluation of Novel (-)-cis-N-Normetazocine Derivatives: In Vitro and Molecular Modeling Insights.","authors":"Giuliana Costanzo, Alessandro Coco, Giuseppe Cosentino, Vincenzo Patamia, Carmela Parenti, Emanuele Amata, Agostino Marrazzo, Antonio Rescifina, Lorella Pasquinucci","doi":"10.1111/cbdd.70037","DOIUrl":"10.1111/cbdd.70037","url":null,"abstract":"<p><p>Suitable structural modifications of the functional groups at N-substituent of (-)-cis-N-normetazocine nucleus modulate the affinity and activity profile of related ligands toward opioid receptors. Our research group has developed several compounds and the most interesting ligands, LP1 and LP2, exhibited a dual-target profile for mu-opioid receptor (MOR) and delta-opioid receptor (DOR). Recent structure-affinity relationship studies led to the discovery of novel LP2 analogs (compounds 1 and 2), which demonstrated high MOR affinity in the nanomolar range. Here, we reported the synthesis of the new (-)-cis-N-normetazocine derivatives (3-8) characterized by the absence of the phenyl ring in the N-substituent compared to all previous reported ligands. Compounds 3 and 4, featuring a methyl ester functional group in the N-substituent, retained significant MOR affinity and exhibited similar affinity for the kappa-opioid receptor (KOR). In contrast, compounds 7 and 8, which contain a hydroxamic acid functionality, maintained affinity exclusively toward MOR. Neither of compounds (3-8) showed DOR affinity. Molecular modeling studies confirmed a similar docking pose in the MOR binding pocket for these compounds. Additionally, the in silico ADME profile of the most interesting ligands (3, 4, 7, and 8) was investigated revealing a favorable profile for compound 7 regarding the blood-brain barrier permeability, suggesting its potential as a peripherally restricted opioid ligand.</p>","PeriodicalId":93931,"journal":{"name":"Chemical biology & drug design","volume":"104 6","pages":"e70037"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671793/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and Activity Study of Gefitinib Derivatives Inducing Mitochondrial Apoptosis in Hela Cells. 吉非替尼衍生物诱导Hela细胞线粒体凋亡的合成及活性研究。
Pub Date : 2024-12-01 DOI: 10.1111/cbdd.70035
Yue Li, Xixi Hou, Shujian Liu, Zihao Chen, Qiong Wu, Baoyu He, Jingjing Guo, Lan Wang, Caihong Liu, Long-Fei Mao

Cervical cancer is the fourth most common cancer among women globally. Its development is closely linked to accelerated cell cycle progression and the inhibition of apoptosis in cervical cancer tissues. Gefitinib has demonstrated efficacy in inhibiting cervical cancer cells, and the 1,2,3-triazole structure is widely recognized for its role in inducing mitochondrial apoptosis in tumor cells. In this study, we employed click chemistry to modify the structure of gefitinib, leading to the synthesis of 16 derivatives containing the 1,2,3-triazole moiety. These compounds were evaluated for their in vitro activity against Hela cells. Among them, compound 3p exhibited the most promising anticancer activity, with an IC50 value of 4.09 ± 0.54 μM. Compound 3p significantly inhibited Hela cell colony formation in a dose-dependent manner, accompanied by noticeable morphological changes. Further investigations revealed that 3p induced apoptosis and caused G2/M phase cell cycle arrest in Hela cells. Western blot analysis showed that 3p increased the Bax/Bcl-2 ratio and elevated the levels of cleaved caspase-3 and PARP1, indicating that apoptosis was mediated through the mitochondrial pathway. Additionally, 3p inhibited indoleamine 2,3-dioxygenase 1 (IDO1) enzymatic activity, and molecular docking studies revealed a strong interaction between 3p and the IDO1 active site, suggesting that IDO1 may be a potential target. In conclusion, compound 3p shows promise as a potential therapeutic agent for cervical cancer.

子宫颈癌是全球第四大最常见的女性癌症。它的发展与宫颈癌组织中细胞周期的加速和细胞凋亡的抑制密切相关。吉非替尼已被证实对宫颈癌细胞有抑制作用,而1,2,3-三唑结构在肿瘤细胞中诱导线粒体凋亡的作用已被广泛认识。在本研究中,我们利用点击化学修饰吉非替尼的结构,合成了16个含有1,2,3-三唑片段的衍生物。对这些化合物进行体外抗Hela细胞活性评价。其中化合物3p的抗癌活性最强,IC50值为4.09±0.54 μM。化合物3p明显抑制Hela细胞集落形成,且呈剂量依赖性,并伴有明显的形态学改变。进一步研究发现,3p诱导Hela细胞凋亡,并引起G2/M期细胞周期阻滞。Western blot分析显示,3p使Bax/Bcl-2比值升高,cleaved caspase-3和PARP1水平升高,表明凋亡是通过线粒体途径介导的。此外,3p抑制吲哚胺2,3-双加氧酶1 (IDO1)的酶活性,分子对接研究发现3p与IDO1活性位点之间存在强相互作用,表明IDO1可能是一个潜在的靶点。总之,化合物3p有望成为宫颈癌的潜在治疗剂。
{"title":"Synthesis and Activity Study of Gefitinib Derivatives Inducing Mitochondrial Apoptosis in Hela Cells.","authors":"Yue Li, Xixi Hou, Shujian Liu, Zihao Chen, Qiong Wu, Baoyu He, Jingjing Guo, Lan Wang, Caihong Liu, Long-Fei Mao","doi":"10.1111/cbdd.70035","DOIUrl":"https://doi.org/10.1111/cbdd.70035","url":null,"abstract":"<p><p>Cervical cancer is the fourth most common cancer among women globally. Its development is closely linked to accelerated cell cycle progression and the inhibition of apoptosis in cervical cancer tissues. Gefitinib has demonstrated efficacy in inhibiting cervical cancer cells, and the 1,2,3-triazole structure is widely recognized for its role in inducing mitochondrial apoptosis in tumor cells. In this study, we employed click chemistry to modify the structure of gefitinib, leading to the synthesis of 16 derivatives containing the 1,2,3-triazole moiety. These compounds were evaluated for their in vitro activity against Hela cells. Among them, compound 3p exhibited the most promising anticancer activity, with an IC<sub>50</sub> value of 4.09 ± 0.54 μM. Compound 3p significantly inhibited Hela cell colony formation in a dose-dependent manner, accompanied by noticeable morphological changes. Further investigations revealed that 3p induced apoptosis and caused G2/M phase cell cycle arrest in Hela cells. Western blot analysis showed that 3p increased the Bax/Bcl-2 ratio and elevated the levels of cleaved caspase-3 and PARP1, indicating that apoptosis was mediated through the mitochondrial pathway. Additionally, 3p inhibited indoleamine 2,3-dioxygenase 1 (IDO1) enzymatic activity, and molecular docking studies revealed a strong interaction between 3p and the IDO1 active site, suggesting that IDO1 may be a potential target. In conclusion, compound 3p shows promise as a potential therapeutic agent for cervical cancer.</p>","PeriodicalId":93931,"journal":{"name":"Chemical biology & drug design","volume":"104 6","pages":"e70035"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Baicalein, a component of banxia xiexin decoction, alleviates CPT-11-induced gastrointestinal dysfunction by inhibiting ALOX15-mediated ferroptosis. 黄芩苷是板下泻心汤的一种成分,通过抑制ALOX15介导的脱铁性贫血来减轻CPT-11诱导的胃肠道功能障碍。
Pub Date : 2023-12-01 Epub Date: 2023-09-21 DOI: 10.1111/cbdd.14349
Jingbo Pei, Yuanyuan Zou, Wenying Zhou, Yakun Wang

Baicalein, one of the active ingredients of banxia xiexin decoction, has good therapeutic efficacy in treating diarrhea and improving gastrointestinal dysfunction. The role and mechanism of Baicalein on irinotecan (CPT-11)-induced gastrointestinal dysfunction are the focus of this study. Concretely, CPT-11 induced delayed diarrhea rat model and intestinal epithelial cell (IEC)-6 cell injury model with Baicalein treatment as needed. Colonic pathological changes were analyzed by hematoxylin-eosin staining, and inflammatory factor expressions in serum were determined by enzyme-linked immunosorbent assay. Immunohistochemistry and western blot were performed to quantify ferroptosis-related protein expressions. Thiobarbituric acid reactive substances (TBARS) kits and colorimetric assay kit were applied to detect lipid peroxidation levels and Fe2+ content, respectively. In vitro experiments also included quantitative real-time polymerase chain reaction, cell counting kit-8, and C11 BODIPY staining. CPT-11 induced aggravation of intestinal tissue damage, inflammatory factor release, Fe2+ accumulation, upregulation of lipid peroxidation and 15-Lipoxygenase (ALOX15) expression, and downregulation of glutathione peroxidase 4 (Gpx4) and SLC7A11 in vivo in rats; however, Baicalein dose-dependently reversed the effects of CPT-11. Baicalein elevated cell viability, reduced lipid peroxidation and Fe2+ accumulation, and elevated Gpx4 and SLC7A11 levels, whereas ALOX15 overexpression reversed the effects of Baicalein on a CPT-11-induced IEC-6 cell injury model. In conclusion, Baicalein plays a mitigating role in CPT-11-induced delayed diarrhea via ALOX15-mediated ferroptosis.

黄芩苷是板下泻心汤的有效成分之一,对治疗腹泻、改善胃肠功能障碍有良好疗效。黄芩苷对伊立替康(CPT-11)诱导的胃肠道功能障碍的作用及其机制是本研究的重点。具体地,CPT-11诱导延迟性腹泻大鼠模型和肠上皮细胞(IEC)-6细胞损伤模型,并根据需要给予黄芩苷治疗。苏木精-伊红染色分析结肠病理变化,酶联免疫吸附测定血清中炎症因子的表达。免疫组织化学和蛋白质印迹法测定脱铁相关蛋白的表达。应用硫代巴比妥酸反应物质(TBARS)试剂盒和比色法试剂盒分别检测脂质过氧化水平和Fe2+含量。体外实验还包括定量实时聚合酶链反应、细胞计数试剂盒-8和C11 BODIPY染色。CPT-11在体内诱导大鼠肠道组织损伤加重、炎症因子释放、Fe2+积累、脂质过氧化和15脂氧合酶(ALOX15)表达上调,谷胱甘肽过氧化物酶4(Gpx4)和SLC7A11下调;黄芩苷可剂量依赖性逆转CPT-11的作用。黄芩素提高细胞活力,减少脂质过氧化和Fe2+积累,并提高Gpx4和SLC7A11水平,而ALOX15过表达逆转了黄芩素对CPT-11诱导的IEC-6细胞损伤模型的影响。总之,黄芩素通过ALOX15介导的脱铁性贫血在CPT-11诱导的延迟性腹泻中起到减轻作用。
{"title":"Baicalein, a component of banxia xiexin decoction, alleviates CPT-11-induced gastrointestinal dysfunction by inhibiting ALOX15-mediated ferroptosis.","authors":"Jingbo Pei, Yuanyuan Zou, Wenying Zhou, Yakun Wang","doi":"10.1111/cbdd.14349","DOIUrl":"10.1111/cbdd.14349","url":null,"abstract":"<p><p>Baicalein, one of the active ingredients of banxia xiexin decoction, has good therapeutic efficacy in treating diarrhea and improving gastrointestinal dysfunction. The role and mechanism of Baicalein on irinotecan (CPT-11)-induced gastrointestinal dysfunction are the focus of this study. Concretely, CPT-11 induced delayed diarrhea rat model and intestinal epithelial cell (IEC)-6 cell injury model with Baicalein treatment as needed. Colonic pathological changes were analyzed by hematoxylin-eosin staining, and inflammatory factor expressions in serum were determined by enzyme-linked immunosorbent assay. Immunohistochemistry and western blot were performed to quantify ferroptosis-related protein expressions. Thiobarbituric acid reactive substances (TBARS) kits and colorimetric assay kit were applied to detect lipid peroxidation levels and Fe<sup>2+</sup> content, respectively. In vitro experiments also included quantitative real-time polymerase chain reaction, cell counting kit-8, and C11 BODIPY staining. CPT-11 induced aggravation of intestinal tissue damage, inflammatory factor release, Fe<sup>2+</sup> accumulation, upregulation of lipid peroxidation and 15-Lipoxygenase (ALOX15) expression, and downregulation of glutathione peroxidase 4 (Gpx4) and SLC7A11 in vivo in rats; however, Baicalein dose-dependently reversed the effects of CPT-11. Baicalein elevated cell viability, reduced lipid peroxidation and Fe<sup>2+</sup> accumulation, and elevated Gpx4 and SLC7A11 levels, whereas ALOX15 overexpression reversed the effects of Baicalein on a CPT-11-induced IEC-6 cell injury model. In conclusion, Baicalein plays a mitigating role in CPT-11-induced delayed diarrhea via ALOX15-mediated ferroptosis.</p>","PeriodicalId":93931,"journal":{"name":"Chemical biology & drug design","volume":" ","pages":"1568-1577"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41180705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of the anti-inflammatory mechanism of quercetin 3,7-dirhamnoside using an integrated pharmacology strategy. 采用综合药理学策略评估槲皮素3,7-dirhamnoside的抗炎机制。
Pub Date : 2023-12-01 Epub Date: 2023-10-08 DOI: 10.1111/cbdd.14346
Xinqian He, Yongzhi Sun, Xiaomeng Lu, Fan Yang, Ting Li, Changsheng Deng, Jianping Song, Xin'an Huang

Pouzolzia zeylanica (L.) Benn. is a Chinese herbal medicine widely used for its anti-inflammatory and pus-removal properties. To explore its potential anti-inflammatory mechanism, quercetin 3,7-dirhamnoside (QDR), the main flavonoid component of P. zeylanica (L.) Benn., was extracted and purified. The potential anti-inflammatory targets of QDR were predicted using network analysis. These potential targets were verified using molecular docking, molecular dynamics simulations, and in vitro experiments. Consequently, 342 potential anti-inflammatory QDR targets were identified. By analyzing the intersection between the protein-protein interaction and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we identified several potential protein targets of QDR, including RAC-alpha serine/threonine-protein kinase (AKT1), Ras-related C3 botulinum toxin substrate 1 (RAC1), nitric oxide synthase 3 (NOS3), serine/threonine-protein kinase mTOR (mTOR), epidermal growth factor receptor (EGFR), growth factor receptor-bound protein 2 (GRB2), and endothelin-1 receptor (EDNRA). QDR has anti-inflammatory activity and regulates immune responses and apoptosis through chemokines, Phosphatidylinositol 3-kinase 3(PI3K)/AKT, cAMP, T-cell receptor, and Ras signaling pathways. Molecular docking analysis showed that QDR has good binding abilities with AKT1, mTOR, and NOS3. In addition, molecular dynamics simulations demonstrated that the protein-ligand complex systems formed between QDR and AKT1, mTOR, and NOS3 have high dynamic stability, and their protein-ligand complex systems possess strong binding ability. In RAW264.7 macrophages, QDR significantly inhibited lipopolysaccharides (LPS)-induced inducible nitric oxide synthase expression, nitric oxide (NO) release and the generation of proinflammatory cytokines IL-6, IL-1β, and TNF-α. QDR downregulated the expression of p-AKT1(Ser473)/AKT1 and p-mTOR (Ser2448)/mTOR, and upregulated the expression of NOS3, Rictor, and Raptor. This indicates that the anti-inflammatory mechanisms of QDR involve regulation of AKT1 and mTOR to prevent apoptosis and of NOS3 which leads to the release of endothelial NO. Thus, our study elucidated the potential anti-inflammatory mechanism of QDR, the main flavonoid found in P. zeylanica (L.) Benn.

zeylanica Pouzolzia。是一种中草药,因其抗炎和排脓特性而被广泛使用。为了探讨其潜在的抗炎机制,研究了泽兰的主要黄酮类成分槲皮素3,7-二氢吡喃糖苷(QDR)。,提取并纯化。使用网络分析预测了QDR的潜在抗炎靶点。通过分子对接、分子动力学模拟和体外实验验证了这些潜在的靶点。因此,确定了342个潜在的抗炎QDR靶点。通过分析蛋白质-蛋白质相互作用与京都基因和基因组百科全书(KEGG)途径之间的交叉点,我们确定了QDR的几个潜在蛋白质靶标,包括RACα丝氨酸/苏氨酸蛋白激酶(AKT1)、Ras相关的C3肉毒杆菌毒素底物1(RAC1)、一氧化氮合酶3,表皮生长因子受体(EGFR)、生长因子受体结合蛋白2(GRB2)和内皮素-1受体(EDNRA)。QDR具有抗炎活性,并通过趋化因子、磷脂酰肌醇3-激酶3(PI3K)/AKT、cAMP、T细胞受体和Ras信号通路调节免疫反应和细胞凋亡。分子对接分析表明,QDR与AKT1、mTOR和NOS3具有良好的结合能力。此外,分子动力学模拟表明,QDR与AKT1、mTOR和NOS3形成的蛋白质-配体复合物系统具有较高的动力学稳定性,其蛋白质-配体配合物系统具有较强的结合能力。在RAW264.7巨噬细胞中,QDR显著抑制脂多糖(LPS)诱导的诱导型一氧化氮合酶表达、一氧化氮(NO)释放以及促炎细胞因子IL-6、IL-1β和TNF-α的产生。QDR下调p-AKT1(Ser473)/AKT1和p-mTOR(Ser2448)/mTOR的表达,并上调NOS3、Rictor和Raptor的表达。这表明QDR的抗炎机制涉及调节AKT1和mTOR以防止细胞凋亡,以及调节NOS3以导致内皮NO的释放。因此,我们的研究阐明了QDR的潜在抗炎机制,QDR是在泽兰中发现的主要类黄酮。
{"title":"Assessment of the anti-inflammatory mechanism of quercetin 3,7-dirhamnoside using an integrated pharmacology strategy.","authors":"Xinqian He, Yongzhi Sun, Xiaomeng Lu, Fan Yang, Ting Li, Changsheng Deng, Jianping Song, Xin'an Huang","doi":"10.1111/cbdd.14346","DOIUrl":"10.1111/cbdd.14346","url":null,"abstract":"<p><p>Pouzolzia zeylanica (L.) Benn. is a Chinese herbal medicine widely used for its anti-inflammatory and pus-removal properties. To explore its potential anti-inflammatory mechanism, quercetin 3,7-dirhamnoside (QDR), the main flavonoid component of P. zeylanica (L.) Benn., was extracted and purified. The potential anti-inflammatory targets of QDR were predicted using network analysis. These potential targets were verified using molecular docking, molecular dynamics simulations, and in vitro experiments. Consequently, 342 potential anti-inflammatory QDR targets were identified. By analyzing the intersection between the protein-protein interaction and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we identified several potential protein targets of QDR, including RAC-alpha serine/threonine-protein kinase (AKT1), Ras-related C3 botulinum toxin substrate 1 (RAC1), nitric oxide synthase 3 (NOS3), serine/threonine-protein kinase mTOR (mTOR), epidermal growth factor receptor (EGFR), growth factor receptor-bound protein 2 (GRB2), and endothelin-1 receptor (EDNRA). QDR has anti-inflammatory activity and regulates immune responses and apoptosis through chemokines, Phosphatidylinositol 3-kinase 3(PI3K)/AKT, cAMP, T-cell receptor, and Ras signaling pathways. Molecular docking analysis showed that QDR has good binding abilities with AKT1, mTOR, and NOS3. In addition, molecular dynamics simulations demonstrated that the protein-ligand complex systems formed between QDR and AKT1, mTOR, and NOS3 have high dynamic stability, and their protein-ligand complex systems possess strong binding ability. In RAW264.7 macrophages, QDR significantly inhibited lipopolysaccharides (LPS)-induced inducible nitric oxide synthase expression, nitric oxide (NO) release and the generation of proinflammatory cytokines IL-6, IL-1β, and TNF-α. QDR downregulated the expression of p-AKT1(Ser473)/AKT1 and p-mTOR (Ser2448)/mTOR, and upregulated the expression of NOS3, Rictor, and Raptor. This indicates that the anti-inflammatory mechanisms of QDR involve regulation of AKT1 and mTOR to prevent apoptosis and of NOS3 which leads to the release of endothelial NO. Thus, our study elucidated the potential anti-inflammatory mechanism of QDR, the main flavonoid found in P. zeylanica (L.) Benn.</p>","PeriodicalId":93931,"journal":{"name":"Chemical biology & drug design","volume":" ","pages":"1534-1552"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41165104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and synthesis of novel 1,2,3,4-tetrazines as new anti-leukemia cancer agents 新型抗白血病癌症药物1,2,3,4-四嗪的设计与合成。
Pub Date : 2023-09-20 DOI: 10.1111/cbdd.14328
Oznur Eyilcim, Fulya Gunay, Omer Tahir Gunkara, Yuk Yin Ng, Ozlem Ulucan, Ihsan Erden

A series of novel 1,2,3,4-tetrazines were designed and synthesized. 1H-NMR spectroscopy, 13C NMR spectroscopy, and HRMS were used to determine the structures of this novel compounds. Computational approaches suggested that DHFR is a putative target for the newly synthesized 11 compounds. Extensive molecular dynamics simulations followed by molecular docking simulations were employed to evaluate DHFR as a potential target protein. The anticancer activities of the compounds were evaluated against five different types of leukemia cell lines (Jurkat, Nalm-6, Reh, K562, and Molt-4) and one non-leukemic cell line (Hek293T) by MTT test in vitro and imatinib was used as a control drug. Among these compounds, 3a exhibited the best activity against all the leukemic cell lines, except Reh cell line. For Nalm-6, K562, Jurkat, and Molt-4 cell lines, IC50 values were found to be 15.98, 19.12, 23.15, and 25.80 μM, respectively. Our work focuses on the synthesis of original and novel 1,2,3,4-tetrazine derivatives while contributing to the ongoing effort to discover more potent new antileukemia agents.

设计合成了一系列新的1,2,3,4-四嗪类化合物。用1H-NMR谱、13CNMR谱和HRMS测定了这些新化合物的结构。计算方法表明,DHFR是新合成的11个化合物的假定靶标。广泛的分子动力学模拟和分子对接模拟被用来评估DHFR作为一种潜在的靶蛋白。通过体外MTT试验评估了化合物对五种不同类型的白血病细胞系(Jurkat、Nalm-6、Reh、K562和Molt-4)和一种非白血病细胞株(Hek293T)的抗癌活性,并使用伊马替尼作为对照药物。在这些化合物中,3a对除Reh细胞系外的所有白血病细胞系表现出最好的活性。对于Nalm-6、K562、Jurkat和Molt-4细胞系,发现IC50值分别为15.98、19.12、23.15和25.80 μM。我们的工作重点是合成原始和新的1,2,3,4-四嗪衍生物,同时为发现更有效的新抗白血病药物做出贡献。
{"title":"Design and synthesis of novel 1,2,3,4-tetrazines as new anti-leukemia cancer agents","authors":"Oznur Eyilcim,&nbsp;Fulya Gunay,&nbsp;Omer Tahir Gunkara,&nbsp;Yuk Yin Ng,&nbsp;Ozlem Ulucan,&nbsp;Ihsan Erden","doi":"10.1111/cbdd.14328","DOIUrl":"10.1111/cbdd.14328","url":null,"abstract":"<p>A series of novel 1,2,3,4-tetrazines were designed and synthesized. <sup>1</sup>H-NMR spectroscopy, <sup>13</sup>C NMR spectroscopy, and HRMS were used to determine the structures of this novel compounds. Computational approaches suggested that DHFR is a putative target for the newly synthesized 11 compounds. Extensive molecular dynamics simulations followed by molecular docking simulations were employed to evaluate DHFR as a potential target protein. The anticancer activities of the compounds were evaluated against five different types of leukemia cell lines (Jurkat, Nalm-6, Reh, K562, and Molt-4) and one non-leukemic cell line (Hek293T) by MTT test in vitro and imatinib was used as a control drug. Among these compounds, <b>3a</b> exhibited the best activity against all the leukemic cell lines, except Reh cell line. For Nalm-6, K562, Jurkat, and Molt-4 cell lines, IC<sub>50</sub> values were found to be 15.98, 19.12, 23.15, and 25.80 μM, respectively. Our work focuses on the synthesis of original and novel 1,2,3,4-tetrazine derivatives while contributing to the ongoing effort to discover more potent new antileukemia agents.</p>","PeriodicalId":93931,"journal":{"name":"Chemical biology & drug design","volume":"102 5","pages":"1186-1201"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41180706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of recent advancements in Actinium-225 labeled compounds and biomolecules for therapeutic purposes 用于治疗目的的锕-225标记化合物和生物分子的最新进展综述。
Pub Date : 2023-09-15 DOI: 10.1111/cbdd.14311
Maria Hassan, Tanveer Hussain Bokhari, Nadeem Ahmed Lodhi, Muhammad Kaleem Khosa, Muhammad Usman

In nuclear medicine, cancers that cannot be cured or can only be treated partially by traditional techniques like surgery or chemotherapy are killed by ionizing radiation as a form of therapeutic treatment. Actinium-225 is an alpha-emitting radionuclide that is highly encouraging as a therapeutic approach and more promising for targeted alpha therapy (TAT). Actinium-225 is the best candidate for tumor cells treatment and has physical characteristics such as high (LET) linear energy transfer (150 keV per μm), half-life (t1/2 = 9.92d), and short ranges (400–100 μm) which prevent the damage of normal healthy tissues. The introduction of various new radiopharmaceuticals and radioisotopes has significantly assisted the advancement of nuclear medicine. Ac-225 radiopharmaceuticals continuously demonstrate their potential as targeted alpha therapeutics. 225Ac-labeled radiopharmaceuticals have confirmed their importance in medical and clinical areas by introducing [225Ac]Ac-PSMA-617, [225Ac]Ac-DOTATOC, [225Ac]Ac-DOTA-substance-P, reported significantly improved response in patients with prostate cancer, neuroendocrine, and glioma, respectively. The development of these radiopharmaceuticals required a suitable buffer, incubation time, optimal pH, and reaction temperature. There is a growing need to standardize quality control (QC) testing techniques such as radiochemical purity (RCP). This review aims to summarize the development of the Ac-225 labeled compounds and biomolecules. The current state of their reported resulting clinical applications is also summarized as well.

在核医学中,不能治愈或只能通过手术或化疗等传统技术部分治疗的癌症,会被电离辐射作为一种治疗方法杀死。锕-225是一种发射α的放射性核素,作为一种治疗方法非常令人鼓舞,在靶向α治疗(TAT)方面更有前景。肌动蛋白-225是治疗肿瘤细胞的最佳候选者,具有高(LET)线性能量转移(150 keV/μm),半衰期(t1/2 = 9.92d)和短距离(400-100 μm),防止对正常健康组织的损伤。各种新的放射性药物和放射性同位素的引入极大地促进了核医学的发展。Ac-225放射性药物不断展示其作为靶向α疗法的潜力。225 Ac标记的放射性药物通过引入[225 Ac]Ac-PSMA-617、[225 Ac]Ac-DOTATOC、[225 Ac]Ac-DOTA-底物-P,证实了其在医学和临床领域的重要性,报告分别显著改善了前列腺癌症、神经内分泌和神经胶质瘤患者的反应。这些放射性药物的开发需要合适的缓冲液、孵育时间、最佳pH和反应温度。越来越需要标准化质量控制(QC)测试技术,如放射化学纯度(RCP)。本文综述了Ac-225标记化合物和生物分子的研究进展。还总结了其所报道的临床应用的现状。
{"title":"A review of recent advancements in Actinium-225 labeled compounds and biomolecules for therapeutic purposes","authors":"Maria Hassan,&nbsp;Tanveer Hussain Bokhari,&nbsp;Nadeem Ahmed Lodhi,&nbsp;Muhammad Kaleem Khosa,&nbsp;Muhammad Usman","doi":"10.1111/cbdd.14311","DOIUrl":"10.1111/cbdd.14311","url":null,"abstract":"<p>In nuclear medicine, cancers that cannot be cured or can only be treated partially by traditional techniques like surgery or chemotherapy are killed by ionizing radiation as a form of therapeutic treatment. Actinium-225 is an alpha-emitting radionuclide that is highly encouraging as a therapeutic approach and more promising for targeted alpha therapy (TAT). Actinium-225 is the best candidate for tumor cells treatment and has physical characteristics such as high (LET) linear energy transfer (150 keV per μm), half-life (<i>t</i><sub>1/2</sub> = 9.92d), and short ranges (400–100 μm) which prevent the damage of normal healthy tissues. The introduction of various new radiopharmaceuticals and radioisotopes has significantly assisted the advancement of nuclear medicine. Ac-225 radiopharmaceuticals continuously demonstrate their potential as targeted alpha therapeutics. <sup>225</sup>Ac-labeled radiopharmaceuticals have confirmed their importance in medical and clinical areas by introducing [<sup>225</sup>Ac]Ac-PSMA-617, [<sup>225</sup>Ac]Ac-DOTATOC, [<sup>225</sup>Ac]Ac-DOTA-substance-P, reported significantly improved response in patients with prostate cancer, neuroendocrine, and glioma, respectively. The development of these radiopharmaceuticals required a suitable buffer, incubation time, optimal pH, and reaction temperature. There is a growing need to standardize quality control (QC) testing techniques such as radiochemical purity (RCP). This review aims to summarize the development of the Ac-225 labeled compounds and biomolecules. The current state of their reported resulting clinical applications is also summarized as well.</p>","PeriodicalId":93931,"journal":{"name":"Chemical biology & drug design","volume":"102 5","pages":"1276-1292"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10261252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Resveratrol alleviates amyloid β-induced neuronal apoptosis, inflammation, and oxidative and endoplasmic reticulum stress by circ_0050263/miR-361-3p/PDE4A axis during Alzheimer's disease 在阿尔茨海默病期间,白藜芦醇通过circ_0050263/miR-361-3p/PDE4A轴减轻淀粉样蛋白β诱导的神经元凋亡、炎症以及氧化和内质网应激。
Pub Date : 2023-08-24 DOI: 10.1111/cbdd.14313
Yanchun Zhang, Deqiang Chen, Rui Tian, Xinyue Yan, Yingwen Zhou

Resveratrol (Res) has been identified to reduce neurodegeneration. Circular RNAs (circRNAs) are stable noncoding RNAs that are considered to be ideal biomarkers for molecular targeting treatment. Here, this study focused on investigating the function and relationship of circ_0050263 and Res in Alzheimer's Disease (AD). Human neuroblastoma cell line SK-N-SH was exposed to amyloid-β (Aβ) to induce AD cell model in vitro. Cell viability, apoptosis, and inflammatory reaction were evaluated by CCK-8 assay, flow cytometery, and ELISA analysis. The oxidative stress and endoplasmic reticulum stress (ERS) were determined by detecting related markers. Levels of genes and proteins were detected by qRT-PCR and Western blot. Dual-luciferase reporter assay was adopted to verify the binding between miR-361-3p and circ_0050263 or PDE4A (Phosphodiesterase 4A). Subsequently, we found that Res treatment alleviated Aβ-induced apoptosis, inflammatory response, oxidative stress, and ERS in SK-N-SH cells. Circ_0050263 is a stable circRNA, which was increased by Aβ, but decreased by Res in SK-N-SH cells. Circ_0050263 overexpression reversed Res-induced neuroprotective effects. Mechanistically, circ_0050263 acted as a sponge for miR-361-3p, which targeted PDE4A. Circ_0050263 silencing abated Aβ-induced neuronal injury, which were counteracted by following PDE4A overexpression. Moreover, PDE4A upregulation could attenuate Res-mediated neuroprotective effects. In all, Res alleviated Aβ-induced neuronal apoptosis, inflammation, oxidative stress, and ERS via circ_0050263/miR-361-3p/PDE4A axis, providing new insights for AD therapy.

白藜芦醇(Res)已被证实可以减少神经退行性变。环状RNA(circRNAs)是一种稳定的非编码RNA,被认为是分子靶向治疗的理想生物标志物。在此,本研究重点研究了circ_0050263和Res在阿尔茨海默病(AD)中的作用及其关系。将人神经母细胞瘤细胞系SK-N-SH暴露于淀粉样蛋白-β(Aβ),体外诱导AD细胞模型。通过CCK-8测定、流式细胞仪和ELISA分析评估细胞活力、细胞凋亡和炎症反应。通过检测相关标志物测定氧化应激和内质网应激(ERS)。通过qRT-PCR和蛋白质印迹检测基因和蛋白质水平。采用双荧光素酶报告基因测定来验证miR-361-3p与circ_0050263或PDE4A(磷酸二酯酶4A)之间的结合。随后,我们发现Res治疗减轻了Aβ诱导的SK-N-SH细胞凋亡、炎症反应、氧化应激和ERS。Circ_0050263是一种稳定的circRNA,在SK-N-SH细胞中,aβ使其增加,但Res使其减少。Circ_0050263过表达逆转了Res诱导的神经保护作用。从机制上讲,circ_0050263充当靶向PDE4A的miR-361-3p的海绵。Circ_0050263沉默减轻了Aβ诱导的神经元损伤,随后PDE4A过表达抵消了这种损伤。此外,PDE4A的上调可能减弱Res介导的神经保护作用。总之,Res通过circ_0050263/miR-361-3p/PDE4A轴减轻了Aβ诱导的神经元凋亡、炎症、氧化应激和ERS,为AD治疗提供了新的见解。
{"title":"Resveratrol alleviates amyloid β-induced neuronal apoptosis, inflammation, and oxidative and endoplasmic reticulum stress by circ_0050263/miR-361-3p/PDE4A axis during Alzheimer's disease","authors":"Yanchun Zhang,&nbsp;Deqiang Chen,&nbsp;Rui Tian,&nbsp;Xinyue Yan,&nbsp;Yingwen Zhou","doi":"10.1111/cbdd.14313","DOIUrl":"10.1111/cbdd.14313","url":null,"abstract":"<p>Resveratrol (Res) has been identified to reduce neurodegeneration. Circular RNAs (circRNAs) are stable noncoding RNAs that are considered to be ideal biomarkers for molecular targeting treatment. Here, this study focused on investigating the function and relationship of circ_0050263 and Res in Alzheimer's Disease (AD). Human neuroblastoma cell line SK-N-SH was exposed to amyloid-β (Aβ) to induce AD cell model in vitro. Cell viability, apoptosis, and inflammatory reaction were evaluated by CCK-8 assay, flow cytometery, and ELISA analysis. The oxidative stress and endoplasmic reticulum stress (ERS) were determined by detecting related markers. Levels of genes and proteins were detected by qRT-PCR and Western blot. Dual-luciferase reporter assay was adopted to verify the binding between miR-361-3p and circ_0050263 or PDE4A (Phosphodiesterase 4A). Subsequently, we found that Res treatment alleviated Aβ-induced apoptosis, inflammatory response, oxidative stress, and ERS in SK-N-SH cells. Circ_0050263 is a stable circRNA, which was increased by Aβ, but decreased by Res in SK-N-SH cells. Circ_0050263 overexpression reversed Res-induced neuroprotective effects. Mechanistically, circ_0050263 acted as a sponge for miR-361-3p, which targeted PDE4A. Circ_0050263 silencing abated Aβ-induced neuronal injury, which were counteracted by following PDE4A overexpression. Moreover, PDE4A upregulation could attenuate Res-mediated neuroprotective effects. In all, Res alleviated Aβ-induced neuronal apoptosis, inflammation, oxidative stress, and ERS via circ_0050263/miR-361-3p/PDE4A axis, providing new insights for AD therapy.</p>","PeriodicalId":93931,"journal":{"name":"Chemical biology & drug design","volume":"102 5","pages":"1121-1132"},"PeriodicalIF":0.0,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10067200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Chemical biology & drug design
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1