Pub Date : 2025-01-10DOI: 10.1109/TIP.2025.3526064
Wenqi Han;Wen Jiang;Jie Geng;Wang Miao
The feature fusion of optical and Synthetic Aperture Radar (SAR) images is widely used for semantic segmentation of multimodal remote sensing images. It leverages information from two different sensors to enhance the analytical capabilities of land cover. However, the imaging characteristics of optical and SAR data are vastly different, and noise interference makes the fusion of multimodal data information challenging. Furthermore, in practical remote sensing applications, there are typically only a limited number of labeled samples available, with most pixels needing to be labeled. Semi-supervised learning has the potential to improve model performance in scenarios with limited labeled data. However, in remote sensing applications, the quality of pseudo-labels is frequently compromised, particularly in challenging regions such as blurred edges and areas with class confusion. This degradation in label quality can have a detrimental effect on the model’s overall performance. In this paper, we introduce the Difference-complementary Learning and Label Reassignment (DLLR) network for multimodal semi-supervised semantic segmentation of remote sensing images. Our proposed DLLR framework leverages asymmetric masking to create information discrepancies between the optical and SAR modalities, and employs a difference-guided complementary learning strategy to enable mutual learning. Subsequently, we introduce a multi-level label reassignment strategy, treating the label assignment problem as an optimal transport optimization task to allocate pixels to classes with higher precision for unlabeled pixels, thereby enhancing the quality of pseudo-label annotations. Finally, we introduce a multimodal consistency cross pseudo-supervision strategy to improve pseudo-label utilization. We evaluate our method on two multimodal remote sensing datasets, namely, the WHU-OPT-SAR and EErDS-OPT-SAR datasets. Experimental results demonstrate that our proposed DLLR model outperforms other relevant deep networks in terms of accuracy in multimodal semantic segmentation.
{"title":"Difference-Complementary Learning and Label Reassignment for Multimodal Semi-Supervised Semantic Segmentation of Remote Sensing Images","authors":"Wenqi Han;Wen Jiang;Jie Geng;Wang Miao","doi":"10.1109/TIP.2025.3526064","DOIUrl":"10.1109/TIP.2025.3526064","url":null,"abstract":"The feature fusion of optical and Synthetic Aperture Radar (SAR) images is widely used for semantic segmentation of multimodal remote sensing images. It leverages information from two different sensors to enhance the analytical capabilities of land cover. However, the imaging characteristics of optical and SAR data are vastly different, and noise interference makes the fusion of multimodal data information challenging. Furthermore, in practical remote sensing applications, there are typically only a limited number of labeled samples available, with most pixels needing to be labeled. Semi-supervised learning has the potential to improve model performance in scenarios with limited labeled data. However, in remote sensing applications, the quality of pseudo-labels is frequently compromised, particularly in challenging regions such as blurred edges and areas with class confusion. This degradation in label quality can have a detrimental effect on the model’s overall performance. In this paper, we introduce the Difference-complementary Learning and Label Reassignment (DLLR) network for multimodal semi-supervised semantic segmentation of remote sensing images. Our proposed DLLR framework leverages asymmetric masking to create information discrepancies between the optical and SAR modalities, and employs a difference-guided complementary learning strategy to enable mutual learning. Subsequently, we introduce a multi-level label reassignment strategy, treating the label assignment problem as an optimal transport optimization task to allocate pixels to classes with higher precision for unlabeled pixels, thereby enhancing the quality of pseudo-label annotations. Finally, we introduce a multimodal consistency cross pseudo-supervision strategy to improve pseudo-label utilization. We evaluate our method on two multimodal remote sensing datasets, namely, the WHU-OPT-SAR and EErDS-OPT-SAR datasets. Experimental results demonstrate that our proposed DLLR model outperforms other relevant deep networks in terms of accuracy in multimodal semantic segmentation.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"566-580"},"PeriodicalIF":0.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142961495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite recent advances, scene text recognition remains a challenging problem due to the significant variability, irregularity and distortion in text appearance and localization. Attention-based methods have become the mainstream due to their superior vocabulary learning and observation ability. Nonetheless, they are susceptible to attention drift which can lead to word recognition errors. Most works focus on correcting attention drift in decoding but completely ignore the error accumulated during the encoding process. In this paper, we propose a novel scheme, called the Attention Guidance by Cross-Domain Supervision Signals for Scene Text Recognition (ACDS-STR), which can mitigate the attention drift at the feature encoding stage. At the heart of the proposed scheme is the cross-domain attention guidance and feature encoding fusion module (CAFM) that uses the core areas of characters to recursively guide attention to learn in the encoding process. With precise attention information sourced from CAFM, we propose a non-attention-based adaptive transformation decoder (ATD) to guarantee decoding performance and improve decoding speed. In the training stage, we fuse manual guidance and subjective learning to learn the core areas of characters, which notably augments the recognition performance of the model. Experiments are conducted on public benchmarks and show the state-of-the-art performance. The source will be available at https://github.com/xuefanfu/ACDS-STR.
{"title":"Attention Guidance by Cross-Domain Supervision Signals for Scene Text Recognition","authors":"Fanfu Xue;Jiande Sun;Yaqi Xue;Qiang Wu;Lei Zhu;Xiaojun Chang;Sen-Ching Cheung","doi":"10.1109/TIP.2024.3523799","DOIUrl":"10.1109/TIP.2024.3523799","url":null,"abstract":"Despite recent advances, scene text recognition remains a challenging problem due to the significant variability, irregularity and distortion in text appearance and localization. Attention-based methods have become the mainstream due to their superior vocabulary learning and observation ability. Nonetheless, they are susceptible to attention drift which can lead to word recognition errors. Most works focus on correcting attention drift in decoding but completely ignore the error accumulated during the encoding process. In this paper, we propose a novel scheme, called the Attention Guidance by Cross-Domain Supervision Signals for Scene Text Recognition (ACDS-STR), which can mitigate the attention drift at the feature encoding stage. At the heart of the proposed scheme is the cross-domain attention guidance and feature encoding fusion module (CAFM) that uses the core areas of characters to recursively guide attention to learn in the encoding process. With precise attention information sourced from CAFM, we propose a non-attention-based adaptive transformation decoder (ATD) to guarantee decoding performance and improve decoding speed. In the training stage, we fuse manual guidance and subjective learning to learn the core areas of characters, which notably augments the recognition performance of the model. Experiments are conducted on public benchmarks and show the state-of-the-art performance. The source will be available at <uri>https://github.com/xuefanfu/ACDS-STR</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"717-728"},"PeriodicalIF":0.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142961269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.1109/TIP.2025.3526051
Haoyu Li;Hao Wu;Badong Chen
Reconstructing visual stimuli from functional Magnetic Resonance Imaging (fMRI) enables fine-grained retrieval of brain activity. However, the accurate reconstruction of diverse details, including structure, background, texture, color, and more, remains challenging. The stable diffusion models inevitably result in the variability of reconstructed images, even under identical conditions. To address this challenge, we first uncover the neuroscientific perspective of diffusion methods, which primarily involve top-down creation using pre-trained knowledge from extensive image datasets, but tend to lack detail-driven bottom-up perception, leading to a loss of faithful details. In this paper, we propose NeuralDiffuser, which incorporates primary visual feature guidance to provide detailed cues in the form of gradients. This extension of the bottom-up process for diffusion models achieves both semantic coherence and detail fidelity when reconstructing visual stimuli. Furthermore, we have developed a novel guidance strategy for reconstruction tasks that ensures the consistency of repeated outputs with original images rather than with various outputs. Extensive experimental results on the Natural Senses Dataset (NSD) qualitatively and quantitatively demonstrate the advancement of NeuralDiffuser by comparing it against baseline and state-of-the-art methods horizontally, as well as conducting longitudinal ablation studies. Code can be available on https://github.com/HaoyyLi/NeuralDiffuser.
{"title":"NeuralDiffuser: Neuroscience-Inspired Diffusion Guidance for fMRI Visual Reconstruction","authors":"Haoyu Li;Hao Wu;Badong Chen","doi":"10.1109/TIP.2025.3526051","DOIUrl":"10.1109/TIP.2025.3526051","url":null,"abstract":"Reconstructing visual stimuli from functional Magnetic Resonance Imaging (fMRI) enables fine-grained retrieval of brain activity. However, the accurate reconstruction of diverse details, including structure, background, texture, color, and more, remains challenging. The stable diffusion models inevitably result in the variability of reconstructed images, even under identical conditions. To address this challenge, we first uncover the neuroscientific perspective of diffusion methods, which primarily involve top-down creation using pre-trained knowledge from extensive image datasets, but tend to lack detail-driven bottom-up perception, leading to a loss of faithful details. In this paper, we propose NeuralDiffuser, which incorporates primary visual feature guidance to provide detailed cues in the form of gradients. This extension of the bottom-up process for diffusion models achieves both semantic coherence and detail fidelity when reconstructing visual stimuli. Furthermore, we have developed a novel guidance strategy for reconstruction tasks that ensures the consistency of repeated outputs with original images rather than with various outputs. Extensive experimental results on the Natural Senses Dataset (NSD) qualitatively and quantitatively demonstrate the advancement of NeuralDiffuser by comparing it against baseline and state-of-the-art methods horizontally, as well as conducting longitudinal ablation studies. Code can be available on <uri>https://github.com/HaoyyLi/NeuralDiffuser</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"552-565"},"PeriodicalIF":0.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142961270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.1109/TIP.2025.3526056
Jian Wang;Fan Li;Song Lv;Lijun He;Chao Shen
Vision-based 3D object detection, a cost-effective alternative to LiDAR-based solutions, plays a crucial role in modern autonomous driving systems. Meanwhile, deep models have been proven susceptible to adversarial examples, and attacking detection models can lead to serious driving consequences. Most previous adversarial attacks targeted 2D detectors by placing the patch in a specific region within the object’s bounding box in the image, allowing it to evade detection. However, attacking 3D detector is more difficult because the adversary may be observed from different viewpoints and distances, and there is a lack of effective methods to differentiably render the 3D space poster onto the image. In this paper, we propose a novel attack setting where a carefully crafted adversarial poster (looks like meaningless graffiti) is learned and pasted on the road surface, inducing the vision-based 3D detectors to perceive a non-existent object. We show that even a single 2D poster is sufficient to deceive the 3D detector with the desired attack effect, and the poster is universal, which is effective across various scenes, viewpoints, and distances. To generate the poster, an image-3D applying algorithm is devised to establish the pixel-wise mapping relationship between the image area and the 3D space poster so that the poster can be optimized through standard backpropagation. Moreover, a ground-truth masked optimization strategy is presented to effectively learn the poster without interference from scene objects. Extensive results including real-world experiments validate the effectiveness of our adversarial attack. The transferability and defense strategy are also investigated to comprehensively understand the proposed attack.
{"title":"Physically Realizable Adversarial Creating Attack Against Vision-Based BEV Space 3D Object Detection","authors":"Jian Wang;Fan Li;Song Lv;Lijun He;Chao Shen","doi":"10.1109/TIP.2025.3526056","DOIUrl":"10.1109/TIP.2025.3526056","url":null,"abstract":"Vision-based 3D object detection, a cost-effective alternative to LiDAR-based solutions, plays a crucial role in modern autonomous driving systems. Meanwhile, deep models have been proven susceptible to adversarial examples, and attacking detection models can lead to serious driving consequences. Most previous adversarial attacks targeted 2D detectors by placing the patch in a specific region within the object’s bounding box in the image, allowing it to evade detection. However, attacking 3D detector is more difficult because the adversary may be observed from different viewpoints and distances, and there is a lack of effective methods to differentiably render the 3D space poster onto the image. In this paper, we propose a novel attack setting where a carefully crafted adversarial poster (looks like meaningless graffiti) is learned and pasted on the road surface, inducing the vision-based 3D detectors to perceive a non-existent object. We show that even a single 2D poster is sufficient to deceive the 3D detector with the desired attack effect, and the poster is universal, which is effective across various scenes, viewpoints, and distances. To generate the poster, an image-3D applying algorithm is devised to establish the pixel-wise mapping relationship between the image area and the 3D space poster so that the poster can be optimized through standard backpropagation. Moreover, a ground-truth masked optimization strategy is presented to effectively learn the poster without interference from scene objects. Extensive results including real-world experiments validate the effectiveness of our adversarial attack. The transferability and defense strategy are also investigated to comprehensively understand the proposed attack.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"538-551"},"PeriodicalIF":0.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142961493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1109/TIP.2024.3523801
Nir Yellinek;Leonid Karlinsky;Raja Giryes
Vision-Language models (VLMs) have proven to be effective at aligning image and text representations, producing superior zero-shot results when transferred to many downstream tasks. However, these representations suffer from some key shortcomings in understanding Compositional Language Concepts (CLC), such as recognizing objects’ attributes, states, and relations between different objects. Moreover, VLMs typically have poor interpretability, making it challenging to debug and mitigate compositional-understanding failures. In this work, we introduce the architecture and training technique of Tree-augmented Vision-Language (3VL) model accompanied by our proposed Anchor inference method and Differential Relevance (DiRe) interpretability tool. By expanding the text of an arbitrary image-text pair into a hierarchical tree structure using language analysis tools, 3VL allows the induction of this structure into the visual representation learned by the model, enhancing its interpretability and compositional reasoning. Additionally, we show how Anchor, a simple technique for text unification, can be used to filter nuisance factors while increasing CLC understanding performance, e.g., on the fundamental VL-Checklist benchmark. We also show how DiRe, which performs a differential comparison between VLM relevancy maps, enables us to generate compelling visualizations of the reasons for a model’s success or failure.
{"title":"3VL: Using Trees to Improve Vision-Language Models’ Interpretability","authors":"Nir Yellinek;Leonid Karlinsky;Raja Giryes","doi":"10.1109/TIP.2024.3523801","DOIUrl":"10.1109/TIP.2024.3523801","url":null,"abstract":"Vision-Language models (VLMs) have proven to be effective at aligning image and text representations, producing superior zero-shot results when transferred to many downstream tasks. However, these representations suffer from some key shortcomings in understanding Compositional Language Concepts (CLC), such as recognizing objects’ attributes, states, and relations between different objects. Moreover, VLMs typically have poor interpretability, making it challenging to debug and mitigate compositional-understanding failures. In this work, we introduce the architecture and training technique of Tree-augmented Vision-Language (3VL) model accompanied by our proposed Anchor inference method and Differential Relevance (DiRe) interpretability tool. By expanding the text of an arbitrary image-text pair into a hierarchical tree structure using language analysis tools, 3VL allows the induction of this structure into the visual representation learned by the model, enhancing its interpretability and compositional reasoning. Additionally, we show how Anchor, a simple technique for text unification, can be used to filter nuisance factors while increasing CLC understanding performance, e.g., on the fundamental VL-Checklist benchmark. We also show how DiRe, which performs a differential comparison between VLM relevancy maps, enables us to generate compelling visualizations of the reasons for a model’s success or failure.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"495-509"},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Existing free-energy guided No-Reference Image Quality Assessment (NR-IQA) methods continue to face challenges in effectively restoring complexly distorted images. The features guiding the main network for quality assessment lack interpretability, and efficiently leveraging high-level feature information remains a significant challenge. As a novel class of state-of-the-art (SOTA) generative model, the diffusion model exhibits the capability to model intricate relationships, enhancing image restoration effectiveness. Moreover, the intermediate variables in the denoising iteration process exhibit clearer and more interpretable meanings for high-level visual information guidance. In view of these, we pioneer the exploration of the diffusion model into the domain of NR-IQA. We design a novel diffusion model for enhancing images with various types of distortions, resulting in higher quality and more interpretable high-level visual information. Our experiments demonstrate that the diffusion model establishes a clear mapping relationship between image reconstruction and image quality scores, which the network learns to guide quality assessment. Finally, to fully leverage high-level visual information, we design two complementary visual branches to collaboratively perform quality evaluation. Extensive experiments are conducted on seven public NR-IQA datasets, and the results demonstrate that the proposed model outperforms SOTA methods for NR-IQA. The codes will be available at https://github.com/handsomewzy/DiffV2IQA.
{"title":"Diffusion Model-Based Visual Compensation Guidance and Visual Difference Analysis for No-Reference Image Quality Assessment","authors":"Zhaoyang Wang;Bo Hu;Mingyang Zhang;Jie Li;Leida Li;Maoguo Gong;Xinbo Gao","doi":"10.1109/TIP.2024.3523800","DOIUrl":"10.1109/TIP.2024.3523800","url":null,"abstract":"Existing free-energy guided No-Reference Image Quality Assessment (NR-IQA) methods continue to face challenges in effectively restoring complexly distorted images. The features guiding the main network for quality assessment lack interpretability, and efficiently leveraging high-level feature information remains a significant challenge. As a novel class of state-of-the-art (SOTA) generative model, the diffusion model exhibits the capability to model intricate relationships, enhancing image restoration effectiveness. Moreover, the intermediate variables in the denoising iteration process exhibit clearer and more interpretable meanings for high-level visual information guidance. In view of these, we pioneer the exploration of the diffusion model into the domain of NR-IQA. We design a novel diffusion model for enhancing images with various types of distortions, resulting in higher quality and more interpretable high-level visual information. Our experiments demonstrate that the diffusion model establishes a clear mapping relationship between image reconstruction and image quality scores, which the network learns to guide quality assessment. Finally, to fully leverage high-level visual information, we design two complementary visual branches to collaboratively perform quality evaluation. Extensive experiments are conducted on seven public NR-IQA datasets, and the results demonstrate that the proposed model outperforms SOTA methods for NR-IQA. The codes will be available at <uri>https://github.com/handsomewzy/DiffV2IQA</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"263-278"},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1109/TIP.2024.3460568
{"title":"IEEE Transactions on Image Processing publication information","authors":"","doi":"10.1109/TIP.2024.3460568","DOIUrl":"10.1109/TIP.2024.3460568","url":null,"abstract":"","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10829516","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1109/TIP.2024.3523802
Qi Bi;Beichen Zhou;Wei Ji;Gui-Song Xia
Existing fine-grained visual categorization (FGVC) methods assume that the fine-grained semantics rest in the informative parts of an image. This assumption works well on favorable front-view object-centric images, but can face great challenges in many real-world scenarios, such as scene-centric images (e.g., street view) and adverse viewpoint (e.g., object re-identification, remote sensing). In such scenarios, the mis-/over- feature activation is likely to confuse the part selection and degrade the fine-grained representation. In this paper, we are motivated to design a universal FGVC framework for real-world scenarios. More precisely, we propose a concept guided learning (CGL), which models concepts of a certain fine-grained category as a combination of inherited concepts from its subordinate coarse-grained category and discriminative concepts from its own. The discriminative concepts is utilized to guide the fine-grained representation learning. Specifically, three key steps are designed, namely, concept mining, concept fusion, and concept constraint. On the other hand, to bridge the FGVC dataset gap under scene-centric and adverse viewpoint scenarios, a Fine-grained Land-cover Categorization Dataset (FGLCD) with 59,994 fine-grained samples is proposed. Extensive experiments show the proposed CGL: 1) has a competitive performance on conventional FGVC; 2) achieves state-of-the-art performance on fine-grained aerial scenes & scene-centric street scenes; 3) good generalization on object re-identification and fine-grained aerial object detection. The dataset and source code will be available at https://github.com/BiQiWHU/CGL.
{"title":"Universal Fine-Grained Visual Categorization by Concept Guided Learning","authors":"Qi Bi;Beichen Zhou;Wei Ji;Gui-Song Xia","doi":"10.1109/TIP.2024.3523802","DOIUrl":"10.1109/TIP.2024.3523802","url":null,"abstract":"Existing fine-grained visual categorization (FGVC) methods assume that the fine-grained semantics rest in the informative parts of an image. This assumption works well on favorable front-view object-centric images, but can face great challenges in many real-world scenarios, such as scene-centric images (e.g., street view) and adverse viewpoint (e.g., object re-identification, remote sensing). In such scenarios, the mis-/over- feature activation is likely to confuse the part selection and degrade the fine-grained representation. In this paper, we are motivated to design a universal FGVC framework for real-world scenarios. More precisely, we propose a concept guided learning (CGL), which models concepts of a certain fine-grained category as a combination of inherited concepts from its subordinate coarse-grained category and discriminative concepts from its own. The discriminative concepts is utilized to guide the fine-grained representation learning. Specifically, three key steps are designed, namely, concept mining, concept fusion, and concept constraint. On the other hand, to bridge the FGVC dataset gap under scene-centric and adverse viewpoint scenarios, a Fine-grained Land-cover Categorization Dataset (FGLCD) with 59,994 fine-grained samples is proposed. Extensive experiments show the proposed CGL: 1) has a competitive performance on conventional FGVC; 2) achieves state-of-the-art performance on fine-grained aerial scenes & scene-centric street scenes; 3) good generalization on object re-identification and fine-grained aerial object detection. The dataset and source code will be available at <uri>https://github.com/BiQiWHU/CGL</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"394-409"},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1109/TIP.2024.3523798
Rongrong Wang;Yuhu Cheng;Xuesong Wang
Safe reinforcement learning aims to ensure the optimal performance while minimizing potential risks. In real-world applications, especially in scenarios that rely on visual inputs, a key challenge lies in the extraction of essential features for safe decision-making while maintaining the sample efficiency. To address this issue, we propose the constrained visual representation learning with bisimulation metrics for safe reinforcement learning (CVRL-BM). CVRL-BM constructs a sequential conditional variational inference model to compress high-dimensional visual observations into low-dimensional state representations. Additionally, safety bisimulation metrics are introduced to quantify the behavioral similarity between states, and our objective is to make the distance between any two latent state representations as close as possible to the safety bisimulation metric between their corresponding states. By integrating these two components, CVRL-BM is able to learn compact and information-rich visual state representations while satisfying predefined safety constraints. Experiments on Safety Gym show that CVRL-BM outperforms existing vision-based safe reinforcement learning methods in safety and efficacy. Particularly, CVRL-BM surpasses the state-of-the-art Safe SLAC method by achieving a 19.748% higher reward return, a 41.772% lower cost return, and a 5.027% decrease in cost regret. These results highlight the effectiveness of our proposed CVRL-BM.
{"title":"Constrained Visual Representation Learning With Bisimulation Metrics for Safe Reinforcement Learning","authors":"Rongrong Wang;Yuhu Cheng;Xuesong Wang","doi":"10.1109/TIP.2024.3523798","DOIUrl":"10.1109/TIP.2024.3523798","url":null,"abstract":"Safe reinforcement learning aims to ensure the optimal performance while minimizing potential risks. In real-world applications, especially in scenarios that rely on visual inputs, a key challenge lies in the extraction of essential features for safe decision-making while maintaining the sample efficiency. To address this issue, we propose the constrained visual representation learning with bisimulation metrics for safe reinforcement learning (CVRL-BM). CVRL-BM constructs a sequential conditional variational inference model to compress high-dimensional visual observations into low-dimensional state representations. Additionally, safety bisimulation metrics are introduced to quantify the behavioral similarity between states, and our objective is to make the distance between any two latent state representations as close as possible to the safety bisimulation metric between their corresponding states. By integrating these two components, CVRL-BM is able to learn compact and information-rich visual state representations while satisfying predefined safety constraints. Experiments on Safety Gym show that CVRL-BM outperforms existing vision-based safe reinforcement learning methods in safety and efficacy. Particularly, CVRL-BM surpasses the state-of-the-art Safe SLAC method by achieving a 19.748% higher reward return, a 41.772% lower cost return, and a 5.027% decrease in cost regret. These results highlight the effectiveness of our proposed CVRL-BM.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"379-393"},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1109/TIP.2024.3522813
Muhammet Balcilar;Bharath Bhushan Damodaran;Karam Naser;Franck Galpin;Pierre Hellier
End-to-end image and video codecs are becoming increasingly competitive, compared to traditional compression techniques that have been developed through decades of manual engineering efforts. These trainable codecs have many advantages over traditional techniques, such as their straightforward adaptation to perceptual distortion metrics and high performance in specific fields thanks to their learning ability. However, current state-of-the-art neural codecs do not fully exploit the benefits of vector quantization and the existence of the entropy gradient in decoding devices. In this paper, we propose to leverage these two properties (vector quantization and entropy gradient) to improve the performance of off-the-shelf codecs. Firstly, we demonstrate that using non-uniform scalar quantization cannot improve performance over uniform quantization. We thus suggest using predefined optimal uniform vector quantization to improve performance. Secondly, we show that the entropy gradient, available at the decoder, is correlated with the reconstruction error gradient, which is not available at the decoder. We therefore use the former as a proxy to enhance compression performance. Our experimental results show that these approaches save between 1 to 3% of the rate for the same quality across various pre-trained methods. In addition, the entropy gradient based solution improves traditional codec performance significantly as well.
{"title":"Exploiting Latent Properties to Optimize Neural Codecs","authors":"Muhammet Balcilar;Bharath Bhushan Damodaran;Karam Naser;Franck Galpin;Pierre Hellier","doi":"10.1109/TIP.2024.3522813","DOIUrl":"10.1109/TIP.2024.3522813","url":null,"abstract":"End-to-end image and video codecs are becoming increasingly competitive, compared to traditional compression techniques that have been developed through decades of manual engineering efforts. These trainable codecs have many advantages over traditional techniques, such as their straightforward adaptation to perceptual distortion metrics and high performance in specific fields thanks to their learning ability. However, current state-of-the-art neural codecs do not fully exploit the benefits of vector quantization and the existence of the entropy gradient in decoding devices. In this paper, we propose to leverage these two properties (vector quantization and entropy gradient) to improve the performance of off-the-shelf codecs. Firstly, we demonstrate that using non-uniform scalar quantization cannot improve performance over uniform quantization. We thus suggest using predefined optimal uniform vector quantization to improve performance. Secondly, we show that the entropy gradient, available at the decoder, is correlated with the reconstruction error gradient, which is not available at the decoder. We therefore use the former as a proxy to enhance compression performance. Our experimental results show that these approaches save between 1 to 3% of the rate for the same quality across various pre-trained methods. In addition, the entropy gradient based solution improves traditional codec performance significantly as well.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"306-319"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}