Pub Date : 2023-10-02eCollection Date: 2023-01-01DOI: 10.3389/fmedt.2023.1268662
Olive K L Woo
Fully immersive virtual reality (VR) is an advanced technology increasingly studied and used in palliative care for symptom management. While the findings shed a positive light on its therapeutic potential, VR carries adverse effects, leading to ethical concerns. Based on the clinical experiences of a registered clinical psychologist who is also a certified thanatologist, we put forward a perspective on the importance of professional training for VR therapists in view of the possible risks posed by VR in palliative care. We propose professional trainings on knowledge, skills, and attitudes to ensure patients' safety while maximizing the therapeutic benefits of VR. Given the scarcity of reports on such an area, we hope this perspective article opens up discussions and contributes to current understanding and emerging future directions to ensure quality and ethical delivery of VR in palliative care.
{"title":"Integrating knowledge, skills, and attitudes: professional training required for virtual reality therapists in palliative care.","authors":"Olive K L Woo","doi":"10.3389/fmedt.2023.1268662","DOIUrl":"10.3389/fmedt.2023.1268662","url":null,"abstract":"<p><p>Fully immersive virtual reality (VR) is an advanced technology increasingly studied and used in palliative care for symptom management. While the findings shed a positive light on its therapeutic potential, VR carries adverse effects, leading to ethical concerns. Based on the clinical experiences of a registered clinical psychologist who is also a certified thanatologist, we put forward a perspective on the importance of professional training for VR therapists in view of the possible risks posed by VR in palliative care. We propose professional trainings on knowledge, skills, and attitudes to ensure patients' safety while maximizing the therapeutic benefits of VR. Given the scarcity of reports on such an area, we hope this perspective article opens up discussions and contributes to current understanding and emerging future directions to ensure quality and ethical delivery of VR in palliative care.</p>","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"5 ","pages":"1268662"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41242530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-20eCollection Date: 2023-01-01DOI: 10.3389/fmedt.2023.1184925
Eunsil Yang
Objectives: This research focuses on how built environment experts can contribute to the MXR-enabled digital innovation as part of the multidisciplinary team effort to ensure post-pandemic resilience in healthcare built environment. The goal of this research is to help healthcare providers, built environment experts, and policy makers respectively: (1) Advocate the benefits of MXR for innovating health and social care; (2) Spark debate across networks of expertise to create health-promoting environment; and (3) Understand the overriding priorities in making effective pathways to the implementation of MXR.
Methods: To highlight the novelty of this research, the study relies on two qualitative methodologies: exploratory literature review and semi-structured interviews. Based on the evaluation of prior works and cross-national case studies, hypotheses are formulated from three arenas: (1) Cross-sectional Initiatives for Post-pandemic Resilience; (2) Interoperability and Usability of Next-gen Medicines; and (3) Metaverse and New Forms of Value in Future Healthcare Ecosystems. To verify those hypotheses, empirical findings are derived from in-depth interviews with nine key informants.
Results: The main findings are summarized under the following three themes: (1) Synergism between Architecture and Technology; (2) Patient Empowerment and Staff Support; and (3) Scalable Health and Wellbeing in Non-hospital and Therapeutic Settings. Firstly, both built environment and healthcare sectors can benefit from the various capabilities of MXR through cross-sectional initiatives, evidence-based practices, and participatory approaches. Secondly, a confluence of knowledge and methods of HCI and HBI can increase the interoperability and usability of MXR for the patient-centered and value-based healthcare models. Thirdly, the MXR-enabled technological regime will largely affect the new forms of value in healthcare premises by fostering more decentralized, preventive, and therapeutic characteristics in the future healthcare ecosystems.
Conclusion: Whether it's virtual or physical, our healthcare systems have placed great emphasis on the rigor of evidence-based approach linking health outcome to a clinical environment. Henceforth, built environment experts should seek closer ties with the MXR ecosystems for the co-production of scalable health and wellbeing in non-hospital and therapeutic settings. Ultimately, this is to improve resource efficiency in the healthcare sector while considering the transition of health resources towards in silico status by increasing the implementation of MXR.
{"title":"Implications of immersive technologies in healthcare sector and its built environment.","authors":"Eunsil Yang","doi":"10.3389/fmedt.2023.1184925","DOIUrl":"10.3389/fmedt.2023.1184925","url":null,"abstract":"<p><strong>Objectives: </strong>This research focuses on how built environment experts can contribute to the MXR-enabled digital innovation as part of the multidisciplinary team effort to ensure post-pandemic resilience in healthcare built environment. The goal of this research is to help healthcare providers, built environment experts, and policy makers respectively: (1) Advocate the benefits of MXR for innovating health and social care; (2) Spark debate across networks of expertise to create health-promoting environment; and (3) Understand the overriding priorities in making effective pathways to the implementation of MXR.</p><p><strong>Methods: </strong>To highlight the novelty of this research, the study relies on two qualitative methodologies: exploratory literature review and semi-structured interviews. Based on the evaluation of prior works and cross-national case studies, hypotheses are formulated from three arenas: (1) Cross-sectional Initiatives for Post-pandemic Resilience; (2) Interoperability and Usability of Next-gen Medicines; and (3) Metaverse and New Forms of Value in Future Healthcare Ecosystems. To verify those hypotheses, empirical findings are derived from in-depth interviews with nine key informants.</p><p><strong>Results: </strong>The main findings are summarized under the following three themes: (1) Synergism between Architecture and Technology; (2) Patient Empowerment and Staff Support; and (3) Scalable Health and Wellbeing in Non-hospital and Therapeutic Settings. Firstly, both built environment and healthcare sectors can benefit from the various capabilities of MXR through cross-sectional initiatives, evidence-based practices, and participatory approaches. Secondly, a confluence of knowledge and methods of HCI and HBI can increase the interoperability and usability of MXR for the patient-centered and value-based healthcare models. Thirdly, the MXR-enabled technological regime will largely affect the new forms of value in healthcare premises by fostering more decentralized, preventive, and therapeutic characteristics in the future healthcare ecosystems.</p><p><strong>Conclusion: </strong>Whether it's virtual or physical, our healthcare systems have placed great emphasis on the rigor of evidence-based approach linking health outcome to a clinical environment. Henceforth, built environment experts should seek closer ties with the MXR ecosystems for the co-production of scalable health and wellbeing in non-hospital and therapeutic settings. Ultimately, this is to improve resource efficiency in the healthcare sector while considering the transition of health resources towards <i>in silico</i> status by increasing the implementation of MXR.</p>","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"5 ","pages":"1184925"},"PeriodicalIF":2.7,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548380/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41173296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-15eCollection Date: 2023-01-01DOI: 10.3389/fmedt.2023.1158154
Patricia Nwajuaku, Igor Barjaktarevic, Nir Hoftman
Introduction: Dual lumen endobronchial tubes (DLTs) are frequently used for lung isolation and one lung ventilation in thoracic surgery and other specialized clinical scenarios. Modern DLTs are large and rigid, and account for half of all tracheobronchial injuries. Their 70 year old design has numerous flaws which limit their safety and clinical utility. Our research team set out to design a new and improved DLT to mitigate these shortcomings, and then test the proposed device to ensure proper function.
Methods: Using published airway anatomy data and computed tomography imaging from 195 thoracic surgery patients, we designed a new DLT with a single size/configuration that would fit into adult surgery patients. This single "Universal design" was intended to replace both left and right sided 35Fr-41Fr DLTs (8 total products), while remaining small in diameter (35Fr). Other design goals included: 1) making intubation easier and safer, 2) allowing full sized therapeutic bronchoscopes to fit into this tube, 3) making the DLT more resistant to dislodgement. After design process completion the proposed dimensions were tested against 195 patients' left and right mainstem bronchi for radiographic fit. Once production prototypes were manufactured, they were tested in large adult Yorkshire pigs and fresh human cadavers for anatomic fit and performance.
Results: The proposed design passed the radiographic fit test in all 195 patients for both left and right mainstem endobronchial placement. Intubation was successful and deemed atraumatic in all pigs and cadavers, and the device appropriately fit in both the right and left mainstem bronchi. Lung isolation was successfully achieved and the device proved resistant to axial force dislodgement.
Conclusion: We propose a new design for a novel DLT meant to replace 8 currently supplied adult configurations with a single, one size/configuration fits all product that allows for large bore bronchoscopy and resists axial force dislodgement.
{"title":"Research and development of the sOLVe Tube™ dual lumen endobronchial tube: from concept to construct.","authors":"Patricia Nwajuaku, Igor Barjaktarevic, Nir Hoftman","doi":"10.3389/fmedt.2023.1158154","DOIUrl":"https://doi.org/10.3389/fmedt.2023.1158154","url":null,"abstract":"<p><strong>Introduction: </strong>Dual lumen endobronchial tubes (DLTs) are frequently used for lung isolation and one lung ventilation in thoracic surgery and other specialized clinical scenarios. Modern DLTs are large and rigid, and account for half of all tracheobronchial injuries. Their 70 year old design has numerous flaws which limit their safety and clinical utility. Our research team set out to design a new and improved DLT to mitigate these shortcomings, and then test the proposed device to ensure proper function.</p><p><strong>Methods: </strong>Using published airway anatomy data and computed tomography imaging from 195 thoracic surgery patients, we designed a new DLT with a single size/configuration that would fit into adult surgery patients. This single \"Universal design\" was intended to replace both left and right sided 35Fr-41Fr DLTs (8 total products), while remaining small in diameter (35Fr). Other design goals included: 1) making intubation easier and safer, 2) allowing full sized therapeutic bronchoscopes to fit into this tube, 3) making the DLT more resistant to dislodgement. After design process completion the proposed dimensions were tested against 195 patients' left and right mainstem bronchi for radiographic fit. Once production prototypes were manufactured, they were tested in large adult Yorkshire pigs and fresh human cadavers for anatomic fit and performance.</p><p><strong>Results: </strong>The proposed design passed the radiographic fit test in all 195 patients for both left and right mainstem endobronchial placement. Intubation was successful and deemed atraumatic in all pigs and cadavers, and the device appropriately fit in both the right and left mainstem bronchi. Lung isolation was successfully achieved and the device proved resistant to axial force dislodgement.</p><p><strong>Conclusion: </strong>We propose a new design for a novel DLT meant to replace 8 currently supplied adult configurations with a single, one size/configuration fits all product that allows for large bore bronchoscopy and resists axial force dislodgement.</p>","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"5 ","pages":"1158154"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541992/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41175899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-11eCollection Date: 2023-01-01DOI: 10.3389/fmedt.2023.1157919
Grace John M, Baskar S
Introduction: Globally, lung cancer is a highly harmful type of cancer. An efficient diagnosis system can enable pathologists to recognize the type and nature of lung nodules and the mode of therapy to increase the patient's chance of survival. Hence, implementing an automatic and reliable system to segment lung nodules from a computed tomography (CT) image is useful in the medical industry.
Methods: This study develops a novel fully convolutional deep neural network (hereafter called DeepNet) model for segmenting lung nodules from CT scans. This model includes an encoder/decoder network that achieves pixel-wise image segmentation. The encoder network exploits a Visual Geometry Group (VGG-19) model as a base architecture, while the decoder network exploits 16 upsampling and deconvolution modules. The encoder used in this model has a very flexible structural design that can be modified and trained for any resolution based on the size of input scans. The decoder network upsamples and maps the low-resolution attributes of the encoder. Thus, there is a considerable drop in the number of variables used for the learning process as the network recycles the pooling indices of the encoder for segmentation. The Thresholding method and the cuckoo search algorithm determines the most useful features when categorizing cancer nodules.
Results and discussion: The effectiveness of the intended DeepNet model is cautiously assessed on the real-world database known as The Cancer Imaging Archive (TCIA) dataset and its effectiveness is demonstrated by comparing its representation with some other modern segmentation models in terms of selected performance measures. The empirical analysis reveals that DeepNet significantly outperforms other prevalent segmentation algorithms with 0.962 ± 0.023% of volume error, 0.968 ± 0.011 of dice similarity coefficient, 0.856 ± 0.011 of Jaccard similarity index, and 0.045 ± 0.005s average processing time.
{"title":"DeepNet model empowered cuckoo search algorithm for the effective identification of lung cancer nodules.","authors":"Grace John M, Baskar S","doi":"10.3389/fmedt.2023.1157919","DOIUrl":"https://doi.org/10.3389/fmedt.2023.1157919","url":null,"abstract":"<p><strong>Introduction: </strong>Globally, lung cancer is a highly harmful type of cancer. An efficient diagnosis system can enable pathologists to recognize the type and nature of lung nodules and the mode of therapy to increase the patient's chance of survival. Hence, implementing an automatic and reliable system to segment lung nodules from a computed tomography (CT) image is useful in the medical industry.</p><p><strong>Methods: </strong>This study develops a novel fully convolutional deep neural network (hereafter called DeepNet) model for segmenting lung nodules from CT scans. This model includes an encoder/decoder network that achieves pixel-wise image segmentation. The encoder network exploits a Visual Geometry Group (VGG-19) model as a base architecture, while the decoder network exploits 16 upsampling and deconvolution modules. The encoder used in this model has a very flexible structural design that can be modified and trained for any resolution based on the size of input scans. The decoder network upsamples and maps the low-resolution attributes of the encoder. Thus, there is a considerable drop in the number of variables used for the learning process as the network recycles the pooling indices of the encoder for segmentation. The Thresholding method and the cuckoo search algorithm determines the most useful features when categorizing cancer nodules.</p><p><strong>Results and discussion: </strong>The effectiveness of the intended DeepNet model is cautiously assessed on the real-world database known as The Cancer Imaging Archive (TCIA) dataset and its effectiveness is demonstrated by comparing its representation with some other modern segmentation models in terms of selected performance measures. The empirical analysis reveals that DeepNet significantly outperforms other prevalent segmentation algorithms with 0.962 ± 0.023% of volume error, 0.968 ± 0.011 of dice similarity coefficient, 0.856 ± 0.011 of Jaccard similarity index, and 0.045 ± 0.005s average processing time.</p>","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"5 ","pages":"1157919"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41150828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Cochleates are cylindrical particles composed of dehydrated phospholipid bilayers. They are typically prepared by addition of calcium ions to vesicles composed of negatively charged phospholipids such as phosphatidylserines (PS). Due to their high physical and chemical stability, they provide an interesting alternative over other lipid-based drug formulations for example to improve oral bioavailability or to obtain a parenteral sustained-release formulation.
Methods: In the present study, the feasibility to prepare cochleate suspensions from soy lecithin-derived phosphatidylserines (SPS) was investigated and compared to the "gold standard" dioleoyl-phosphatidylserine (DOPS) cochleates. The SPS lipids covered a large range of purities between 53 and >96% and computer-controlled mixing was evaluated for the preparation of the cochleate suspensions. Electron microscopic investigations were combined with small-angle x-ray diffraction (SAXD) and Laurdan generalized polarization (GP) analysis to characterize particle structure and lipid organization.
Results: Despite some differences in particle morphology, cochleate suspensions with similar internal lipid structure as DOPS cochleates could be prepared from SPS with high headgroup purity (≥96%). Suspensions prepared from SPS with lower purity still revealed a remarkably high degree of lipid dehydration and well-organized lamellar structure. However, the particle shape was less defined, and the typical cochleate cylinders could only be detected in suspensions prepared with higher amount of calcium ions. Finally, the study proves the feasibility to prepare suspensions of cochleates or cochleate-like particles directly from a calcium salt of soy-PS by dialysis.
{"title":"Feasibility of the preparation of cochleate suspensions from naturally derived phosphatidylserines.","authors":"Søren Kristensen, Khadeija Hassan, Nadia Skarnager Andersen, Frank Steiniger, Judith Kuntsche","doi":"10.3389/fmedt.2023.1241368","DOIUrl":"https://doi.org/10.3389/fmedt.2023.1241368","url":null,"abstract":"<p><strong>Introduction: </strong>Cochleates are cylindrical particles composed of dehydrated phospholipid bilayers. They are typically prepared by addition of calcium ions to vesicles composed of negatively charged phospholipids such as phosphatidylserines (PS). Due to their high physical and chemical stability, they provide an interesting alternative over other lipid-based drug formulations for example to improve oral bioavailability or to obtain a parenteral sustained-release formulation.</p><p><strong>Methods: </strong>In the present study, the feasibility to prepare cochleate suspensions from soy lecithin-derived phosphatidylserines (SPS) was investigated and compared to the \"gold standard\" dioleoyl-phosphatidylserine (DOPS) cochleates. The SPS lipids covered a large range of purities between 53 and >96% and computer-controlled mixing was evaluated for the preparation of the cochleate suspensions. Electron microscopic investigations were combined with small-angle x-ray diffraction (SAXD) and Laurdan generalized polarization (GP) analysis to characterize particle structure and lipid organization.</p><p><strong>Results: </strong>Despite some differences in particle morphology, cochleate suspensions with similar internal lipid structure as DOPS cochleates could be prepared from SPS with high headgroup purity (≥96%). Suspensions prepared from SPS with lower purity still revealed a remarkably high degree of lipid dehydration and well-organized lamellar structure. However, the particle shape was less defined, and the typical cochleate cylinders could only be detected in suspensions prepared with higher amount of calcium ions. Finally, the study proves the feasibility to prepare suspensions of cochleates or cochleate-like particles directly from a calcium salt of soy-PS by dialysis.</p>","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"5 ","pages":"1241368"},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512065/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41160670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01eCollection Date: 2023-01-01DOI: 10.3389/fmedt.2023.1183179
Karlheinz Tondo Samenjo, Aparna Ramanathan, Stephen Otieno Gwer, Robert C Bailey, Fredrick Odhiambo Otieno, Erin Koksal, Benjamin Sprecher, Rebecca Anne Price, Conny Bakker, Jan Carel Diehl
Underfunded healthcare infrastructures in low-resource settings in sub-Saharan Africa have resulted in a lack of medical devices crucial to provide healthcare for all. A representative example of this scenario is medical devices to administer paracervical blocks during gynaecological procedures. Devices needed for this procedure are usually unavailable or expensive. Without these devices, providing paracervical blocks for women in need is impossible resulting in compromising the quality of care for women requiring gynaecological procedures such as loop electrosurgical excision, treatment of miscarriage, or incomplete abortion. In that perspective, interventions that can be integrated into the healthcare system in low-resource settings to provide women needing paracervical blocks remain urgent. Based on a context-specific approach while leveraging circular economy design principles, this research catalogues the development of a new medical device called Chloe SED® that can be used to support the provision of paracervical blocks. Chloe SED®, priced at US$ 1.5 per device when produced in polypropylene, US$ 10 in polyetheretherketone, and US$ 15 in aluminium, is attached to any 10-cc syringe in low-resource settings to provide paracervical blocks. The device is designed for durability, repairability, maintainability, upgradeability, and recyclability to address environmental sustainability issues in the healthcare domain. Achieving the design of Chloe SED® from a context-specific and circular economy approach revealed correlations between the material choice to manufacture the device, the device's initial cost, product durability and reuse cycle, reprocessing method and cost, and environmental impact. These correlations can be seen as interconnected conflicting or divergent trade-offs that need to be continually assessed to deliver a medical device that provides healthcare for all with limited environmental impact. The study findings are intended to be seen as efforts to make available medical devices to support women's access to reproductive health services.
{"title":"Design of a syringe extension device (Chloe SED®) for low-resource settings in sub-Saharan Africa: a circular economy approach.","authors":"Karlheinz Tondo Samenjo, Aparna Ramanathan, Stephen Otieno Gwer, Robert C Bailey, Fredrick Odhiambo Otieno, Erin Koksal, Benjamin Sprecher, Rebecca Anne Price, Conny Bakker, Jan Carel Diehl","doi":"10.3389/fmedt.2023.1183179","DOIUrl":"https://doi.org/10.3389/fmedt.2023.1183179","url":null,"abstract":"<p><p>Underfunded healthcare infrastructures in low-resource settings in sub-Saharan Africa have resulted in a lack of medical devices crucial to provide healthcare for all. A representative example of this scenario is medical devices to administer paracervical blocks during gynaecological procedures. Devices needed for this procedure are usually unavailable or expensive. Without these devices, providing paracervical blocks for women in need is impossible resulting in compromising the quality of care for women requiring gynaecological procedures such as loop electrosurgical excision, treatment of miscarriage, or incomplete abortion. In that perspective, interventions that can be integrated into the healthcare system in low-resource settings to provide women needing paracervical blocks remain urgent. Based on a context-specific approach while leveraging circular economy design principles, this research catalogues the development of a new medical device called Chloe SED® that can be used to support the provision of paracervical blocks. Chloe SED®, priced at US$ 1.5 per device when produced in polypropylene, US$ 10 in polyetheretherketone, and US$ 15 in aluminium, is attached to any 10-cc syringe in low-resource settings to provide paracervical blocks. The device is designed for durability, repairability, maintainability, upgradeability, and recyclability to address environmental sustainability issues in the healthcare domain. Achieving the design of Chloe SED® from a context-specific and circular economy approach revealed correlations between the material choice to manufacture the device, the device's initial cost, product durability and reuse cycle, reprocessing method and cost, and environmental impact. These correlations can be seen as interconnected conflicting or divergent trade-offs that need to be continually assessed to deliver a medical device that provides healthcare for all with limited environmental impact. The study findings are intended to be seen as efforts to make available medical devices to support women's access to reproductive health services.</p>","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"5 ","pages":"1183179"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505716/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41160120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-31DOI: 10.3389/fmedt.2022.881930
L. Etxeberria, Unai Aguilera, Pablo Garcia de Madinabeitia, A. Saez, A. Zaldua, J. Vilas‐Vilela, Luis García Fernández, A. Llobera
Luer slip is one of the gold standards for chip-to-world interface in microfluidics. They have outstanding mechanical and operational robustness in a broad range of applications using water and solvent-based liquids. Still, their main drawbacks are related to their size: they have relatively large dead volumes and require a significant footprint to assure a leak-free performance. Such aspects make their integration in systems with high microchannel density challenging. To date, there has been no geometrical optimization of the Luer slips to provide a solution to the mentioned drawbacks. This work aims to provide the rules toward downscaling the Luer slips. To this effect, seven variations of the Luer slip male connectors and five variations of Luer slip female connectors have been designed and manufactured focusing on the reduction of the size of connectors and minimization of the dead volumes. In all cases, female connectors have been developed to pair with the corresponding male connector. Characterization has been performed with a tailor-made test bench in which the closure force between male and female connectors has been varied between 7.9 and 55 N. For each applied closure force, the test bench allows liquid pressures to be tested between 0.5 and 2.0 bar. Finally, the analysis of a useful life determines the number of cycles that the connectors can withstand before leakage.
{"title":"Critical Study on the Tube-to-Chip Luer Slip Connectors","authors":"L. Etxeberria, Unai Aguilera, Pablo Garcia de Madinabeitia, A. Saez, A. Zaldua, J. Vilas‐Vilela, Luis García Fernández, A. Llobera","doi":"10.3389/fmedt.2022.881930","DOIUrl":"https://doi.org/10.3389/fmedt.2022.881930","url":null,"abstract":"Luer slip is one of the gold standards for chip-to-world interface in microfluidics. They have outstanding mechanical and operational robustness in a broad range of applications using water and solvent-based liquids. Still, their main drawbacks are related to their size: they have relatively large dead volumes and require a significant footprint to assure a leak-free performance. Such aspects make their integration in systems with high microchannel density challenging. To date, there has been no geometrical optimization of the Luer slips to provide a solution to the mentioned drawbacks. This work aims to provide the rules toward downscaling the Luer slips. To this effect, seven variations of the Luer slip male connectors and five variations of Luer slip female connectors have been designed and manufactured focusing on the reduction of the size of connectors and minimization of the dead volumes. In all cases, female connectors have been developed to pair with the corresponding male connector. Characterization has been performed with a tailor-made test bench in which the closure force between male and female connectors has been varied between 7.9 and 55 N. For each applied closure force, the test bench allows liquid pressures to be tested between 0.5 and 2.0 bar. Finally, the analysis of a useful life determines the number of cycles that the connectors can withstand before leakage.","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78707071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-30DOI: 10.3389/fmedt.2022.850565
H. Gatla, N. Uth, Y. Levinson, A. Navaei, A. Sargent, S. Ramaswamy, Inbar Friedrich Ben-Nun
Allogeneic T cells are key immune therapeutic cells to fight cancer and other clinical indications. High T cell dose per patient and increasing patient numbers result in clinical demand for a large number of allogeneic T cells. This necessitates a manufacturing platform that can be scaled up while retaining cell quality. Here we present a closed and scalable platform for T cell manufacturing to meet clinical demand. Upstream manufacturing steps of T cell activation and expansion are done in-vessel, in a stirred-tank bioreactor. T cell selection, which is necessary for CAR-T-based therapy, is done in the bioreactor itself, thus maintaining optimal culture conditions through the selection step. Platform's attributes of automation and performing the steps of T cell activation, expansion, and selection in-vessel, greatly contribute to enhancing process control, cell quality, and to the reduction of manual labor and contamination risk. In addition, the viability of integrating a closed, automated, downstream process of cell concentration, is demonstrated. The presented T cell manufacturing platform has scale-up capabilities while preserving key factors of cell quality and process control.
{"title":"Enabling Allogeneic T Cell-Based Therapies: Scalable Stirred-Tank Bioreactor Mediated Manufacturing","authors":"H. Gatla, N. Uth, Y. Levinson, A. Navaei, A. Sargent, S. Ramaswamy, Inbar Friedrich Ben-Nun","doi":"10.3389/fmedt.2022.850565","DOIUrl":"https://doi.org/10.3389/fmedt.2022.850565","url":null,"abstract":"Allogeneic T cells are key immune therapeutic cells to fight cancer and other clinical indications. High T cell dose per patient and increasing patient numbers result in clinical demand for a large number of allogeneic T cells. This necessitates a manufacturing platform that can be scaled up while retaining cell quality. Here we present a closed and scalable platform for T cell manufacturing to meet clinical demand. Upstream manufacturing steps of T cell activation and expansion are done in-vessel, in a stirred-tank bioreactor. T cell selection, which is necessary for CAR-T-based therapy, is done in the bioreactor itself, thus maintaining optimal culture conditions through the selection step. Platform's attributes of automation and performing the steps of T cell activation, expansion, and selection in-vessel, greatly contribute to enhancing process control, cell quality, and to the reduction of manual labor and contamination risk. In addition, the viability of integrating a closed, automated, downstream process of cell concentration, is demonstrated. The presented T cell manufacturing platform has scale-up capabilities while preserving key factors of cell quality and process control.","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83304954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-26DOI: 10.3389/fmedt.2022.854382
Anqi Zhang, Jiaming Wang, Fei Qu, Zhaoming He
Purpose Children's heart sounds were denoised to improve the performance of the intelligent diagnosis. Methods A combined noise reduction method based on variational modal decomposition (VMD) and wavelet soft threshold algorithm (WST) was proposed, and used to denoise 103 phonocardiogram samples. Features were extracted after denoising and employed for an intelligent diagnosis model to verify the effect of the denoising method. Results The noise in children's phonocardiograms, especially crying noise, was suppressed. The signal-to-noise ratio obtained by the method for normal heart sounds was 14.69 dB at 5 dB Gaussian noise, which was higher than that obtained by WST only and the other VMD denoising method. Intelligent classification showed that the accuracy, sensitivity and specificity of the classification system for congenital heart diseases were 92.23, 92.42, and 91.89%, respectively and better than those with WST only. Conclusion The proposed noise reduction method effectively eliminates noise in children's phonocardiograms and improves the performance of intelligent screening for the children with congenital heart diseases.
{"title":"Classification of Children's Heart Sounds With Noise Reduction Based on Variational Modal Decomposition","authors":"Anqi Zhang, Jiaming Wang, Fei Qu, Zhaoming He","doi":"10.3389/fmedt.2022.854382","DOIUrl":"https://doi.org/10.3389/fmedt.2022.854382","url":null,"abstract":"Purpose Children's heart sounds were denoised to improve the performance of the intelligent diagnosis. Methods A combined noise reduction method based on variational modal decomposition (VMD) and wavelet soft threshold algorithm (WST) was proposed, and used to denoise 103 phonocardiogram samples. Features were extracted after denoising and employed for an intelligent diagnosis model to verify the effect of the denoising method. Results The noise in children's phonocardiograms, especially crying noise, was suppressed. The signal-to-noise ratio obtained by the method for normal heart sounds was 14.69 dB at 5 dB Gaussian noise, which was higher than that obtained by WST only and the other VMD denoising method. Intelligent classification showed that the accuracy, sensitivity and specificity of the classification system for congenital heart diseases were 92.23, 92.42, and 91.89%, respectively and better than those with WST only. Conclusion The proposed noise reduction method effectively eliminates noise in children's phonocardiograms and improves the performance of intelligent screening for the children with congenital heart diseases.","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72670551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}