Pub Date : 2024-05-02eCollection Date: 2024-01-01DOI: 10.3389/fmedt.2024.1384008
Vincenzo Vento, Salomé Kuntz, Anne Lejay, Nabil Chakfe
Cardiovascular diseases remain a global health challenge, prompting continuous innovation in medical technology, particularly in Cardiovascular MedTech. This article provides a comprehensive exploration of the transformative landscape of Cardiovascular MedTech in the 21st century, focusing on interventions. The escalating prevalence of cardiovascular diseases and the demand for personalized care drive the evolving landscape, with technologies like wearables and AI reshaping patient-centric healthcare. Wearable devices offer real-time monitoring, enhancing procedural precision and patient outcomes. AI facilitates risk assessment and personalized treatment strategies, revolutionizing intervention precision. Minimally invasive procedures, aided by robotics and novel materials, minimize patient impact and improve outcomes. 3D printing enables patient-specific implants, while regenerative medicine promises cardiac regeneration. Augmented reality headsets empower surgeons during procedures, enhancing precision and awareness. Novel materials and radiation reduction techniques further optimize interventions, prioritizing patient safety. Data security measures ensure patient privacy in the era of connected healthcare. Modern technologies enhance traditional surgeries, refining outcomes. The integration of these innovations promises to shape a healthier future for cardiovascular procedures, emphasizing collaboration and research to maximize their transformative potential.
{"title":"Evolutionary trends and innovations in cardiovascular intervention.","authors":"Vincenzo Vento, Salomé Kuntz, Anne Lejay, Nabil Chakfe","doi":"10.3389/fmedt.2024.1384008","DOIUrl":"https://doi.org/10.3389/fmedt.2024.1384008","url":null,"abstract":"<p><p>Cardiovascular diseases remain a global health challenge, prompting continuous innovation in medical technology, particularly in Cardiovascular MedTech. This article provides a comprehensive exploration of the transformative landscape of Cardiovascular MedTech in the 21st century, focusing on interventions. The escalating prevalence of cardiovascular diseases and the demand for personalized care drive the evolving landscape, with technologies like wearables and AI reshaping patient-centric healthcare. Wearable devices offer real-time monitoring, enhancing procedural precision and patient outcomes. AI facilitates risk assessment and personalized treatment strategies, revolutionizing intervention precision. Minimally invasive procedures, aided by robotics and novel materials, minimize patient impact and improve outcomes. 3D printing enables patient-specific implants, while regenerative medicine promises cardiac regeneration. Augmented reality headsets empower surgeons during procedures, enhancing precision and awareness. Novel materials and radiation reduction techniques further optimize interventions, prioritizing patient safety. Data security measures ensure patient privacy in the era of connected healthcare. Modern technologies enhance traditional surgeries, refining outcomes. The integration of these innovations promises to shape a healthier future for cardiovascular procedures, emphasizing collaboration and research to maximize their transformative potential.</p>","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"6 ","pages":"1384008"},"PeriodicalIF":0.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11098563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-02eCollection Date: 2024-01-01DOI: 10.3389/fmedt.2024.1376649
Huang Chen, Milad Samaee, Michael Tree, Lakshmi Dasi, Ajit Yoganathan
This study aims to evaluate the fluid dynamic characteristics of the VenusP Valve System™ under varying cardiac outputs in vitro. A thorough hemodynamic study of the valve under physiological cardiac conditions was conducted and served as an independent assessment of the performance of the valve. Flow fields downstream of the valve near the pulmonary bifurcation were quantitatively studied by two-dimensional Particle Image Velocimetry (PIV). The obtained flow field was analyzed for potential regions of flow stasis and recirculation, and elevated shear stress and turbulence. High-speed en face imaging capturing the leaflet motion provided data for leaflet kinematic modeling. The experimental conditions for PIV studies were in accordance with ISO 5840-1:2021 standard, and two valves with different lengths and different orientations were studied. Results show good hemodynamics performance for the tested valves according to ISO 5840 standard without significant regions of flow stasis. Observed shear stress values are all well below established hemolysis limits.
本研究旨在评估 VenusP Valve System™ 在体外不同心输出量下的流体动力学特性。在生理心脏条件下对瓣膜进行了全面的血液动力学研究,作为对瓣膜性能的独立评估。通过二维粒子图像测速仪(PIV)对瓣膜下游靠近肺动脉分叉处的流场进行了定量研究。对所获得的流场进行了分析,以确定是否存在潜在的流动停滞和再循环区域,以及剪应力和湍流的升高。捕捉小叶运动的高速面成像为小叶运动学建模提供了数据。PIV 研究的实验条件符合 ISO 5840-1:2021 标准,研究了两个不同长度和不同方向的瓣膜。结果表明,根据 ISO 5840 标准测试的瓣膜具有良好的血液动力学性能,没有明显的血流停滞区域。观察到的剪切应力值均远低于既定的溶血极限。
{"title":"Hemodynamics of the VenusP Valve System™-an <i>in vitro</i> study.","authors":"Huang Chen, Milad Samaee, Michael Tree, Lakshmi Dasi, Ajit Yoganathan","doi":"10.3389/fmedt.2024.1376649","DOIUrl":"https://doi.org/10.3389/fmedt.2024.1376649","url":null,"abstract":"<p><p>This study aims to evaluate the fluid dynamic characteristics of the VenusP Valve System™ under varying cardiac outputs <i>in vitro</i>. A thorough hemodynamic study of the valve under physiological cardiac conditions was conducted and served as an independent assessment of the performance of the valve. Flow fields downstream of the valve near the pulmonary bifurcation were quantitatively studied by two-dimensional Particle Image Velocimetry (PIV). The obtained flow field was analyzed for potential regions of flow stasis and recirculation, and elevated shear stress and turbulence. High-speed en face imaging capturing the leaflet motion provided data for leaflet kinematic modeling. The experimental conditions for PIV studies were in accordance with ISO 5840-1:2021 standard, and two valves with different lengths and different orientations were studied. Results show good hemodynamics performance for the tested valves according to ISO 5840 standard without significant regions of flow stasis. Observed shear stress values are all well below established hemolysis limits.</p>","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"6 ","pages":"1376649"},"PeriodicalIF":0.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11098565/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-04eCollection Date: 2024-01-01DOI: 10.3389/fmedt.2024.1332958
Brooks Kuhn, Igor Barjaktarevic
{"title":"Editorial: Understanding the impact of lung ventilation heterogeneity.","authors":"Brooks Kuhn, Igor Barjaktarevic","doi":"10.3389/fmedt.2024.1332958","DOIUrl":"10.3389/fmedt.2024.1332958","url":null,"abstract":"","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"6 ","pages":"1332958"},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944995/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-16eCollection Date: 2024-01-01DOI: 10.3389/fmedt.2024.1367521
Philip V Peplow
{"title":"Animal models in medical translation: the grand challenge of developing new treatments for human diseases.","authors":"Philip V Peplow","doi":"10.3389/fmedt.2024.1367521","DOIUrl":"10.3389/fmedt.2024.1367521","url":null,"abstract":"","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"6 ","pages":"1367521"},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904654/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01eCollection Date: 2024-01-01DOI: 10.3389/fmedt.2024.1320690
Parisa Bakhshi, Jim Q Ho, Steven Zanganeh
Sex hormones play a pivotal role in modulating various physiological processes, with emerging evidence underscoring their influence on cancer progression and treatment outcomes. This review delves into the intricate relationship between sex hormones and cancer, elucidating the underlying biological mechanisms and their clinical implications. We explore the multifaceted roles of estrogen, androgens, and progesterone, highlighting their respective influence on specific cancers such as breast, ovarian, endometrial, and prostate. Special attention is given to estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) tumors, androgen receptor signaling, and the dual role of progesterone in both promoting and inhibiting cancer progression. Clinical observations reveal varied treatment responses contingent upon hormonal levels, with certain therapies like tamoxifen, aromatase inhibitors, and anti-androgens demonstrating notable success. However, disparities in treatment outcomes between males and females in hormone-sensitive cancers necessitate further exploration. Therapeutically, the utilization of hormone replacement therapy (HRT) during cancer treatments presents both potential risks and benefits. The promise of personalized therapies, tailored to an individual's hormonal profile, offers a novel approach to optimizing therapeutic outcomes. Concurrently, the burgeoning exploration of new drugs and interventions targeting hormonal pathways heralds a future of more effective and precise treatments for hormone-sensitive cancers. This review underscores the pressing need for a deeper understanding of sex hormones in cancer therapy and the ensuing implications for future therapeutic innovations.
{"title":"Sex-specific outcomes in cancer therapy: the central role of hormones.","authors":"Parisa Bakhshi, Jim Q Ho, Steven Zanganeh","doi":"10.3389/fmedt.2024.1320690","DOIUrl":"10.3389/fmedt.2024.1320690","url":null,"abstract":"<p><p>Sex hormones play a pivotal role in modulating various physiological processes, with emerging evidence underscoring their influence on cancer progression and treatment outcomes. This review delves into the intricate relationship between sex hormones and cancer, elucidating the underlying biological mechanisms and their clinical implications. We explore the multifaceted roles of estrogen, androgens, and progesterone, highlighting their respective influence on specific cancers such as breast, ovarian, endometrial, and prostate. Special attention is given to estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) tumors, androgen receptor signaling, and the dual role of progesterone in both promoting and inhibiting cancer progression. Clinical observations reveal varied treatment responses contingent upon hormonal levels, with certain therapies like tamoxifen, aromatase inhibitors, and anti-androgens demonstrating notable success. However, disparities in treatment outcomes between males and females in hormone-sensitive cancers necessitate further exploration. Therapeutically, the utilization of hormone replacement therapy (HRT) during cancer treatments presents both potential risks and benefits. The promise of personalized therapies, tailored to an individual's hormonal profile, offers a novel approach to optimizing therapeutic outcomes. Concurrently, the burgeoning exploration of new drugs and interventions targeting hormonal pathways heralds a future of more effective and precise treatments for hormone-sensitive cancers. This review underscores the pressing need for a deeper understanding of sex hormones in cancer therapy and the ensuing implications for future therapeutic innovations.</p>","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"6 ","pages":"1320690"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867131/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24eCollection Date: 2023-01-01DOI: 10.3389/fmedt.2023.1281403
Marlon Luca Machal
Objectives: Autoinjectors are pivotal for precise self-administration of medications across a wide range of medical conditions. Nevertheless, the absence of a dedicated Medical Device Development Tool (MDDT) for autoinjectors represents a gap that may result in variations in the quality and regulatory compliance of autoinjectors as components of combination products. This research aim is to utilize the recently introduced Primary Functions outlined in ISO 11608-1:2022 with the title "Needle-based injection systems for medical use. Requirements and test methods. Part 1: Needle-based injection systems" to create a comprehensive MDDT framework tailored specifically for autoinjectors.
Methods: To support the creation of the framework, the analysis of the FDA MDDTs that were already approved, FDA's design controls regulations, FDA's guidance related to autoinjectors, and the Primary functions outlined in ISO 11608-1:2022 were utilized.
Results: The research identifies the Primary Functions in autoinjector to be Holding Force, Cap Removal Force, Activation Force, Extended Needle Length, Injection Time, Dose Accuracy and Needle Guard Lockout. Leveraging these Primary Functions and the FDA's MDDT approach, the research aims to bridge the gap by proposing a structured framework for the development of a specific MDDT tailored to autoinjectors.
Conclusion: This study presents a MDDT framework tailored to the development of autoinjectors for drug delivery. This framework provides a structured methodology to support predictability and effectiveness of the autoinjector development and support regulatory review process, thereby expediting FDA approval for autoinjectors as part of combination product.
目标:自动注射器对于在各种医疗条件下精确地自行给药至关重要。然而,自动注射器专用医疗器械开发工具(MDDT)的缺乏是一个空白,可能会导致作为组合产品组成部分的自动注射器在质量和合规性方面出现差异。本研究旨在利用 ISO 11608-1:2022(标题为 "医用针式注射系统")中最近推出的主要功能。要求和测试方法。方法:为了支持该框架的创建,我们分析了已获批准的 FDA MDDT、FDA 的设计控制法规、FDA 与自动注射器相关的指南以及 ISO 11608-1:2022 中概述的主要功能:研究发现,自动注射器的主要功能包括保持力、瓶盖移除力、激活力、延长针头长度、注射时间、剂量准确性和针头保护锁定。本研究利用这些主要功能和 FDA 的 MDDT 方法,提出了一个结构化框架,用于开发专门针对自动注射器的 MDDT,从而弥补了这一差距:本研究提出了一个 MDDT 框架,专门用于开发用于给药的自动注射器。该框架提供了一种结构化方法,可支持自动注射器开发的可预测性和有效性,并支持监管审查流程,从而加快美国食品及药物管理局对作为组合产品一部分的自动注射器的审批。
{"title":"Framework for creating a qualified medical device development tool of autoinjectors.","authors":"Marlon Luca Machal","doi":"10.3389/fmedt.2023.1281403","DOIUrl":"10.3389/fmedt.2023.1281403","url":null,"abstract":"<p><strong>Objectives: </strong>Autoinjectors are pivotal for precise self-administration of medications across a wide range of medical conditions. Nevertheless, the absence of a dedicated Medical Device Development Tool (MDDT) for autoinjectors represents a gap that may result in variations in the quality and regulatory compliance of autoinjectors as components of combination products. This research aim is to utilize the recently introduced Primary Functions outlined in ISO 11608-1:2022 with the title \"Needle-based injection systems for medical use. Requirements and test methods. Part 1: Needle-based injection systems\" to create a comprehensive MDDT framework tailored specifically for autoinjectors.</p><p><strong>Methods: </strong>To support the creation of the framework, the analysis of the FDA MDDTs that were already approved, FDA's design controls regulations, FDA's guidance related to autoinjectors, and the Primary functions outlined in ISO 11608-1:2022 were utilized.</p><p><strong>Results: </strong>The research identifies the Primary Functions in autoinjector to be Holding Force, Cap Removal Force, Activation Force, Extended Needle Length, Injection Time, Dose Accuracy and Needle Guard Lockout. Leveraging these Primary Functions and the FDA's MDDT approach, the research aims to bridge the gap by proposing a structured framework for the development of a specific MDDT tailored to autoinjectors.</p><p><strong>Conclusion: </strong>This study presents a MDDT framework tailored to the development of autoinjectors for drug delivery. This framework provides a structured methodology to support predictability and effectiveness of the autoinjector development and support regulatory review process, thereby expediting FDA approval for autoinjectors as part of combination product.</p>","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"5 ","pages":"1281403"},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10733859/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138833702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-20eCollection Date: 2023-01-01DOI: 10.3389/fmedt.2023.1223002
Nirit Putievsky Pilosof, Michael Barrett, Eivor Oborn, Galia Barkai, Eyal Zimlichman, Gad Segal
Digital transformation in healthcare during the COVID-19 pandemic led to the development of new hybrid models integrating physical and virtual care. The ability to provide remote care by telemedicine technologies and the need to better manage and control hospitals' occupancy accelerated growth in hospital-at-home programs. The Sheba Medical Center restructured to create Sheba Beyond as the first virtual hospital in Israel. These transformations enabled them to deliver hybrid services in their internal medicine unit by managing inpatient hospital-care with remote home-care based on the patients' medical condition. The hybrid services evolved to integrate care pathways multiplied by the mode of delivery-physical (in person) or virtual (technology enabled)-and the location of care-at the hospital or the patient home. The study examines this home hospitalization program pilot for internal medicine at Sheba Medical Center (MC). The research is based on qualitative semi-structured interviews with Sheba Beyond management, medical staff from the hospital and the Health Maintenance Organization (HMO), Architects, Information Technology (IT), Telemedicine and Medtech organizations. We investigated the implications of the development of hybrid services for the future design of the physical built-environment and the virtual technological platform. Our findings highlight the importance of designing for flexibility in the development of hybrid care services, while leveraging synergies across the built environment and digital platforms to support future models of care. In addition to exploring the potential for scalability in accelerating the flexibility of the healthcare system, we also highlight current barriers in professional, management, logistic and economic healthcare models.
{"title":"Designing for flexibility in hybrid care services: lessons learned from a pilot in an internal medicine unit.","authors":"Nirit Putievsky Pilosof, Michael Barrett, Eivor Oborn, Galia Barkai, Eyal Zimlichman, Gad Segal","doi":"10.3389/fmedt.2023.1223002","DOIUrl":"10.3389/fmedt.2023.1223002","url":null,"abstract":"<p><p>Digital transformation in healthcare during the COVID-19 pandemic led to the development of new hybrid models integrating physical and virtual care. The ability to provide remote care by telemedicine technologies and the need to better manage and control hospitals' occupancy accelerated growth in hospital-at-home programs. The Sheba Medical Center restructured to create Sheba Beyond as the first virtual hospital in Israel. These transformations enabled them to deliver hybrid services in their internal medicine unit by managing inpatient hospital-care with remote home-care based on the patients' medical condition. The hybrid services evolved to integrate care pathways multiplied by the mode of delivery-physical (in person) or virtual (technology enabled)-and the location of care-at the hospital or the patient home. The study examines this home hospitalization program pilot for internal medicine at Sheba Medical Center (MC). The research is based on qualitative semi-structured interviews with Sheba Beyond management, medical staff from the hospital and the Health Maintenance Organization (HMO), Architects, Information Technology (IT), Telemedicine and Medtech organizations. We investigated the implications of the development of hybrid services for the future design of the physical built-environment and the virtual technological platform. Our findings highlight the importance of designing for flexibility in the development of hybrid care services, while leveraging synergies across the built environment and digital platforms to support future models of care. In addition to exploring the potential for scalability in accelerating the flexibility of the healthcare system, we also highlight current barriers in professional, management, logistic and economic healthcare models.</p>","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"5 ","pages":"1223002"},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694442/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138489401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eye tracking technology has emerged as a valuable tool in the field of medicine, offering a wide range of applications across various disciplines. This perspective article aims to provide a comprehensive overview of the diverse applications of eye tracking technology in medical practice. By summarizing the latest research findings, this article explores the potential of eye tracking technology in enhancing diagnostic accuracy, assessing and improving medical performance, as well as improving rehabilitation outcomes. Additionally, it highlights the role of eye tracking in neurology, cardiology, pathology, surgery, as well as rehabilitation, offering objective measures for various medical conditions. Furthermore, the article discusses the utility of eye tracking in autism spectrum disorders, attention-deficit/hyperactivity disorder (ADHD), and human-computer interaction in medical simulations and training. Ultimately, this perspective article underscores the transformative impact of eye tracking technology on medical practice and suggests future directions for its continued development and integration.
{"title":"Eye tracking technology in medical practice: a perspective on its diverse applications.","authors":"Mohammed Tahri Sqalli, Begali Aslonov, Mukhammadjon Gafurov, Nurmukhammad Mukhammadiev, Yahya Sqalli Houssaini","doi":"10.3389/fmedt.2023.1253001","DOIUrl":"10.3389/fmedt.2023.1253001","url":null,"abstract":"<p><p>Eye tracking technology has emerged as a valuable tool in the field of medicine, offering a wide range of applications across various disciplines. This perspective article aims to provide a comprehensive overview of the diverse applications of eye tracking technology in medical practice. By summarizing the latest research findings, this article explores the potential of eye tracking technology in enhancing diagnostic accuracy, assessing and improving medical performance, as well as improving rehabilitation outcomes. Additionally, it highlights the role of eye tracking in neurology, cardiology, pathology, surgery, as well as rehabilitation, offering objective measures for various medical conditions. Furthermore, the article discusses the utility of eye tracking in autism spectrum disorders, attention-deficit/hyperactivity disorder (ADHD), and human-computer interaction in medical simulations and training. Ultimately, this perspective article underscores the transformative impact of eye tracking technology on medical practice and suggests future directions for its continued development and integration.</p>","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"5 ","pages":"1253001"},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691255/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138479852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-17eCollection Date: 2023-01-01DOI: 10.3389/fmedt.2023.1211423
Alina Kohler, Felix Blendinger, Sonja Müller, Ulrich Mescheder, Volker Bucher
Parylene C is well-known as an encapsulation material for medical implants. Within the approach of miniaturization and automatization of a bone distractor, piezoelectric actuators were encapsulated with Parylene C. The stretchability of the polymer was investigated with respect to the encapsulation functionality of piezoelectric chips. We determined a linear yield strain of 1% of approximately 12-µm-thick Parylene C foil. Parylene C encapsulation withstands the mechanical stress of a minimum of 5×105 duty cycles by continuous actuation. The experiments demonstrate that elongation of the encapsulation on piezoelectric actuators and thus the elongation of Parylene C up to 0.8 mm are feasible.
{"title":"Feasibility of Parylene C for encapsulating piezoelectric actuators in active medical implants.","authors":"Alina Kohler, Felix Blendinger, Sonja Müller, Ulrich Mescheder, Volker Bucher","doi":"10.3389/fmedt.2023.1211423","DOIUrl":"10.3389/fmedt.2023.1211423","url":null,"abstract":"<p><p>Parylene C is well-known as an encapsulation material for medical implants. Within the approach of miniaturization and automatization of a bone distractor, piezoelectric actuators were encapsulated with Parylene C. The stretchability of the polymer was investigated with respect to the encapsulation functionality of piezoelectric chips. We determined a linear yield strain of 1% of approximately 12-µm-thick Parylene C foil. Parylene C encapsulation withstands the mechanical stress of a minimum of 5×10<sup>5</sup> duty cycles by continuous actuation. The experiments demonstrate that elongation of the encapsulation on piezoelectric actuators and thus the elongation of Parylene C up to 0.8 mm are feasible.</p>","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"5 ","pages":"1211423"},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138479853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}