首页 > 最新文献

Current neurovascular research最新文献

英文 中文
MicroRNA MiR-130b promotes wear particle-induced osteolysis via down regulating frizzled-related protein (FRZB). 微RNA MiR-130b通过下调frizzled相关蛋白(FRZB)促进磨损颗粒诱导的骨溶解。
Pub Date : 2016-11-23
De-Zhi Zheng, Lei Wang, Yan-Min Bu, Jun Liu

Periprosthetic osteolysis induced by wear particles can lead to aseptic loosening, one main reason of arthroplasty failure. However, the role of microRNA-130b (miR-130b) in particle-induced osteolysis (PIO) has not been explored yet. In this study, PIO models were established in C57BL/J6 mice via the implantation of Co-Cr-Mo alloy particles, and evaluated by detecting tartrate-resistant acid phosphatase (TRAP) activity and bone resorption in the calvaria. Mouse preosteoblast MC3T3-E1 cells were cultured to receive particle stimulation in vitro. Real time PCR and western blotting were performed to determine the expression levels of miR-130b and frizzled-related protein (FRZB), one potential target of miR-130b. Results showed upregulated miR-130b and downregulated FRZB in both PIO mice with remarkable osteolysis and particle-treated MC3T3-E1 cells showing inhibited proliferation and differentiation assayed by bromodeoxy urodine (BrdU) incorporation and alkaline phosphatase (ALP) activity respectively. Functional studies were conducted by transfection of miR-130b inhibitor in vitro or the injections of miR-130b inhibitor or small interfering RNA (siRNA) targeting FRZB in vivo. Interestingly, particle-induced inhibition on cell proliferation, differentiation and FRZB expression were all reversed by miR-130b silence. Luciferase report assays demonstrated that miR-130b indeed negatively regulated FRZB expression by targeting, while FRZB could reverse the opposed effect of miR-130b silence on PIO development. Therefore, the upregulated miR-130b in PIO models could act as one key regulator of PIO development, partly due to its negative regulation on FRZB.

磨损颗粒诱导的假体周围溶骨可导致无菌性松动,这是关节成形术失败的主要原因之一。然而,microRNA-130b(miR-130b)在微粒诱导的骨溶解(PIO)中的作用尚未得到探讨。本研究通过在 C57BL/J6 小鼠体内植入 Co-Cr-Mo 合金颗粒建立了 PIO 模型,并通过检测抗酒石酸磷酸酶(TRAP)活性和小腿骨的骨吸收进行了评估。在体外培养小鼠前成骨细胞 MC3T3-E1 以接受颗粒刺激。研究人员采用实时 PCR 和 Western 印迹技术测定了 miR-130b 和 frizzled 相关蛋白(FRZB)(miR-130b 的潜在靶标之一)的表达水平。结果表明,在PIO小鼠中,miR-130b上调,FRZB下调,导致明显的骨溶解;在颗粒处理的MC3T3-E1细胞中,通过溴脱氧尿嘧啶(BrdU)掺入和碱性磷酸酶(ALP)活性测定,分别显示出增殖和分化受到抑制。通过体外转染 miR-130b 抑制剂或体内注射 miR-130b 抑制剂或靶向 FRZB 的小干扰 RNA (siRNA) 进行了功能研究。有趣的是,颗粒诱导的细胞增殖、分化和 FRZB 表达抑制均被 miR-130b 沉默所逆转。荧光素酶报告实验证明,miR-130b确实通过靶向负调控FRZB的表达,而FRZB则能逆转miR-130b沉默对PIO发育的抑制作用。因此,PIO模型中上调的miR-130b可能是PIO发育的一个关键调节因子,部分原因是它对FRZB的负向调节。
{"title":"MicroRNA MiR-130b promotes wear particle-induced osteolysis via down regulating frizzled-related protein (FRZB).","authors":"De-Zhi Zheng, Lei Wang, Yan-Min Bu, Jun Liu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Periprosthetic osteolysis induced by wear particles can lead to aseptic loosening, one main reason of arthroplasty failure. However, the role of microRNA-130b (miR-130b) in particle-induced osteolysis (PIO) has not been explored yet. In this study, PIO models were established in C57BL/J6 mice via the implantation of Co-Cr-Mo alloy particles, and evaluated by detecting tartrate-resistant acid phosphatase (TRAP) activity and bone resorption in the calvaria. Mouse preosteoblast MC3T3-E1 cells were cultured to receive particle stimulation in vitro. Real time PCR and western blotting were performed to determine the expression levels of miR-130b and frizzled-related protein (FRZB), one potential target of miR-130b. Results showed upregulated miR-130b and downregulated FRZB in both PIO mice with remarkable osteolysis and particle-treated MC3T3-E1 cells showing inhibited proliferation and differentiation assayed by bromodeoxy urodine (BrdU) incorporation and alkaline phosphatase (ALP) activity respectively. Functional studies were conducted by transfection of miR-130b inhibitor in vitro or the injections of miR-130b inhibitor or small interfering RNA (siRNA) targeting FRZB in vivo. Interestingly, particle-induced inhibition on cell proliferation, differentiation and FRZB expression were all reversed by miR-130b silence. Luciferase report assays demonstrated that miR-130b indeed negatively regulated FRZB expression by targeting, while FRZB could reverse the opposed effect of miR-130b silence on PIO development. Therefore, the upregulated miR-130b in PIO models could act as one key regulator of PIO development, partly due to its negative regulation on FRZB.</p>","PeriodicalId":93965,"journal":{"name":"Current neurovascular research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139975077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current neurovascular research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1