Photocatalytic carbon dioxide conversion is a promising method for generating carbon fuels, in which the most important thing is to adjust the catalyst material to improve the photocatalytic efficiency and selectivity to conversion products, but it is still very challenging. In order to enhance the efficiency of CO2 photoreduction, it is important to develop an appropriate photocatalyst. The present study focuses on developing a simple and effective hydrothermal reaction treatment to improve the catalytic efficiency of transition metal cobalt (Co) and organophosphonates. Photoexcited charge carriers are separated and transferred efficiently during this treatment, which enhances CO2 chemisorption. Under visible light exposure, the best performing catalyst, CoP-4, showed 2.4 times higher activity than Co3O4 (19.90 μmol h−1 g−1) for reducing CO2 into CO, with rates up to 47.16 μmol h−1 g−1. This approach provides a viable route to enhancing the efficiency of CO2 photoreduction.
光催化二氧化碳转化是一种很有前景的生成碳燃料的方法,其中最重要的是调整催化剂材料,以提高光催化效率和对转化产物的选择性,但这仍然非常具有挑战性。为了提高二氧化碳的光催化效率,开发一种合适的光催化剂非常重要。本研究的重点是开发一种简单有效的水热反应处理方法,以提高过渡金属钴(Co)和有机膦酸盐的催化效率。在这种处理过程中,光激发的电荷载流子被有效分离和转移,从而增强了二氧化碳的化学吸附。在可见光照射下,性能最好的催化剂 CoP-4 将 CO2 还原成 CO 的活性比 Co3O4(19.90 μmol h-1 g-1)高 2.4 倍,速率高达 47.16 μmol h-1 g-1。这种方法为提高 CO2 光还原效率提供了一条可行的途径。
{"title":"Amorphous Metallic Cobalt-Based Organophosphonic Acid Compounds as Novel Photocatalysts to Boost Photocatalytic CO2 Reduction","authors":"Chengwei Zhou, Fan Wu, Yonggong Tang, Boyuan Chai, Jiaxin Liang, Jiangang Han, Weinan Xing, Yudong Huang, Guangyu Wu","doi":"10.3390/c10010012","DOIUrl":"https://doi.org/10.3390/c10010012","url":null,"abstract":"Photocatalytic carbon dioxide conversion is a promising method for generating carbon fuels, in which the most important thing is to adjust the catalyst material to improve the photocatalytic efficiency and selectivity to conversion products, but it is still very challenging. In order to enhance the efficiency of CO2 photoreduction, it is important to develop an appropriate photocatalyst. The present study focuses on developing a simple and effective hydrothermal reaction treatment to improve the catalytic efficiency of transition metal cobalt (Co) and organophosphonates. Photoexcited charge carriers are separated and transferred efficiently during this treatment, which enhances CO2 chemisorption. Under visible light exposure, the best performing catalyst, CoP-4, showed 2.4 times higher activity than Co3O4 (19.90 μmol h−1 g−1) for reducing CO2 into CO, with rates up to 47.16 μmol h−1 g−1. This approach provides a viable route to enhancing the efficiency of CO2 photoreduction.","PeriodicalId":9397,"journal":{"name":"C","volume":"65 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139602001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biochar is a biomaterial obtained by pyrolysis with high porosity and high specific surface area (SSA), which is widely used in several fields. The yield of biochar has an important effect on production cost and utilization efficiency, while SSA plays a key role in adsorption, catalysis, and pollutant removal. The preparation of biochar materials with better SSA is currently one of the frontiers in this research field. However, traditional methods are time consuming and laborious, so this paper developed a machine learning model to predict and study the properties of biochar efficiently for engineering through cross-validation and hyper parameter tuning. This paper used 622 data samples to predict the yield and SSA of biochar and selected eXtreme Gradient Boosting (XGBoost) as the model due to its excellent performance in terms of performance (yield correlation coefficient R2 = 0.79 and SSA correlation coefficient R2 = 0.92) and analyzed it using Shapley Additive Explanation. Using the Pearson correlation coefficient matrix revealed the correlations between the input parameters and the biochar yield and SSA. Results showed the important features affecting biochar yield were temperature and biomass feedstock, while the important features affecting SSA were ash and retention time. The XGBoost model developed provides new application scenarios and ideas for predicting biochar yield and SSA in response to the characteristic input parameters of biochar.
{"title":"Prediction of Biochar Yield and Specific Surface Area Based on Integrated Learning Algorithm","authors":"Xiaohu Zhou, Xiaochen Liu, Linlin Sun, Xinyu Jia, Fei Tian, Yueqin Liu, Zhansheng Wu","doi":"10.3390/c10010010","DOIUrl":"https://doi.org/10.3390/c10010010","url":null,"abstract":"Biochar is a biomaterial obtained by pyrolysis with high porosity and high specific surface area (SSA), which is widely used in several fields. The yield of biochar has an important effect on production cost and utilization efficiency, while SSA plays a key role in adsorption, catalysis, and pollutant removal. The preparation of biochar materials with better SSA is currently one of the frontiers in this research field. However, traditional methods are time consuming and laborious, so this paper developed a machine learning model to predict and study the properties of biochar efficiently for engineering through cross-validation and hyper parameter tuning. This paper used 622 data samples to predict the yield and SSA of biochar and selected eXtreme Gradient Boosting (XGBoost) as the model due to its excellent performance in terms of performance (yield correlation coefficient R2 = 0.79 and SSA correlation coefficient R2 = 0.92) and analyzed it using Shapley Additive Explanation. Using the Pearson correlation coefficient matrix revealed the correlations between the input parameters and the biochar yield and SSA. Results showed the important features affecting biochar yield were temperature and biomass feedstock, while the important features affecting SSA were ash and retention time. The XGBoost model developed provides new application scenarios and ideas for predicting biochar yield and SSA in response to the characteristic input parameters of biochar.","PeriodicalId":9397,"journal":{"name":"C","volume":" 28","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139624187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jean-Luc Meunier, Jeanne Ouellet, Kaustubh Basu, Alessio Aufoujal, Richard Boudreault, J. Tavares
A simple method is presented for the continuous generation of carbon nanotube forests stably anchored on stainless-steel surfaces using a reactive-roll-to-roll (RR2R) configuration. No addition of catalyst nanoparticles is required for the CNT-forest generation; the stainless-steel substrate itself is tuned to generate the catalytic growth sites. The process enables very large surfaces covered with CNT forests to have individual CNT roots anchored to the metallic ground through primary bonds. Fog water harvesting is demonstrated and tested as one potential application using long CNT-covered wires. The RR2R is performed in the gas phase; no solution processing of CNT suspensions is used, contrary to usual R2R CNT-based technologies. Full or partial CNT-forest coverage provides tuning of the ratio and shape of hydrophobic and hydrophilic zones on the surface. This enables the optimization of fog water harvesters for droplet capture through the hydrophobic CNT forest and water removal from the hydrophilic SS surface. Water recovery tests using small harp-type harvesters with CNT-forest generate water capture of up to 2.2 g/cm2·h under ultrasound-generated fog flow. The strong CNT root anchoring on the stainless-steel surfaces provides opportunities for (i) robustness and easy transport of the composite structure and (ii) chemical functionalization and/or nanoparticle decoration of the structures, and it opens the road for a series of applications on large-scale surfaces, including fog harvesting.
{"title":"Continuous Reactive-Roll-to-Roll Growth of Carbon Nanotubes for Fog Water Harvesting Applications","authors":"Jean-Luc Meunier, Jeanne Ouellet, Kaustubh Basu, Alessio Aufoujal, Richard Boudreault, J. Tavares","doi":"10.3390/c10010009","DOIUrl":"https://doi.org/10.3390/c10010009","url":null,"abstract":"A simple method is presented for the continuous generation of carbon nanotube forests stably anchored on stainless-steel surfaces using a reactive-roll-to-roll (RR2R) configuration. No addition of catalyst nanoparticles is required for the CNT-forest generation; the stainless-steel substrate itself is tuned to generate the catalytic growth sites. The process enables very large surfaces covered with CNT forests to have individual CNT roots anchored to the metallic ground through primary bonds. Fog water harvesting is demonstrated and tested as one potential application using long CNT-covered wires. The RR2R is performed in the gas phase; no solution processing of CNT suspensions is used, contrary to usual R2R CNT-based technologies. Full or partial CNT-forest coverage provides tuning of the ratio and shape of hydrophobic and hydrophilic zones on the surface. This enables the optimization of fog water harvesters for droplet capture through the hydrophobic CNT forest and water removal from the hydrophilic SS surface. Water recovery tests using small harp-type harvesters with CNT-forest generate water capture of up to 2.2 g/cm2·h under ultrasound-generated fog flow. The strong CNT root anchoring on the stainless-steel surfaces provides opportunities for (i) robustness and easy transport of the composite structure and (ii) chemical functionalization and/or nanoparticle decoration of the structures, and it opens the road for a series of applications on large-scale surfaces, including fog harvesting.","PeriodicalId":9397,"journal":{"name":"C","volume":"49 30","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139442101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yibo Cui, Luoyi Liu, Mengna Shi, Yuhao Wang, X. Meng, Yanjun Chen, Que Huang, Changcheng Liu
Graphene quantum dot (GQD) is a new type of carbon nanometer material. In addition to the excellent properties of graphene, it is superior due to the quantum limit effect and edge effect. Because of its advantages such as water solution, strong fluorescent, small size, and low biological toxicity, it has important application potential in various fields, especially in sensors and biomedical areas, which are mainly used as optical electrical sensors as well as in biological imaging and tumor therapy. In addition, GQDs have very important characteristics, such as optical and electrical properties. There are many preparation methods, divided into top-down and bottom-up methods, which have different advantages and disadvantages, respectively. In addition, the modification methods include heterogeneous doping, surface heterogeneity, etc. There are still many challenges in developing GQDs. For example, the synthesis steps are still hard to conduct, but as the inquiry continues to deepen, GQDs will be revolutionary materials in the future. In this work, the literature concerning research progress on GQDs has been reviewed and summarized, while the key challenges of their application have been pointed out, which may bring new insights to the application of GQDs.
{"title":"A Review of Advances in Graphene Quantum Dots: From Preparation and Modification Methods to Application","authors":"Yibo Cui, Luoyi Liu, Mengna Shi, Yuhao Wang, X. Meng, Yanjun Chen, Que Huang, Changcheng Liu","doi":"10.3390/c10010007","DOIUrl":"https://doi.org/10.3390/c10010007","url":null,"abstract":"Graphene quantum dot (GQD) is a new type of carbon nanometer material. In addition to the excellent properties of graphene, it is superior due to the quantum limit effect and edge effect. Because of its advantages such as water solution, strong fluorescent, small size, and low biological toxicity, it has important application potential in various fields, especially in sensors and biomedical areas, which are mainly used as optical electrical sensors as well as in biological imaging and tumor therapy. In addition, GQDs have very important characteristics, such as optical and electrical properties. There are many preparation methods, divided into top-down and bottom-up methods, which have different advantages and disadvantages, respectively. In addition, the modification methods include heterogeneous doping, surface heterogeneity, etc. There are still many challenges in developing GQDs. For example, the synthesis steps are still hard to conduct, but as the inquiry continues to deepen, GQDs will be revolutionary materials in the future. In this work, the literature concerning research progress on GQDs has been reviewed and summarized, while the key challenges of their application have been pointed out, which may bring new insights to the application of GQDs.","PeriodicalId":9397,"journal":{"name":"C","volume":"36 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139448048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manish Kumar Gautam, Tamal Mondal, Rupashri Nath, Bidhan Mahajon, M. Chincholikar, A. Bose, D. Das, Rakesh Das, Sandip Mondal
Water contamination is a pervasive global crisis, affecting over 2 billion people worldwide, with pharmaceutical contaminants emerging as a significant concern due to their persistence and mobility in aquatic ecosystems. This review explores the potential of activated hydrochars, sustainable materials produced through biomass pyrolysis, to revolutionize the removal of pharmaceutical contaminants from water sources. These materials possess high surface area, porous structure, and exceptional adsorption capabilities, making them a promising solution. The impact of pharmaceutical contaminants on aquatic ecosystems and human health is far-reaching, affecting biodiversity, water quality, and public health. To address this complex issue, a diverse range of techniques, including adsorption, biodegradation, and advanced oxidation processes, are employed in the pharmaceutical industry. Activated hydrochars offer substantial adsorption capacity, sustainable feedstock origins, and a minimal carbon footprint. This review highlights their potential in pharmaceutical contaminant removal and their broader applications in improving soil and air quality, resource recovery, and sustainable waste management. Interdisciplinary collaboration and the development of intelligent treatment systems are essential to fully unlock the potential of activated hydrochars. Regulatory support and policy frameworks will facilitate their responsible and widespread application, promising a cleaner and more sustainable future. This paper aims to inform scientists, environmental experts, policymakers, and industry stakeholders about the promising role of activated hydrochars in addressing pharmaceutical contaminant challenges.
{"title":"Harnessing Activated Hydrochars: A Novel Approach for Pharmaceutical Contaminant Removal","authors":"Manish Kumar Gautam, Tamal Mondal, Rupashri Nath, Bidhan Mahajon, M. Chincholikar, A. Bose, D. Das, Rakesh Das, Sandip Mondal","doi":"10.3390/c10010008","DOIUrl":"https://doi.org/10.3390/c10010008","url":null,"abstract":"Water contamination is a pervasive global crisis, affecting over 2 billion people worldwide, with pharmaceutical contaminants emerging as a significant concern due to their persistence and mobility in aquatic ecosystems. This review explores the potential of activated hydrochars, sustainable materials produced through biomass pyrolysis, to revolutionize the removal of pharmaceutical contaminants from water sources. These materials possess high surface area, porous structure, and exceptional adsorption capabilities, making them a promising solution. The impact of pharmaceutical contaminants on aquatic ecosystems and human health is far-reaching, affecting biodiversity, water quality, and public health. To address this complex issue, a diverse range of techniques, including adsorption, biodegradation, and advanced oxidation processes, are employed in the pharmaceutical industry. Activated hydrochars offer substantial adsorption capacity, sustainable feedstock origins, and a minimal carbon footprint. This review highlights their potential in pharmaceutical contaminant removal and their broader applications in improving soil and air quality, resource recovery, and sustainable waste management. Interdisciplinary collaboration and the development of intelligent treatment systems are essential to fully unlock the potential of activated hydrochars. Regulatory support and policy frameworks will facilitate their responsible and widespread application, promising a cleaner and more sustainable future. This paper aims to inform scientists, environmental experts, policymakers, and industry stakeholders about the promising role of activated hydrochars in addressing pharmaceutical contaminant challenges.","PeriodicalId":9397,"journal":{"name":"C","volume":"36 26","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139447998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Ge, Sharath Chandra, Talha Zafar, Simon S. Park
The considerable expenses associated with carbon fiber (CF) production have imposed limitations on its widespread application across diverse industries, primarily due to the costs of precursor materials and energy−intensive post−treatment procedures. This research explores the potential utilization of Alberta oilsands asphaltenes (AOAs), a carbon−rich by−product derived from oilsands extraction, as a more cost−effective precursor for CF production. Polystyrene and poly(styrene–butadiene–styrene) were also used as polymer additives. In addition to conventional thermal post−treatment, microwave plasma was employed for the carbonization process. The CFs generated through this approach were subjected to a comprehensive analysis involving SEM, FTIR, TGA, XRD, and Raman spectroscopy. The best tensile strength and Young’s modulus of the AOA carbon fibers when using conventional thermal post−treatment were 600 MPa and 70 GPa, respectively. The microwave plasma process indicates the higher temperature and promise of eliminating heteroatoms of AOA carbon fibers. The temperature for microwave plasma modelling was set using COMSOLTM, with the modelling temperature and detection temperature being established at 1600 K and 1568 K, respectively.
{"title":"Manufacturing Carbon Fiber Using Alberta Oilsands Asphaltene with Microwave Plasma Assistance","authors":"Lin Ge, Sharath Chandra, Talha Zafar, Simon S. Park","doi":"10.3390/c10010001","DOIUrl":"https://doi.org/10.3390/c10010001","url":null,"abstract":"The considerable expenses associated with carbon fiber (CF) production have imposed limitations on its widespread application across diverse industries, primarily due to the costs of precursor materials and energy−intensive post−treatment procedures. This research explores the potential utilization of Alberta oilsands asphaltenes (AOAs), a carbon−rich by−product derived from oilsands extraction, as a more cost−effective precursor for CF production. Polystyrene and poly(styrene–butadiene–styrene) were also used as polymer additives. In addition to conventional thermal post−treatment, microwave plasma was employed for the carbonization process. The CFs generated through this approach were subjected to a comprehensive analysis involving SEM, FTIR, TGA, XRD, and Raman spectroscopy. The best tensile strength and Young’s modulus of the AOA carbon fibers when using conventional thermal post−treatment were 600 MPa and 70 GPa, respectively. The microwave plasma process indicates the higher temperature and promise of eliminating heteroatoms of AOA carbon fibers. The temperature for microwave plasma modelling was set using COMSOLTM, with the modelling temperature and detection temperature being established at 1600 K and 1568 K, respectively.","PeriodicalId":9397,"journal":{"name":"C","volume":"50 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138945731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongli Ye, Shuangxi Liu, Dongmei Huang, Chaojun Jiang, Rui Yuan, Cui Zhang
The accumulation of waste tires has resulted in very urgent environmental problems. Pyrolysis has been regarded as a green eco-friendly technology to deal with waste tires, and it is vital to make use of the pyrolysis carbon. Herein, we propose a new way to utilize pyrolysis carbon, to prepare carbon nanotubes with the help of ferrocene. The optimal preparation processes were determined by optimizing the parameters including the solvent, temperature, time, etc. The results of scanning electron microscopy and transmission electron microscopy evidenced the successful formation of carbon nanotubes. Meanwhile, the Brunauer–Emmett–Teller (BET) method and N2-adsorption showed that the yielded carbon nanotubes featured a large surface area and abundant pore structure in comparison with the pyrolytic carbon. Finally, the as-prepared carbon nanotubes were applied as the supports for Pt-based catalysts for the dehydrogenation of methylcyclohexane to produce hydrogen. The results showed that the Pt/carbon-nanotubes catalyst exhibited the highest conversion of methylcyclohexane (28.6%), stability, and hydrogen evolution rate (336.9 mmol/gPt/min) compared to the resulting Pt/commercial-activated-carbon (13.6% and 160.2 mmol/gPt/min) and Pt/pyrolytic-carbon catalysts (0.19% and 2.23 mmol/gPt/min).
{"title":"Fabrication of Carbon Nanotubes Derived from Waste Tire Pyrolytic Carbon and Their Application in the Dehydrogenation of Methylcyclohexane to Produce Hydrogen","authors":"Hongli Ye, Shuangxi Liu, Dongmei Huang, Chaojun Jiang, Rui Yuan, Cui Zhang","doi":"10.3390/c9040121","DOIUrl":"https://doi.org/10.3390/c9040121","url":null,"abstract":"The accumulation of waste tires has resulted in very urgent environmental problems. Pyrolysis has been regarded as a green eco-friendly technology to deal with waste tires, and it is vital to make use of the pyrolysis carbon. Herein, we propose a new way to utilize pyrolysis carbon, to prepare carbon nanotubes with the help of ferrocene. The optimal preparation processes were determined by optimizing the parameters including the solvent, temperature, time, etc. The results of scanning electron microscopy and transmission electron microscopy evidenced the successful formation of carbon nanotubes. Meanwhile, the Brunauer–Emmett–Teller (BET) method and N2-adsorption showed that the yielded carbon nanotubes featured a large surface area and abundant pore structure in comparison with the pyrolytic carbon. Finally, the as-prepared carbon nanotubes were applied as the supports for Pt-based catalysts for the dehydrogenation of methylcyclohexane to produce hydrogen. The results showed that the Pt/carbon-nanotubes catalyst exhibited the highest conversion of methylcyclohexane (28.6%), stability, and hydrogen evolution rate (336.9 mmol/gPt/min) compared to the resulting Pt/commercial-activated-carbon (13.6% and 160.2 mmol/gPt/min) and Pt/pyrolytic-carbon catalysts (0.19% and 2.23 mmol/gPt/min).","PeriodicalId":9397,"journal":{"name":"C","volume":"37 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138967127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Lobus, M. A. Knyazeva, Anna F. Popova, Maxim S. Kulikovskiy
Since the Industrial Revolution, human economic activity and the global development of society in general have been heavily dependent on the exploitation of natural resources. The use of fossil fuels, deforestation, the drainage of wetlands, the transformation of coastal marine ecosystems, unsustainable land use, and many other unbalanced processes of human activity have led to an increase both in the anthropogenic emissions of climate-active gases and in their concentration in the atmosphere. It is believed that over the past ~150 years these phenomena have contributed to an increase in the global average temperature in the near-surface layer of the atmosphere by ~1 °C. Currently, the most pressing tasks facing states and scientific and civil societies are to reduce anthropogenic CO2 emissions and to limit the global air temperature increase. In this regard, there is an urgent need to change existing production systems in order to reduce greenhouse gas emissions and to sequester them. In this review, we consider up-to-date scientific approaches and innovative technologies, which may help in developing roadmaps to reduce the emissions of climate-active gases, control rising temperatures, decarbonize economies, and promote the sustainable development of society in general.
{"title":"Carbon Footprint Reduction and Climate Change Mitigation: A Review of the Approaches, Technologies, and Implementation Challenges","authors":"N. Lobus, M. A. Knyazeva, Anna F. Popova, Maxim S. Kulikovskiy","doi":"10.3390/c9040120","DOIUrl":"https://doi.org/10.3390/c9040120","url":null,"abstract":"Since the Industrial Revolution, human economic activity and the global development of society in general have been heavily dependent on the exploitation of natural resources. The use of fossil fuels, deforestation, the drainage of wetlands, the transformation of coastal marine ecosystems, unsustainable land use, and many other unbalanced processes of human activity have led to an increase both in the anthropogenic emissions of climate-active gases and in their concentration in the atmosphere. It is believed that over the past ~150 years these phenomena have contributed to an increase in the global average temperature in the near-surface layer of the atmosphere by ~1 °C. Currently, the most pressing tasks facing states and scientific and civil societies are to reduce anthropogenic CO2 emissions and to limit the global air temperature increase. In this regard, there is an urgent need to change existing production systems in order to reduce greenhouse gas emissions and to sequester them. In this review, we consider up-to-date scientific approaches and innovative technologies, which may help in developing roadmaps to reduce the emissions of climate-active gases, control rising temperatures, decarbonize economies, and promote the sustainable development of society in general.","PeriodicalId":9397,"journal":{"name":"C","volume":"46 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138995680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deepak Deepak, Vennela Vuruputuri, G. Bhattacharya, James A. McLaughlin, Susanta Sinha Roy
The advancement of renewable energy technologies like water electrolysis and hydrogen fuel cells relies on the fabrication of effective and reliable catalysts for the hydrogen evolution process (HER). In this regard, we report gold nanoparticles embedded in laser-induced graphene electrodes for regulation of overpotential and electrocatalytic performance of hydrogen evolution reaction. Gold nanoparticles were deposited onto the LIG surface using electrode deposition via cyclic voltammetry (CV) at different cycle lengths. The catalyst fabrication technique enables the manipulation of many electrochemical parameters, such as overpotential value, charge transfer resistance, electrochemical active surface area, and tafel slope, through the adjustment of cyclic voltammetry (CV) cycles. The LIG-Au@50 sample demonstrates remarkable electrocatalytic characteristics, as evidenced by its low overpotential of 141 mV at a current density of 10 mA/cm2 and reduced tafel slope of 131 mV/decade in an acidic environment. Furthermore, the presence of an augmented electrochemical active surface area, a mass activity of 8.80 A/g, and a high turnover frequency of 0.0091 s−1 suggest elevated and significant accessibility to plentiful active sites. A significant decrease in charge transfer resistance resulted in an enhanced rate of the water-splitting reaction.
水电解和氢燃料电池等可再生能源技术的进步依赖于制造有效可靠的析氢过程(HER)催化剂。在这方面,我们报道了在激光诱导的石墨烯电极中嵌入金纳米粒子来调节过电位和析氢反应的电催化性能。利用循环伏安法(CV)在不同的循环长度下将金纳米颗粒沉积在LIG表面。催化剂制造技术可以通过调节循环伏安(CV)循环来操纵许多电化学参数,如过电位值、电荷转移电阻、电化学活性表面积和塔菲尔斜率。LIG-Au@50样品表现出显著的电催化特性,在电流密度为10 mA/cm2时,其过电位低至141 mV,在酸性环境下,其过电压斜率降低至131 mV/decade。此外,增加的电化学活性表面积、8.80 a /g的质量活性和0.0091 s−1的高周转率表明了丰富活性位点的可达性。电荷传递阻力的显著降低导致了水分解反应速率的提高。
{"title":"Fabrication of Gold Nanoparticles Embedded Laser-Induced Graphene (LIG) Electrode for Hydrogen Evolution Reaction","authors":"Deepak Deepak, Vennela Vuruputuri, G. Bhattacharya, James A. McLaughlin, Susanta Sinha Roy","doi":"10.3390/c9040118","DOIUrl":"https://doi.org/10.3390/c9040118","url":null,"abstract":"The advancement of renewable energy technologies like water electrolysis and hydrogen fuel cells relies on the fabrication of effective and reliable catalysts for the hydrogen evolution process (HER). In this regard, we report gold nanoparticles embedded in laser-induced graphene electrodes for regulation of overpotential and electrocatalytic performance of hydrogen evolution reaction. Gold nanoparticles were deposited onto the LIG surface using electrode deposition via cyclic voltammetry (CV) at different cycle lengths. The catalyst fabrication technique enables the manipulation of many electrochemical parameters, such as overpotential value, charge transfer resistance, electrochemical active surface area, and tafel slope, through the adjustment of cyclic voltammetry (CV) cycles. The LIG-Au@50 sample demonstrates remarkable electrocatalytic characteristics, as evidenced by its low overpotential of 141 mV at a current density of 10 mA/cm2 and reduced tafel slope of 131 mV/decade in an acidic environment. Furthermore, the presence of an augmented electrochemical active surface area, a mass activity of 8.80 A/g, and a high turnover frequency of 0.0091 s−1 suggest elevated and significant accessibility to plentiful active sites. A significant decrease in charge transfer resistance resulted in an enhanced rate of the water-splitting reaction.","PeriodicalId":9397,"journal":{"name":"C","volume":"18 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138591560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhihong Liu, Weitao Cao, Man Zhang, Wenke Zhao, Yaning Zhang
Due to the rapid growth of the global economy, energy consumption has been steadily increasing, leading to increasing issues such as energy shortages and environmental concerns. Biomass energy, a critical renewable energy source, plays a vital role in advancing low-carbon energy development and resource sustainability. In this study, experiments were conducted to study the migration of C, H, and N elements of corn straw during the microwave heating process, and the effects of residence time, heating temperature, and microwave power were also investigated. The results showed that when the temperature rose, both the proportion of C and H elements fluctuated slightly. Specifically, when the temperature rose from 75 °C to 275 °C, there was a 1.02% increase in the proportion of the C element and a 0.25% decrease in the proportion of the H element. Residence time appeared to be a significant factor influencing the changes in C, H, and N elements. For a 40 min residence time, the proportion of the C element increased from 31.77% to 35.36%, while the proportion of the H element decreased from 4.50% to 3.83%. When there was an increase in the microwave power between 160 W and 200 W, higher temperatures were reached in the samples, leading to the carbonization process of corn straw being more complete. Consequently, the proportion of the C element rose with extended residence time, whereas the proportion of the H element decreased as the residence time increased.
{"title":"Changes of C, H, and N Elements of Corn Straw during the Microwave Heating Process","authors":"Zhihong Liu, Weitao Cao, Man Zhang, Wenke Zhao, Yaning Zhang","doi":"10.3390/c9040117","DOIUrl":"https://doi.org/10.3390/c9040117","url":null,"abstract":"Due to the rapid growth of the global economy, energy consumption has been steadily increasing, leading to increasing issues such as energy shortages and environmental concerns. Biomass energy, a critical renewable energy source, plays a vital role in advancing low-carbon energy development and resource sustainability. In this study, experiments were conducted to study the migration of C, H, and N elements of corn straw during the microwave heating process, and the effects of residence time, heating temperature, and microwave power were also investigated. The results showed that when the temperature rose, both the proportion of C and H elements fluctuated slightly. Specifically, when the temperature rose from 75 °C to 275 °C, there was a 1.02% increase in the proportion of the C element and a 0.25% decrease in the proportion of the H element. Residence time appeared to be a significant factor influencing the changes in C, H, and N elements. For a 40 min residence time, the proportion of the C element increased from 31.77% to 35.36%, while the proportion of the H element decreased from 4.50% to 3.83%. When there was an increase in the microwave power between 160 W and 200 W, higher temperatures were reached in the samples, leading to the carbonization process of corn straw being more complete. Consequently, the proportion of the C element rose with extended residence time, whereas the proportion of the H element decreased as the residence time increased.","PeriodicalId":9397,"journal":{"name":"C","volume":"8 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138601230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}