Pub Date : 2022-03-11DOI: 10.3389/fmedt.2022.782756
Talha Iqbal, A. Elahi, W. Wijns, A. Shahzad
Over the past decade, there has been a significant development in wearable health technologies for diagnosis and monitoring, including application to stress monitoring. Most of the wearable stress monitoring systems are built on a supervised learning classification algorithm. These systems rely on the collection of sensor and reference data during the development phase. One of the most challenging tasks in physiological or pathological stress monitoring is the labeling of the physiological signals collected during an experiment. Commonly, different types of self-reporting questionnaires are used to label the perceived stress instances. These questionnaires only capture stress levels at a specific point in time. Moreover, self-reporting is subjective and prone to inaccuracies. This paper explores the potential feasibility of unsupervised learning clustering classifiers such as Affinity Propagation, Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), K-mean, Mini-Batch K-mean, Mean Shift, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Ordering Points To Identify the Clustering Structure (OPTICS) for implementation in stress monitoring wearable devices. Traditional supervised machine learning (linear, ensembles, trees, and neighboring models) classifiers require hand-crafted features and labels while on the other hand, the unsupervised classifier does not require any labels of perceived stress levels and performs classification based on clustering algorithms. The classification results of unsupervised machine learning classifiers are found comparable to supervised machine learning classifiers on two publicly available datasets. The analysis and results of this comparative study demonstrate the potential of unsupervised learning for the development of non-invasive, continuous, and robust detection and monitoring of physiological and pathological stress.
{"title":"Exploring Unsupervised Machine Learning Classification Methods for Physiological Stress Detection","authors":"Talha Iqbal, A. Elahi, W. Wijns, A. Shahzad","doi":"10.3389/fmedt.2022.782756","DOIUrl":"https://doi.org/10.3389/fmedt.2022.782756","url":null,"abstract":"Over the past decade, there has been a significant development in wearable health technologies for diagnosis and monitoring, including application to stress monitoring. Most of the wearable stress monitoring systems are built on a supervised learning classification algorithm. These systems rely on the collection of sensor and reference data during the development phase. One of the most challenging tasks in physiological or pathological stress monitoring is the labeling of the physiological signals collected during an experiment. Commonly, different types of self-reporting questionnaires are used to label the perceived stress instances. These questionnaires only capture stress levels at a specific point in time. Moreover, self-reporting is subjective and prone to inaccuracies. This paper explores the potential feasibility of unsupervised learning clustering classifiers such as Affinity Propagation, Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), K-mean, Mini-Batch K-mean, Mean Shift, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Ordering Points To Identify the Clustering Structure (OPTICS) for implementation in stress monitoring wearable devices. Traditional supervised machine learning (linear, ensembles, trees, and neighboring models) classifiers require hand-crafted features and labels while on the other hand, the unsupervised classifier does not require any labels of perceived stress levels and performs classification based on clustering algorithms. The classification results of unsupervised machine learning classifiers are found comparable to supervised machine learning classifiers on two publicly available datasets. The analysis and results of this comparative study demonstrate the potential of unsupervised learning for the development of non-invasive, continuous, and robust detection and monitoring of physiological and pathological stress.","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"23 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72606050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-10DOI: 10.3389/fmedt.2022.856067
L. Petrini, G. Pennati, D. Fotiadis
{"title":"Editorial: Verification and Validation of in silico Models for Biomedical Implantable Devices","authors":"L. Petrini, G. Pennati, D. Fotiadis","doi":"10.3389/fmedt.2022.856067","DOIUrl":"https://doi.org/10.3389/fmedt.2022.856067","url":null,"abstract":"","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85763694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-09DOI: 10.3389/fmedt.2022.693148
Dulshani Kankanige, L. Liyanage, M. O’Connor
Protein interaction pathways and networks are critically-required for a vast range of biological processes. Improved discovery of candidate druggable proteins within specific cell, tissue and disease contexts will aid development of new treatments. Predicting protein interaction networks from gene expression data can provide valuable insights into normal and disease biology. For example, the resulting protein networks can be used to identify potentially druggable targets and drug candidates for testing in cell and animal disease models. The advent of whole-transcriptome expression profiling techniques—that catalogue protein-coding genes expressed within cells and tissues—has enabled development of individual algorithms for particular tasks. For example,: (i) gene ontology algorithms that predict gene/protein subsets involved in related cell processes; (ii) algorithms that predict intracellular protein interaction pathways; and (iii) algorithms that correlate druggable protein targets with known drugs and/or drug candidates. This review examines approaches, advantages and disadvantages of existing gene expression, gene ontology, and protein network prediction algorithms. Using this framework, we examine current efforts to combine these algorithms into pipelines to enable identification of druggable targets, and associated known drugs, using gene expression datasets. In doing so, new opportunities are identified for development of powerful algorithm pipelines, suitable for wide use by non-bioinformaticians, that can predict protein interaction networks, druggable proteins, and related drugs from user gene expression datasets.
{"title":"Application of Transcriptomics for Predicting Protein Interaction Networks, Drug Targets and Drug Candidates","authors":"Dulshani Kankanige, L. Liyanage, M. O’Connor","doi":"10.3389/fmedt.2022.693148","DOIUrl":"https://doi.org/10.3389/fmedt.2022.693148","url":null,"abstract":"Protein interaction pathways and networks are critically-required for a vast range of biological processes. Improved discovery of candidate druggable proteins within specific cell, tissue and disease contexts will aid development of new treatments. Predicting protein interaction networks from gene expression data can provide valuable insights into normal and disease biology. For example, the resulting protein networks can be used to identify potentially druggable targets and drug candidates for testing in cell and animal disease models. The advent of whole-transcriptome expression profiling techniques—that catalogue protein-coding genes expressed within cells and tissues—has enabled development of individual algorithms for particular tasks. For example,: (i) gene ontology algorithms that predict gene/protein subsets involved in related cell processes; (ii) algorithms that predict intracellular protein interaction pathways; and (iii) algorithms that correlate druggable protein targets with known drugs and/or drug candidates. This review examines approaches, advantages and disadvantages of existing gene expression, gene ontology, and protein network prediction algorithms. Using this framework, we examine current efforts to combine these algorithms into pipelines to enable identification of druggable targets, and associated known drugs, using gene expression datasets. In doing so, new opportunities are identified for development of powerful algorithm pipelines, suitable for wide use by non-bioinformaticians, that can predict protein interaction networks, druggable proteins, and related drugs from user gene expression datasets.","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"74 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90634374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-24DOI: 10.3389/fmedt.2022.866538
G. Valle, F. Iberite, I. Strauss, E. D’Anna, G. Granata, R. Di Iorio, T. Stieglitz, S. Raspopovic, F. Petrini, P. Rossini, S. Micera
[This corrects the article DOI: 10.3389/fmedt.2021.619280.].
[这更正了文章DOI: 10.3389/fmedt.2021.619280.]。
{"title":"Corrigendum: A Psychometric Platform to Collect Somatosensory Sensations for Neuroprosthetic Use","authors":"G. Valle, F. Iberite, I. Strauss, E. D’Anna, G. Granata, R. Di Iorio, T. Stieglitz, S. Raspopovic, F. Petrini, P. Rossini, S. Micera","doi":"10.3389/fmedt.2022.866538","DOIUrl":"https://doi.org/10.3389/fmedt.2022.866538","url":null,"abstract":"[This corrects the article DOI: 10.3389/fmedt.2021.619280.].","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87868692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-24DOI: 10.3389/fmedt.2022.810456
K. Sehmi, J. Wale
The Covid-19 pandemic has highlighted global knowledge about, but lack of equitable access to, life-changing medicines, and other innovative medical products by populations in African low and middle income countries. The World Health Organization (WHO) and other international non-profit foundations and organizations are constantly striving to address inequity. In the 1970s, WHO initiated a regularly updated essential medicines list, together with the concept of national medicines policies (NMPs) to ensure access and availability, affordability, rational, and effective use of medicines which are considered essential in addressing predominant population health issues and disease burden. We studied the NMPs of Ghana, South Africa, Uganda and Zimbabwe to highlight some of the important issues that these countries experience in the safe and effective use of medical products. Thailand is an example of how health technology assessment (HTA) can provide a country with an internationally supported, clearly defined and transparent process to broaden access to medicines and services. These medical services can add considerable value in accordance with local values and priorities. Involvement of civil society adds democratic legitimacy to such processes. Community health workers and patient advocacy groups are important in raising awareness and knowledge of safety issues and the effective use of quality medicines. They can apply pressure for increased funding to improve access to healthcare. Medicines and services that contribute to supported self-care are of benefit in any setting. Joint efforts across African countries such as with the African Medicines Agency are important in addressing some of the major health issues.
{"title":"Where National Medicines Policies Have Taken Us With Patient Involvement and Health Technology Assessment in Africa","authors":"K. Sehmi, J. Wale","doi":"10.3389/fmedt.2022.810456","DOIUrl":"https://doi.org/10.3389/fmedt.2022.810456","url":null,"abstract":"The Covid-19 pandemic has highlighted global knowledge about, but lack of equitable access to, life-changing medicines, and other innovative medical products by populations in African low and middle income countries. The World Health Organization (WHO) and other international non-profit foundations and organizations are constantly striving to address inequity. In the 1970s, WHO initiated a regularly updated essential medicines list, together with the concept of national medicines policies (NMPs) to ensure access and availability, affordability, rational, and effective use of medicines which are considered essential in addressing predominant population health issues and disease burden. We studied the NMPs of Ghana, South Africa, Uganda and Zimbabwe to highlight some of the important issues that these countries experience in the safe and effective use of medical products. Thailand is an example of how health technology assessment (HTA) can provide a country with an internationally supported, clearly defined and transparent process to broaden access to medicines and services. These medical services can add considerable value in accordance with local values and priorities. Involvement of civil society adds democratic legitimacy to such processes. Community health workers and patient advocacy groups are important in raising awareness and knowledge of safety issues and the effective use of quality medicines. They can apply pressure for increased funding to improve access to healthcare. Medicines and services that contribute to supported self-care are of benefit in any setting. Joint efforts across African countries such as with the African Medicines Agency are important in addressing some of the major health issues.","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83880431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-17DOI: 10.3389/fmedt.2022.842958
K. Lussenburg, M. Scali, A. Sakes, P. Breedveld
Stereolithography is emerging as a promising additive manufacturing technology for a range of applications in the medical domain. However, for miniature, medical devices such as those used in ophthalmic surgery, a number of production challenges arise due to the small size of the components. In this work, we investigate the challenges of creating sub-millimeter features for a miniature, functional trocar using Stereolithography. The trocar cannula system is used in eye surgery to facilitate a passage for other instruments. A standard trocar consists of a hollow cannula and a flexible check valve. The research was performed in two stages: in the first stage we investigated the effect of different materials and print settings on the current design of the cannula and the valve separately, and in the second stage we used these findings to optimize the design and production process. After the first investigation, it became apparent that even though the dimensions of the trocar are within the feature size range of Stereolithography, all hollow features tended to fuse shut during printing. This effect appeared regardless of the materials or print settings, and can be attributed to refraction of the laser source. In order to circumvent this, we identified two potential strategies: (1) increasing the negative space surrounding features; and (2) decreasing the surface area per layer. By applying these strategies, we tested a new design for the cannula and valve and managed to 3D print a functional trocar, which was tested in an artificial eye. The design of the 3D printed trocar allows for further personalization depending on the specific requirements of both patient and surgeon. The proposed strategies can be applied to different applications to create miniature features using Stereolithography. Graphical Abstract
{"title":"Additive Manufacturing of a Miniature Functional Trocar for Eye Surgery","authors":"K. Lussenburg, M. Scali, A. Sakes, P. Breedveld","doi":"10.3389/fmedt.2022.842958","DOIUrl":"https://doi.org/10.3389/fmedt.2022.842958","url":null,"abstract":"Stereolithography is emerging as a promising additive manufacturing technology for a range of applications in the medical domain. However, for miniature, medical devices such as those used in ophthalmic surgery, a number of production challenges arise due to the small size of the components. In this work, we investigate the challenges of creating sub-millimeter features for a miniature, functional trocar using Stereolithography. The trocar cannula system is used in eye surgery to facilitate a passage for other instruments. A standard trocar consists of a hollow cannula and a flexible check valve. The research was performed in two stages: in the first stage we investigated the effect of different materials and print settings on the current design of the cannula and the valve separately, and in the second stage we used these findings to optimize the design and production process. After the first investigation, it became apparent that even though the dimensions of the trocar are within the feature size range of Stereolithography, all hollow features tended to fuse shut during printing. This effect appeared regardless of the materials or print settings, and can be attributed to refraction of the laser source. In order to circumvent this, we identified two potential strategies: (1) increasing the negative space surrounding features; and (2) decreasing the surface area per layer. By applying these strategies, we tested a new design for the cannula and valve and managed to 3D print a functional trocar, which was tested in an artificial eye. The design of the 3D printed trocar allows for further personalization depending on the specific requirements of both patient and surgeon. The proposed strategies can be applied to different applications to create miniature features using Stereolithography. Graphical Abstract","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"73 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90808280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-16DOI: 10.3389/fmedt.2022.788264
M. Zaid, Lorenzo Sala, Jan R. Ivey, D. Tharp, C. Mueller, P. Thorne, Shannon C. Kelly, K. Silva, Amira Rabee Mohamed Amin, P. Ruiz‐Lozano, M. Kapiloff, Laurel A. Despins, M. Popescu, James Keller, M. Skubic, Salman Ahmad, C. Emter, G. Guidoboni
Left ventricular (LV) catheterization provides LV pressure-volume (P-V) loops and it represents the gold standard for cardiac function monitoring. This technique, however, is invasive and this limits its applicability in clinical and in-home settings. Ballistocardiography (BCG) is a good candidate for non-invasive cardiac monitoring, as it is based on capturing non-invasively the body motion that results from the blood flowing through the cardiovascular system. This work aims at building a mechanistic connection between changes in the BCG signal, changes in the P-V loops and changes in cardiac function. A mechanism-driven model based on cardiovascular physiology has been used as a virtual laboratory to predict how changes in cardiac function will manifest in the BCG waveform. Specifically, model simulations indicate that a decline in LV contractility results in an increase of the relative timing between the ECG and BCG signal and a decrease in BCG amplitude. The predicted changes have subsequently been observed in measurements on three swine serving as pre-clinical models for pre- and post-myocardial infarction conditions. The reproducibility of BCG measurements has been assessed on repeated, consecutive sessions of data acquisitions on three additional swine. Overall, this study provides experimental evidence supporting the utilization of mechanism-driven mathematical modeling as a guide to interpret changes in the BCG signal on the basis of cardiovascular physiology, thereby advancing the BCG technique as an effective method for non-invasive monitoring of cardiac function.
{"title":"Mechanism-Driven Modeling to Aid Non-invasive Monitoring of Cardiac Function via Ballistocardiography","authors":"M. Zaid, Lorenzo Sala, Jan R. Ivey, D. Tharp, C. Mueller, P. Thorne, Shannon C. Kelly, K. Silva, Amira Rabee Mohamed Amin, P. Ruiz‐Lozano, M. Kapiloff, Laurel A. Despins, M. Popescu, James Keller, M. Skubic, Salman Ahmad, C. Emter, G. Guidoboni","doi":"10.3389/fmedt.2022.788264","DOIUrl":"https://doi.org/10.3389/fmedt.2022.788264","url":null,"abstract":"Left ventricular (LV) catheterization provides LV pressure-volume (P-V) loops and it represents the gold standard for cardiac function monitoring. This technique, however, is invasive and this limits its applicability in clinical and in-home settings. Ballistocardiography (BCG) is a good candidate for non-invasive cardiac monitoring, as it is based on capturing non-invasively the body motion that results from the blood flowing through the cardiovascular system. This work aims at building a mechanistic connection between changes in the BCG signal, changes in the P-V loops and changes in cardiac function. A mechanism-driven model based on cardiovascular physiology has been used as a virtual laboratory to predict how changes in cardiac function will manifest in the BCG waveform. Specifically, model simulations indicate that a decline in LV contractility results in an increase of the relative timing between the ECG and BCG signal and a decrease in BCG amplitude. The predicted changes have subsequently been observed in measurements on three swine serving as pre-clinical models for pre- and post-myocardial infarction conditions. The reproducibility of BCG measurements has been assessed on repeated, consecutive sessions of data acquisitions on three additional swine. Overall, this study provides experimental evidence supporting the utilization of mechanism-driven mathematical modeling as a guide to interpret changes in the BCG signal on the basis of cardiovascular physiology, thereby advancing the BCG technique as an effective method for non-invasive monitoring of cardiac function.","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"1983 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82225238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-17DOI: 10.3389/fmedt.2022.845322
A. Verma, Aarfah Majid, M. Hossain, Sk. Faisal Ahmed, Mohammad Ashid, A. A. Bhojiya, S. Ameta, S. K. Upadhyay, A. Srivastava, Naveen Kumar Vishwakarma, V. Yadav, Pankaj Teli, Harina Harina, Mudassir Alam
This research aims to find out whether the 1, 2, 4-triazine and its derivatives have antifungal effects and can protect humans from infection with Candida albicans. Molecular docking and molecular dynamic simulation are widely used in modern drug design to target a particular protein with a ligand. We are interested in using molecular docking and molecular dynamics modeling to investigate the interaction between the derivatives of 1, 2, 4-triazine with enzyme Lanosterol 14-demethylase (CYP51) of Candida albicans. The inhibition of Candida albicans CYP51 is the main goal of our research. The 1, 2, 4-triazine and its derivatives have been docked to the CYP51 enzyme, which is involved in Candida albicans Multidrug Drug Resistance (MDR). Autodock tools were used to identify the binding affinities of molecules against the target proteins. Compared to conventional fluconazole, the molecular docking results indicated that each drug has a high binding affinity for CYP51 proteins and forms unbound interactions and hydrogen bonds with their active residues and surrounding allosteric residues. The docking contacts were made using a 10 ns MD simulation with nine molecules. RMSD, RMSF, hydrogen bonds, and the Rg all confirm these conclusions. In addition, these compounds were expected to have a favorable pharmacological profile and low toxicity. The compounds are being offered as scaffolds for the development of new antifungal drugs and as candidates for future in vitro testing.
{"title":"Identification of 1, 2, 4-Triazine and Its Derivatives Against Lanosterol 14-Demethylase (CYP51) Property of Candida albicans: Influence on the Development of New Antifungal Therapeutic Strategies","authors":"A. Verma, Aarfah Majid, M. Hossain, Sk. Faisal Ahmed, Mohammad Ashid, A. A. Bhojiya, S. Ameta, S. K. Upadhyay, A. Srivastava, Naveen Kumar Vishwakarma, V. Yadav, Pankaj Teli, Harina Harina, Mudassir Alam","doi":"10.3389/fmedt.2022.845322","DOIUrl":"https://doi.org/10.3389/fmedt.2022.845322","url":null,"abstract":"This research aims to find out whether the 1, 2, 4-triazine and its derivatives have antifungal effects and can protect humans from infection with Candida albicans. Molecular docking and molecular dynamic simulation are widely used in modern drug design to target a particular protein with a ligand. We are interested in using molecular docking and molecular dynamics modeling to investigate the interaction between the derivatives of 1, 2, 4-triazine with enzyme Lanosterol 14-demethylase (CYP51) of Candida albicans. The inhibition of Candida albicans CYP51 is the main goal of our research. The 1, 2, 4-triazine and its derivatives have been docked to the CYP51 enzyme, which is involved in Candida albicans Multidrug Drug Resistance (MDR). Autodock tools were used to identify the binding affinities of molecules against the target proteins. Compared to conventional fluconazole, the molecular docking results indicated that each drug has a high binding affinity for CYP51 proteins and forms unbound interactions and hydrogen bonds with their active residues and surrounding allosteric residues. The docking contacts were made using a 10 ns MD simulation with nine molecules. RMSD, RMSF, hydrogen bonds, and the Rg all confirm these conclusions. In addition, these compounds were expected to have a favorable pharmacological profile and low toxicity. The compounds are being offered as scaffolds for the development of new antifungal drugs and as candidates for future in vitro testing.","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"88 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78324871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}