Reconstructing CSG trees from CAD models is a critical subject in reverse engineering. While there have been notable advancements in CSG reconstruction, challenges persist in capturing geometric details and achieving efficiency. Additionally, since non-axis-aligned volumetric primitives cannot maintain coplanar characteristics due to discretization errors, existing Boolean operations often lead to zero-volume surfaces and suffer from topological errors during the CSG modeling process. To address these issues, we propose a novel workflow to achieve fast CSG reconstruction and reliable forward modeling. First, we employ feature removal and model subdivision techniques to decompose models into sub-components. This significantly expedites the reconstruction by simplifying the complexity of the models. Then, we introduce a more reasonable method for primitive generation and filtering, and utilize a size-related optimization approach to reconstruct CSG trees. By re-adding features as additional nodes in the CSG trees, our method not only preserves intricate details but also ensures the conciseness, semantic integrity, and editability of the resulting CSG tree. Finally, we develop a coplanar primitive discretization method that represents primitives as large planes and extracts the original triangles after intersection. We extend the classification of triangles and incorporate a coplanar-aware Boolean tree assessment technique, allowing us to achieve manifold and watertight modeling results without zero-volume surfaces, even in extreme degenerate cases. We demonstrate the superiority of our method over state-of-the-art approaches. Moreover, the reconstructed CSG trees generated by our method contain extensive semantic information, enabling diverse model editing tasks.
{"title":"FR-CSG: Fast and Reliable Modeling for Constructive Solid Geometry.","authors":"Jiaxi Chen, Zeyu Shen, Mingyang Zhao, Xiaohong Jia, Dong-Ming Yan, Wencheng Wang","doi":"10.1109/TVCG.2024.3481278","DOIUrl":"https://doi.org/10.1109/TVCG.2024.3481278","url":null,"abstract":"<p><p>Reconstructing CSG trees from CAD models is a critical subject in reverse engineering. While there have been notable advancements in CSG reconstruction, challenges persist in capturing geometric details and achieving efficiency. Additionally, since non-axis-aligned volumetric primitives cannot maintain coplanar characteristics due to discretization errors, existing Boolean operations often lead to zero-volume surfaces and suffer from topological errors during the CSG modeling process. To address these issues, we propose a novel workflow to achieve fast CSG reconstruction and reliable forward modeling. First, we employ feature removal and model subdivision techniques to decompose models into sub-components. This significantly expedites the reconstruction by simplifying the complexity of the models. Then, we introduce a more reasonable method for primitive generation and filtering, and utilize a size-related optimization approach to reconstruct CSG trees. By re-adding features as additional nodes in the CSG trees, our method not only preserves intricate details but also ensures the conciseness, semantic integrity, and editability of the resulting CSG tree. Finally, we develop a coplanar primitive discretization method that represents primitives as large planes and extracts the original triangles after intersection. We extend the classification of triangles and incorporate a coplanar-aware Boolean tree assessment technique, allowing us to achieve manifold and watertight modeling results without zero-volume surfaces, even in extreme degenerate cases. We demonstrate the superiority of our method over state-of-the-art approaches. Moreover, the reconstructed CSG trees generated by our method contain extensive semantic information, enabling diverse model editing tasks.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1109/TVCG.2024.3453150
{"title":"IEEE ISMAR 2024 Science & Technology Program Committee Members for Journal Papers","authors":"","doi":"10.1109/TVCG.2024.3453150","DOIUrl":"https://doi.org/10.1109/TVCG.2024.3453150","url":null,"abstract":"","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"30 11","pages":"ix-xi"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713481","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1109/TVCG.2024.3453128
Ulrich Eck;Maki Sugimoto;Misha Sra;Markus Tatzgern;Jeanine Stefanucci;Ian Williams
In this special issue of IEEE Transactions on Visualization and Computer Graphics (TVCG), we are pleased to present the journal papers from the 23rd IEEE International Symposium on Mixed and Augmented Reality (ISMAR 2024), which will be held as a hybrid conference between October 21 and 25, 2024 in the Greater Seattle Area, USA. ISMAR continues the over twenty-year long tradition of IWAR, ISMR, and ISAR, and is the premier conference for Mixed and Augmented Reality in the world.
{"title":"Message from the ISMAR 2024 Science and Technology Program Chairs and TVCG Guest Editors","authors":"Ulrich Eck;Maki Sugimoto;Misha Sra;Markus Tatzgern;Jeanine Stefanucci;Ian Williams","doi":"10.1109/TVCG.2024.3453128","DOIUrl":"https://doi.org/10.1109/TVCG.2024.3453128","url":null,"abstract":"In this special issue of IEEE Transactions on Visualization and Computer Graphics (TVCG), we are pleased to present the journal papers from the 23rd IEEE International Symposium on Mixed and Augmented Reality (ISMAR 2024), which will be held as a hybrid conference between October 21 and 25, 2024 in the Greater Seattle Area, USA. ISMAR continues the over twenty-year long tradition of IWAR, ISMR, and ISAR, and is the premier conference for Mixed and Augmented Reality in the world.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"30 11","pages":"vii-vii"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713471","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1109/TVCG.2024.3453151
{"title":"IEEE ISMAR 2024 - Paper Reviewers for Journal Papers","authors":"","doi":"10.1109/TVCG.2024.3453151","DOIUrl":"https://doi.org/10.1109/TVCG.2024.3453151","url":null,"abstract":"","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"30 11","pages":"xii-xiii"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713477","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1109/TVCG.2024.3453109
{"title":"2024 IEEE International Symposium on Mixed and Augmented Reality","authors":"","doi":"10.1109/TVCG.2024.3453109","DOIUrl":"https://doi.org/10.1109/TVCG.2024.3453109","url":null,"abstract":"","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"30 11","pages":"i-i"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713476","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1109/TVCG.2024.3453148
Han-Wei Shen;Kiyoshi Kiyokawa
Welcome to the 10th IEEE Transactions on Visualization and Computer Graphics (TVCG) special issue on IEEE International Symposium on Mixed and Augmented Reality (ISMAR). This volume contains a total of 44 full papers selected for and presented at ISMAR 2024, held from October 21 to 25, 2024 in the Greater Seattle Area, USA, in a hybrid mode.
欢迎阅读第 10 期《IEEE Visualization and Computer Graphics (TVCG) Transactions on Visualization and Computer Graphics》(《可视化与计算机图形》)特刊:IEEE 混合现实与增强现实国际研讨会(ISMAR)。本卷收录了为 2024 年 10 月 21 日至 25 日在美国大西雅图地区举行的 ISMAR 2024 会议挑选并以混合模式提交的 44 篇论文全文。
{"title":"Message from the Editor-in-Chief and from the Associate Editor-in-Chief","authors":"Han-Wei Shen;Kiyoshi Kiyokawa","doi":"10.1109/TVCG.2024.3453148","DOIUrl":"https://doi.org/10.1109/TVCG.2024.3453148","url":null,"abstract":"Welcome to the 10th IEEE Transactions on Visualization and Computer Graphics (TVCG) special issue on IEEE International Symposium on Mixed and Augmented Reality (ISMAR). This volume contains a total of 44 full papers selected for and presented at ISMAR 2024, held from October 21 to 25, 2024 in the Greater Seattle Area, USA, in a hybrid mode.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"30 11","pages":"v-vi"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713479","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1109/TVCG.2024.3456217
Dylan Wootton;Amy Rae Fox;Evan Peck;Arvind Satyanarayan
Interactive visualizations are powerful tools for Exploratory Data Analysis (EDA), but how do they affect the observations analysts make about their data? We conducted a qualitative experiment with 13 professional data scientists analyzing two datasets with Jupyter notebooks, collecting a rich dataset of interaction traces and think-aloud utterances. By qualitatively coding participant utterances, we introduce a formalism that describes EDA as a sequence of analysis states, where each state is comprised of either a representation an analyst constructs (e.g., the output of a data frame, an interactive visualization, etc.) or an observation the analyst makes (e.g., about missing data, the relationship between variables, etc.). By applying our formalism to our dataset, we identify that interactive visualizations, on average, lead to earlier and more complex insights about relationships between dataset attributes compared to static visualizations. Moreover, by calculating metrics such as revisit count and representational diversity, we uncover that some representations serve more as “planning aids” during EDA rather than tools strictly for hypothesis-answering. We show how these measures help identify other patterns of analysis behavior, such as the “80-20 rule”, where a small subset of representations drove the majority of observations. Based on these findings, we offer design guidelines for interactive exploratory analysis tooling and reflect on future directions for studying the role that visualizations play in EDA.
{"title":"Charting EDA: Characterizing Interactive Visualization Use in Computational Notebooks with a Mixed-Methods Formalism","authors":"Dylan Wootton;Amy Rae Fox;Evan Peck;Arvind Satyanarayan","doi":"10.1109/TVCG.2024.3456217","DOIUrl":"10.1109/TVCG.2024.3456217","url":null,"abstract":"Interactive visualizations are powerful tools for Exploratory Data Analysis (EDA), but how do they affect the observations analysts make about their data? We conducted a qualitative experiment with 13 professional data scientists analyzing two datasets with Jupyter notebooks, collecting a rich dataset of interaction traces and think-aloud utterances. By qualitatively coding participant utterances, we introduce a formalism that describes EDA as a sequence of analysis states, where each state is comprised of either a representation an analyst constructs (e.g., the output of a data frame, an interactive visualization, etc.) or an observation the analyst makes (e.g., about missing data, the relationship between variables, etc.). By applying our formalism to our dataset, we identify that interactive visualizations, on average, lead to earlier and more complex insights about relationships between dataset attributes compared to static visualizations. Moreover, by calculating metrics such as revisit count and representational diversity, we uncover that some representations serve more as “planning aids” during EDA rather than tools strictly for hypothesis-answering. We show how these measures help identify other patterns of analysis behavior, such as the “80-20 rule”, where a small subset of representations drove the majority of observations. Based on these findings, we offer design guidelines for interactive exploratory analysis tooling and reflect on future directions for studying the role that visualizations play in EDA.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 1","pages":"1191-1201"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chart images, such as bar charts, pie charts, and line charts, are explosively produced due to the wide usage of data visualizations. Accordingly, knowledge mining from chart images is becoming increasingly important, which can benefit downstream tasks like chart retrieval and knowledge graph completion. However, existing methods for chart knowledge mining mainly focus on converting chart images into raw data and often ignore their visual encodings and semantic meanings, which can result in information loss for many downstream tasks. In this paper, we propose ChartKG, a novel knowledge graph (KG) based representation for chart images, which can model the visual elements in a chart image and semantic relations among them including visual encodings and visual insights in a unified manner.Further, we develop a general framework to convert chart images to the proposed KG-based representation. It integrates a series of image processing techniques to identify visual elements and relations, e.g., CNNs to classify charts, yolov5 and optical character recognition to parse charts, and rule-based methods to construct graphs. We present four cases to illustrate how our knowledge-graph-based representation can model the detailed visual elements and semantic relations in charts, and further demonstrate how our approach can benefit downstream applications such as semantic-aware chart retrieval and chart question answering. We also conduct quantitative evaluations to assess the two fundamental building blocks of our chart-to-KG framework, i.e., object recognition and optical character recognition. The results provide support for the usefulness and effectiveness of ChartKG.
{"title":"ChartKG: A Knowledge-Graph-Based Representation for Chart Images.","authors":"Zhiguang Zhou, Haoxuan Wang, Zhengqing Zhao, Fengling Zheng, Yongheng Wang, Wei Chen, Yong Wang","doi":"10.1109/TVCG.2024.3476508","DOIUrl":"https://doi.org/10.1109/TVCG.2024.3476508","url":null,"abstract":"<p><p>Chart images, such as bar charts, pie charts, and line charts, are explosively produced due to the wide usage of data visualizations. Accordingly, knowledge mining from chart images is becoming increasingly important, which can benefit downstream tasks like chart retrieval and knowledge graph completion. However, existing methods for chart knowledge mining mainly focus on converting chart images into raw data and often ignore their visual encodings and semantic meanings, which can result in information loss for many downstream tasks. In this paper, we propose ChartKG, a novel knowledge graph (KG) based representation for chart images, which can model the visual elements in a chart image and semantic relations among them including visual encodings and visual insights in a unified manner.Further, we develop a general framework to convert chart images to the proposed KG-based representation. It integrates a series of image processing techniques to identify visual elements and relations, e.g., CNNs to classify charts, yolov5 and optical character recognition to parse charts, and rule-based methods to construct graphs. We present four cases to illustrate how our knowledge-graph-based representation can model the detailed visual elements and semantic relations in charts, and further demonstrate how our approach can benefit downstream applications such as semantic-aware chart retrieval and chart question answering. We also conduct quantitative evaluations to assess the two fundamental building blocks of our chart-to-KG framework, i.e., object recognition and optical character recognition. The results provide support for the usefulness and effectiveness of ChartKG.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1109/TVCG.2024.3476331
Zijiang Yang, Zhongwei Qiu, Chang Xu, Dongmei Fu
3D style transfer aims to generate stylized views of 3D scenes with specified styles, which requires high-quality generating and keeping multi-view consistency. Existing methods still suffer the challenges of high-quality stylization with texture details and stylization with multimodal guidance. In this paper, we reveal that the common training method of stylization with NeRF, which generates stylized multi-view supervision by 2D style transfer models, causes the same object in supervision to show various states (color tone, details, etc.) in different views, leading NeRF to tend to smooth the texture details, further resulting in low-quality rendering for 3D multi-style transfer. To tackle these problems, we propose a novel Multimodal-guided 3D Multi-style transfer of NeRF, termed MM-NeRF. First, MM-NeRF projects multimodal guidance into a unified space to keep the multimodal styles consistency and extracts multimodal features to guide the 3D stylization. Second, a novel multi-head learning scheme is proposed to relieve the difficulty of learning multi-style transfer, and a multi-view style consistent loss is proposed to track the inconsistency of multi-view supervision data. Finally, a novel incremental learning mechanism is proposed to generalize MM-NeRF to any new style with small costs. Extensive experiments on several real-world datasets show that MM-NeRF achieves high-quality 3D multi-style stylization with multimodal guidance, and keeps multi-view consistency and style consistency between multimodal guidance.
{"title":"MM-NeRF: Multimodal-Guided 3D Multi-Style Transfer of Neural Radiance Field.","authors":"Zijiang Yang, Zhongwei Qiu, Chang Xu, Dongmei Fu","doi":"10.1109/TVCG.2024.3476331","DOIUrl":"https://doi.org/10.1109/TVCG.2024.3476331","url":null,"abstract":"<p><p>3D style transfer aims to generate stylized views of 3D scenes with specified styles, which requires high-quality generating and keeping multi-view consistency. Existing methods still suffer the challenges of high-quality stylization with texture details and stylization with multimodal guidance. In this paper, we reveal that the common training method of stylization with NeRF, which generates stylized multi-view supervision by 2D style transfer models, causes the same object in supervision to show various states (color tone, details, etc.) in different views, leading NeRF to tend to smooth the texture details, further resulting in low-quality rendering for 3D multi-style transfer. To tackle these problems, we propose a novel Multimodal-guided 3D Multi-style transfer of NeRF, termed MM-NeRF. First, MM-NeRF projects multimodal guidance into a unified space to keep the multimodal styles consistency and extracts multimodal features to guide the 3D stylization. Second, a novel multi-head learning scheme is proposed to relieve the difficulty of learning multi-style transfer, and a multi-view style consistent loss is proposed to track the inconsistency of multi-view supervision data. Finally, a novel incremental learning mechanism is proposed to generalize MM-NeRF to any new style with small costs. Extensive experiments on several real-world datasets show that MM-NeRF achieves high-quality 3D multi-style stylization with multimodal guidance, and keeps multi-view consistency and style consistency between multimodal guidance.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}