首页 > 最新文献

In silico pharmacology最新文献

英文 中文
Network analysis and molecular modeling studies of pinocembrin a bioactive phytochemical of Dodonaea viscosa against Parkinson's disease. 针对帕金森病的 Dodonaea viscosa 生物活性植物化学物质 pinocembrin 的网络分析和分子建模研究。
Pub Date : 2024-10-10 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00268-3
Mohana Priya, Azar Zochedh, Yoga Soundarya Mohan, Kaliraj Chandran, Karthick Arumugam, Asath Bahadur Sultan

Parkinson's disease, a neurodegenerative disorder, is quickly progressing and accounts for 15% of dementia cases. Parkinson's disease is the second most frequent form of neuronal degeneration after Alzheimer's, with an average age of 55 years for individuals exhibiting neuropsychiatric and physiological symptoms. Due to the effectiveness, low toxicity, and low side effects, bioactive compounds from plants have received increased attention recently as therapeutic drugs. In the current study, effective anti-neurodegenerative phytochemicals from Dodonaea viscosa were screened using in silico methods and have been proposed to be further investigated for the treatment of Parkinson's disease. The structures of twenty bioactive chemicals were screened and graph theoretical network analysis revealed alpha-synuclein as a potent therapeutic target. Based on docking scores, an effective bioactive molecule was selected, and its energy values, electrostatic potential surface and drug-like qualities were examined using molecular orbitals, pharmacokinetics and toxicity studies. Pinocembrin was found as a superior binder based on molecular docking as it demonstrated stronger binding with - 10.2 kcal/mol. An investigation using Ramachandran plot validated the protein-ligand complex secondary structure's stability. Pinocembrin, a bioactive phytochemical from Dodonaea viscosa, may be a viable lead molecule that may be developed as a candidate medicine for anti-neurodegenerative therapy against Parkinson's disease.

帕金森病是一种神经退行性疾病,病情发展迅速,占痴呆症病例的 15%。帕金森病是仅次于阿尔茨海默病的第二大神经元变性疾病,表现出神经精神和生理症状的患者平均年龄为 55 岁。由于植物中的生物活性化合物具有高效、低毒、低副作用等特点,近年来作为治疗药物受到越来越多的关注。在当前的研究中,利用硅学方法筛选出了来自 Dodonaea viscosa 的有效抗神经退行性植物化学物质,并建议对其进行进一步研究,以治疗帕金森病。对二十种生物活性化学物质的结构进行了筛选,并通过图论网络分析发现α-突触核蛋白是一个有效的治疗靶点。根据对接得分,筛选出一种有效的生物活性分子,并利用分子轨道、药代动力学和毒性研究考察了其能量值、静电位面和类药物特性。根据分子对接,发现 Pinocembrin 是一种更优越的粘合剂,因为它的粘合力更强,为 - 10.2 kcal/mol。利用拉马钱德兰图进行的研究验证了蛋白质配体复合物二级结构的稳定性。Pinocembrin 是一种来自 Dodonaea viscosa 的具有生物活性的植物化学物质,它可能是一种可行的先导分子,可作为抗神经退行性治疗帕金森病的候选药物进行开发。
{"title":"Network analysis and molecular modeling studies of pinocembrin a bioactive phytochemical of <i>Dodonaea viscosa</i> against Parkinson's disease.","authors":"Mohana Priya, Azar Zochedh, Yoga Soundarya Mohan, Kaliraj Chandran, Karthick Arumugam, Asath Bahadur Sultan","doi":"10.1007/s40203-024-00268-3","DOIUrl":"https://doi.org/10.1007/s40203-024-00268-3","url":null,"abstract":"<p><p>Parkinson's disease, a neurodegenerative disorder, is quickly progressing and accounts for 15% of dementia cases. Parkinson's disease is the second most frequent form of neuronal degeneration after Alzheimer's, with an average age of 55 years for individuals exhibiting neuropsychiatric and physiological symptoms. Due to the effectiveness, low toxicity, and low side effects, bioactive compounds from plants have received increased attention recently as therapeutic drugs. In the current study, effective anti-neurodegenerative phytochemicals from <i>Dodonaea viscosa</i> were screened using in silico methods and have been proposed to be further investigated for the treatment of Parkinson's disease. The structures of twenty bioactive chemicals were screened and graph theoretical network analysis revealed alpha-synuclein as a potent therapeutic target. Based on docking scores, an effective bioactive molecule was selected, and its energy values, electrostatic potential surface and drug-like qualities were examined using molecular orbitals, pharmacokinetics and toxicity studies. Pinocembrin was found as a superior binder based on molecular docking as it demonstrated stronger binding with - 10.2 kcal/mol. An investigation using Ramachandran plot validated the protein-ligand complex secondary structure's stability. Pinocembrin, a bioactive phytochemical from <i>Dodonaea viscosa</i>, may be a viable lead molecule that may be developed as a candidate medicine for anti-neurodegenerative therapy against Parkinson's disease.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"91"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466969/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational targeting of iron uptake proteins in Covid-19 induced mucormycosis to identify inhibitors via molecular dynamics, molecular mechanics and density function theory studies. 通过分子动力学、分子力学和密度函数理论研究,计算 Covid-19 诱导的粘液瘤病中铁摄取蛋白的靶向性,以确定抑制剂。
Pub Date : 2024-09-29 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00264-7
Manjima Sen, B M Priyanka, D Anusha, S Puneetha, Anagha S Setlur, Chandrashekar Karunakaran, Amulya Tandur, C S Prashant, Vidya Niranjan

Mucormycosis is a concerning invasive fungal infection with difficult diagnosis, high mortality rates, and limited treatment options. Iron availability is crucial for fungal growth that causes this disease. This study aimed to computationally target iron uptake proteins in Rhizopus arrhizus, Lichtheimia corymbifera, and Mucor circinelloides to identify inhibitors, thereby halting fungal growth and intervening in mucormycosis pathogenesis. Seven important iron uptake proteins were identified, modeled, and validated using Ramachandran plots. An in-house antifungal library of ~ 15,401 compounds was screened in molecular docking studies with these proteins. The best small molecule-protein complexes were simulated at 100 ns using Maestro, Schrodinger. Toxicity predictions suggested all six molecules, identified as the best binding compounds to seven proteins, belonged to lower toxicity levels per GHS classification. A molecular mechanics GBSA study for all seven complexes indicated low standard deviations after calculating free binding energies every 10 ns of the 100 ns trajectory. Density functional theory via quantum mechanics approaches highlighted the HOMO, LUMO, and other properties of the six best-bound molecules, revealing their binding capabilities and behaviour. This study sheds light on the molecular mechanisms and protein-ligand interactions, providing a multi-dimensional view towards the use of FDBD01920, FDBD01923, and FDBD01848 as stable antifungal ligands.

Supplementary information: The online version contains supplementary material available at 10.1007/s40203-024-00264-7.

粘孢子菌病是一种令人担忧的侵袭性真菌感染,诊断困难,死亡率高,治疗方案有限。铁的供应对导致这种疾病的真菌生长至关重要。本研究旨在通过计算锁定 Rhizopus arrhizus、Lichtheimia corymbifera 和 Mucor circinelloides 中的铁吸收蛋白,找出抑制剂,从而阻止真菌生长,干预粘孢子菌病的发病机制。利用拉马钱德兰图鉴定、建模和验证了七个重要的铁吸收蛋白。在与这些蛋白的分子对接研究中,筛选了一个由大约 15,401 种化合物组成的内部抗真菌化合物库。使用 Schrodinger 的 Maestro 在 100 ns 的时间内模拟了最佳的小分子-蛋白质复合物。毒性预测表明,被确定为与七种蛋白质结合最好的化合物的所有六种分子都属于 GHS 分类中的低毒性级别。对所有七种复合物进行的分子力学 GBSA 研究表明,在 100 毫微秒轨迹中每 10 毫微秒计算一次自由结合能后,标准偏差较低。密度泛函理论通过量子力学方法突出显示了六种最佳结合分子的 HOMO、LUMO 和其他特性,揭示了它们的结合能力和行为。这项研究揭示了分子机制和蛋白质与配体的相互作用,为将 FDBD01920、FDBD01923 和 FDBD01848 用作稳定的抗真菌配体提供了多维视角:在线版本包含补充材料,可查阅 10.1007/s40203-024-00264-7。
{"title":"Computational targeting of iron uptake proteins in Covid-19 induced mucormycosis to identify inhibitors via molecular dynamics, molecular mechanics and density function theory studies.","authors":"Manjima Sen, B M Priyanka, D Anusha, S Puneetha, Anagha S Setlur, Chandrashekar Karunakaran, Amulya Tandur, C S Prashant, Vidya Niranjan","doi":"10.1007/s40203-024-00264-7","DOIUrl":"10.1007/s40203-024-00264-7","url":null,"abstract":"<p><p>Mucormycosis is a concerning invasive fungal infection with difficult diagnosis, high mortality rates, and limited treatment options. Iron availability is crucial for fungal growth that causes this disease. This study aimed to computationally target iron uptake proteins in <i>Rhizopus arrhizus, Lichtheimia corymbifera,</i> and <i>Mucor circinelloides</i> to identify inhibitors, thereby halting fungal growth and intervening in mucormycosis pathogenesis. Seven important iron uptake proteins were identified, modeled, and validated using Ramachandran plots. An in-house antifungal library of ~ 15,401 compounds was screened in molecular docking studies with these proteins. The best small molecule-protein complexes were simulated at 100 ns using Maestro, Schrodinger. Toxicity predictions suggested all six molecules, identified as the best binding compounds to seven proteins, belonged to lower toxicity levels per GHS classification. A molecular mechanics GBSA study for all seven complexes indicated low standard deviations after calculating free binding energies every 10 ns of the 100 ns trajectory. Density functional theory via quantum mechanics approaches highlighted the HOMO, LUMO, and other properties of the six best-bound molecules, revealing their binding capabilities and behaviour. This study sheds light on the molecular mechanisms and protein-ligand interactions, providing a multi-dimensional view towards the use of FDBD01920, FDBD01923, and FDBD01848 as stable antifungal ligands.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00264-7.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"90"},"PeriodicalIF":0.0,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439861/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular docking and dynamics simulation of farnesol as a potential anticancer agent targeting mTOR pathway. 法尼醇作为靶向 mTOR 通路的潜在抗癌剂的分子对接和动力学模拟。
Pub Date : 2024-09-28 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00259-4
Tabasum Ali, Ifat Jan, Rajath Ramachandran, Rabiah Bashir, Khurshid Iqbal Andrabi, Ghulam Nabi Bader

Farnesol is a natural acyclic sesquiterpene alcohol, found in various essential oils such as, lemon grass, citronella, tuberose, neroli, and musk. It has a molecular mass of 222.372 g/mol and chemical formula of C₁₅H₂₆O. The main objective of this study was to assess the effect of farnesol on mTOR and its two downstream effectors, p70S6K and eIF4E, which are implicated in the development of cancer, via molecular dynamic simulation, and docking analysis in an in silico study. A multilayer, primarily computer-based analysis was conducted to assess farnesol's anticancer potential, with a focus on primary cancer targets. From the calculations performed, farnesol showed a binding affinity of - 9.66 kcal/mol, followed by binding affinity of - 7.4 kcal/mol and - 7.8 kcal/mol for mTOR, p70S6K and eIF4E respectively. Rapamycin showed the binding affinity of - 10.45 kcal/mol for mTOR, for p70S6K and eIF4E the calculated binding affinity was - 10.65 kcal/mol and 8.16 kcal/mol respectively. The binding affinity of farnesol was comparable to the standard drug rapamycin indicating its potential as an mTOR inhibitor. Molecular dynamics simulations suggest that the ligands (farnesol and rapamycin) were well trapped within the active site of the protein over a time gap of 50 ns. It is clear that farnesol showed relatively stable MD simulation results, with minor fluctuations and maintains a consistent binding orientation, suggesting a strong and stable interaction with the target proteins when compared to simulation data of standard drug. This study explores the potential of farnesol as an anticancer agent through an in-silico approach, focusing on its interaction with mTOR and its downstream effectors. Inhibition of mTOR signaling pathway may be responsible for the anticancer effect of farnesol. As this pathway plays a crucial role in cell proliferation and survival, making it a significant target in cancer research.

法呢醇是一种天然无环倍半萜醇,存在于柠檬草、香茅、晚香玉、橙花和麝香等多种精油中。它的分子质量为 222.372 g/mol,化学式为 C₁₅H₂₆O。本研究的主要目的是通过分子动态模拟和对接分析,评估法尼醇对 mTOR 及其两个下游效应物 p70S6K 和 eIF4E 的影响。为了评估法尼醇的抗癌潜力,我们主要基于计算机进行了多层分析,重点是主要癌症靶点。根据计算结果,法呢醇与 mTOR、p70S6K 和 eIF4E 的结合亲和力分别为 - 9.66 kcal/mol、- 7.4 kcal/mol 和 - 7.8 kcal/mol。雷帕霉素与 mTOR 的结合亲和力为 - 10.45 kcal/mol,与 p70S6K 和 eIF4E 的计算结合亲和力分别为 - 10.65 kcal/mol 和 8.16 kcal/mol。法尼醇的结合亲和力与标准药物雷帕霉素相当,这表明它具有作为 mTOR 抑制剂的潜力。分子动力学模拟表明,配体(法呢醇和雷帕霉素)在 50 毫微秒的时间间隙内很好地滞留在蛋白质的活性位点上。与标准药物的模拟数据相比,法尼醇显然显示出相对稳定的 MD 模拟结果,波动较小,并保持了一致的结合方向,这表明它与靶蛋白之间存在着强烈而稳定的相互作用。本研究通过模拟方法探讨了法尼醇作为抗癌药物的潜力,重点研究了它与 mTOR 及其下游效应因子的相互作用。抑制 mTOR 信号通路可能是法尼醇产生抗癌效果的原因。由于这一途径在细胞增殖和存活中起着关键作用,因此成为癌症研究的重要目标。
{"title":"Molecular docking and dynamics simulation of farnesol as a potential anticancer agent targeting mTOR pathway.","authors":"Tabasum Ali, Ifat Jan, Rajath Ramachandran, Rabiah Bashir, Khurshid Iqbal Andrabi, Ghulam Nabi Bader","doi":"10.1007/s40203-024-00259-4","DOIUrl":"10.1007/s40203-024-00259-4","url":null,"abstract":"<p><p>Farnesol is a natural acyclic sesquiterpene alcohol, found in various essential oils such as, lemon grass, citronella, tuberose, neroli, and musk. It has a molecular mass of 222.372 g/mol and chemical formula of C₁₅H₂₆O. The main objective of this study was to assess the effect of farnesol on mTOR and its two downstream effectors, p70S6K and eIF4E, which are implicated in the development of cancer, via molecular dynamic simulation, and docking analysis in an in silico study. A multilayer, primarily computer-based analysis was conducted to assess farnesol's anticancer potential, with a focus on primary cancer targets. From the calculations performed, farnesol showed a binding affinity of - 9.66 kcal/mol, followed by binding affinity of - 7.4 kcal/mol and - 7.8 kcal/mol for mTOR, p70S6K and eIF4E respectively. Rapamycin showed the binding affinity of - 10.45 kcal/mol for mTOR, for p70S6K and eIF4E the calculated binding affinity was - 10.65 kcal/mol and 8.16 kcal/mol respectively. The binding affinity of farnesol was comparable to the standard drug rapamycin indicating its potential as an mTOR inhibitor. Molecular dynamics simulations suggest that the ligands (farnesol and rapamycin) were well trapped within the active site of the protein over a time gap of 50 ns. It is clear that farnesol showed relatively stable MD simulation results, with minor fluctuations and maintains a consistent binding orientation, suggesting a strong and stable interaction with the target proteins when compared to simulation data of standard drug. This study explores the potential of farnesol as an anticancer agent through an in-silico approach, focusing on its interaction with mTOR and its downstream effectors. Inhibition of mTOR signaling pathway may be responsible for the anticancer effect of farnesol. As this pathway plays a crucial role in cell proliferation and survival, making it a significant target in cancer research.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"89"},"PeriodicalIF":0.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrative multi-target analysis of Urtica dioica for gout arthritis treatment: a network pharmacology and clustering approach. 治疗痛风性关节炎的荨麻多靶点综合分析:一种网络药理学和聚类方法。
Pub Date : 2024-09-28 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00254-9
Maryam Qasmi, Muhammad Mazhar Fareed, Haider Ali, Zarmina Khan, Sergey Shityakov

Urtica dioica (stinging nettle) has been traditionally used in Chinese medicine for the treatment of joint pain and rheumatoid arthritis. This study aims to elucidate the active compounds and mechanisms by which it acts against gout arthritis (GA). Gout-related genes were identified from the DisGeNet, GeneCards, and OMIM databases. These genes may play a role in inhibiting corresponding proteins targeted by the active compounds identified from the literature, which have an oral bioavailability of ≥ 30% and a drug-likeness score of ≥ 0.18. A human protein-protein interaction network was constructed, resulting in sixteen clusters containing plant-targeted genes, including ABCG2, SLC22A12, MAP2K7, ADCY10, RELA, and TP53. The key bioactive compounds, apigenin-7-O-glucoside and kaempferol, demonstrated significant binding to SLC22A12 and ABCG2, suggesting their potential to reduce uric acid levels and inflammation. Pathway enrichment analysis further identified key metabolic pathways involved, highlighting a dual mechanism of anti-inflammatory and urate-lowering effects. These findings underscore the potential of U. dioica in targeting multiple pathways involved in GA, combining traditional medicine with modern pharmacology. This integrated approach provides a foundation for future research and the development of multi-target therapeutic strategies for managing gout arthritis.

Graphical abstract:

Supplementary information: The online version contains supplementary material available at 10.1007/s40203-024-00254-9.

荨麻(荨麻)历来被中医用于治疗关节疼痛和类风湿性关节炎。本研究旨在阐明荨麻的活性化合物及其对痛风性关节炎(GA)的作用机制。研究人员从 DisGeNet、GeneCards 和 OMIM 数据库中发现了痛风相关基因。这些基因可能在抑制文献中发现的活性化合物所针对的相应蛋白质方面发挥作用,这些活性化合物的口服生物利用度≥30%,药物相似度得分≥0.18。构建的人类蛋白质-蛋白质相互作用网络产生了 16 个包含植物靶向基因的基因簇,包括 ABCG2、SLC22A12、MAP2K7、ADCY10、RELA 和 TP53。关键的生物活性化合物芹菜素-7-O-葡萄糖苷和山奈酚与 SLC22A12 和 ABCG2 有明显的结合,表明它们具有降低尿酸水平和减少炎症的潜力。通路富集分析进一步确定了所涉及的关键代谢通路,突出了抗炎和降尿酸作用的双重机制。这些发现强调了 U. dioica 在靶向参与 GA 的多种途径方面的潜力,将传统医学与现代药理学相结合。这种综合方法为未来的研究和开发治疗痛风性关节炎的多靶点治疗策略奠定了基础:在线版本包含补充材料,可查阅 10.1007/s40203-024-00254-9。
{"title":"Integrative multi-target analysis of <i>Urtica dioica</i> for gout arthritis treatment: a network pharmacology and clustering approach.","authors":"Maryam Qasmi, Muhammad Mazhar Fareed, Haider Ali, Zarmina Khan, Sergey Shityakov","doi":"10.1007/s40203-024-00254-9","DOIUrl":"10.1007/s40203-024-00254-9","url":null,"abstract":"<p><p><i>Urtica dioica</i> (stinging nettle) has been traditionally used in Chinese medicine for the treatment of joint pain and rheumatoid arthritis. This study aims to elucidate the active compounds and mechanisms by which it acts against gout arthritis (GA). Gout-related genes were identified from the DisGeNet, GeneCards, and OMIM databases. These genes may play a role in inhibiting corresponding proteins targeted by the active compounds identified from the literature, which have an oral bioavailability of ≥ 30% and a drug-likeness score of ≥ 0.18. A human protein-protein interaction network was constructed, resulting in sixteen clusters containing plant-targeted genes, including ABCG2, SLC22A12, MAP2K7, ADCY10, RELA, and TP53. The key bioactive compounds, apigenin-7-O-glucoside and kaempferol, demonstrated significant binding to SLC22A12 and ABCG2, suggesting their potential to reduce uric acid levels and inflammation. Pathway enrichment analysis further identified key metabolic pathways involved, highlighting a dual mechanism of anti-inflammatory and urate-lowering effects. These findings underscore the potential of <i>U. dioica</i> in targeting multiple pathways involved in GA, combining traditional medicine with modern pharmacology. This integrated approach provides a foundation for future research and the development of multi-target therapeutic strategies for managing gout arthritis.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00254-9.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"88"},"PeriodicalIF":0.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438756/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In silico fragment-based design and pharmacophore modelling of therapeutics against dengue virus envelope protein. 针对登革热病毒包膜蛋白的基于片段的硅学设计和药理模型。
Pub Date : 2024-09-20 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00262-9
Dwaipayan Chaudhuri, Satyabrata Majumder, Joyeeta Datta, Kalyan Giri

Dengue virus, an arbovirus of genus Flavivirus, is an infectious disease causing organisms in the tropical environment leading to numerous deaths every year. No therapeutic is available against the virus till date with only symptomatic relief available. Here, we have tried to design therapeutic compounds from scratch by fragment based method followed by pharmacophore based modelling to find suitable similar structure molecules and validated the same by MD simulation, followed by binding energy calculations and ADMET analysis. The receptor binding region of the dengue envelope protein was considered as the target for prevention of viral host cell entry and thus infection. This resulted in the final selection of kanamycin as a stable binding molecule against the Dengue virus envelope protein receptor binding domain. This study results in selection of a single molecule having high binding energy and prominent stable interactions as determined by post simulation analyses. This study aims to provide a direction for development of small molecule therapeutics against the dengue virus in order to control infection. This study may open a new avenue in the arena of structure based and fragment based therapeutic design to obtain novel molecules with therapeutic potential.

Supplementary information: The online version contains supplementary material available at 10.1007/s40203-024-00262-9.

登革热病毒(Dengue virus)是一种黄病毒属的虫媒病毒,是热带环境中的一种传染性致病生物,每年导致无数人死亡。迄今为止,还没有针对该病毒的治疗方法,只能缓解症状。在此,我们尝试从头开始设计治疗性化合物,首先采用基于片段的方法,然后基于药理模型寻找合适的相似结构分子,并通过 MD 模拟、结合能计算和 ADMET 分析进行验证。登革热包膜蛋白的受体结合区被认为是防止病毒进入宿主细胞进而感染的目标。最终选择卡那霉素作为与登革热病毒包膜蛋白受体结合域稳定结合的分子。这项研究的结果是,通过后模拟分析确定了一种具有高结合能和突出稳定相互作用的单一分子。这项研究旨在为开发针对登革热病毒的小分子疗法提供一个方向,以控制感染。这项研究可能会在基于结构和片段的治疗设计领域开辟一条新的途径,以获得具有治疗潜力的新型分子:在线版本包含补充材料,可查阅 10.1007/s40203-024-00262-9。
{"title":"In silico fragment-based design and pharmacophore modelling of therapeutics against dengue virus envelope protein.","authors":"Dwaipayan Chaudhuri, Satyabrata Majumder, Joyeeta Datta, Kalyan Giri","doi":"10.1007/s40203-024-00262-9","DOIUrl":"10.1007/s40203-024-00262-9","url":null,"abstract":"<p><p>Dengue virus, an arbovirus of genus Flavivirus, is an infectious disease causing organisms in the tropical environment leading to numerous deaths every year. No therapeutic is available against the virus till date with only symptomatic relief available. Here, we have tried to design therapeutic compounds from scratch by fragment based method followed by pharmacophore based modelling to find suitable similar structure molecules and validated the same by MD simulation, followed by binding energy calculations and ADMET analysis. The receptor binding region of the dengue envelope protein was considered as the target for prevention of viral host cell entry and thus infection. This resulted in the final selection of kanamycin as a stable binding molecule against the Dengue virus envelope protein receptor binding domain. This study results in selection of a single molecule having high binding energy and prominent stable interactions as determined by post simulation analyses. This study aims to provide a direction for development of small molecule therapeutics against the dengue virus in order to control infection. This study may open a new avenue in the arena of structure based and fragment based therapeutic design to obtain novel molecules with therapeutic potential.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00262-9.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"87"},"PeriodicalIF":0.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415559/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marine natural compounds as potential CBP bromodomain inhibitors for treating cancer: an in-silico approach using molecular docking, ADMET, molecular dynamics simulations and MM-PBSA binding free energy calculations. 海洋天然化合物作为治疗癌症的潜在 CBP 溴链抑制剂:使用分子对接、ADMET、分子动力学模拟和 MM-PBSA 结合自由能计算的室内方法。
Pub Date : 2024-09-18 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00258-5
Md Liakot Ali, Fabiha Noushin, Eva Azme, Md Mahmudul Hasan, Neamul Hoque, Afroz Fathema Metu

The cAMP-responsive element binding protein (CREB) binding protein (CBP), a bromodomain-containing protein, engages with multiple transcription factors and enhances the activation of many genes. CBP bromodomain acts as an epigenetic reader and plays an important role in the CBP-chromatin interaction which makes it an important drug target for treating many diseases. Though inhibiting CBP bromodomain was reported to have great potential in cancer therapeutics, approved CBP bromodomain inhibitor is yet to come. We utilized various in silico approaches like molecular docking, ADMET, molecular dynamics (MD) simulations, MM-PBSA calculations, and in silico PASS predictions to identify potential CBP bromodomain inhibitors from marine natural compounds as they have been identified as having distinctive chemical structures and greater anticancer activities. To develop a marine natural compound library for this investigation, Lipinski's rule of five was used. Sequential investigations utilizing molecular docking, ADMET studies, 100 ns MD simulations, and MM-PBSA calculations revealed that three marine compounds-ascididemin, neoamphimedine, and stelletin A-demonstrated superior binding affinity compared to the standard inhibitor, 69 A. These compounds also exhibited suitable drug-like properties, a favorable safety profile, and formed stable protein-ligand complexes. The in-silico PASS tool predicted that these compounds have significant potential for anticancer activity. Among them, ascididemin demonstrated the highest binding affinity in both molecular docking and MM-PBSA calculations, as well as a better stability profile in MD simulations. Hence, ascididemin can be a potential inhibitor of CBP bromodomain. However, in vitro and in vivo validation is required for further confirmation of these findings.

Graphical abstract:

Supplementary information: The online version contains supplementary material available at 10.1007/s40203-024-00258-5.

cAMP 反应元件结合蛋白(CREB)结合蛋白(CBP)是一种含溴结构域的蛋白,可与多种转录因子结合,增强许多基因的活化。CBP 溴化多聚体是一种表观遗传读取器,在 CBP 与染色质的相互作用中发挥着重要作用,因此成为治疗多种疾病的重要药物靶标。据报道,抑制 CBP bromodomain 在癌症治疗中具有巨大潜力,但目前还没有获得批准的 CBP bromodomain 抑制剂。我们利用分子对接、ADMET、分子动力学(MD)模拟、MM-PBSA 计算和硅学 PASS 预测等多种硅学方法,从海洋天然化合物中找出潜在的 CBP 溴链抑制剂,因为这些化合物已被确认具有独特的化学结构和更强的抗癌活性。为开发海洋天然化合物库,本研究采用了利平斯基五法则。利用分子对接、ADMET 研究、100 ns MD 模拟和 MM-PBSA 计算进行的连续研究表明,与标准抑制剂 69 A 相比,三种海洋化合物--ascididemin、neoamphimedine 和 stelletin A--表现出更强的结合亲和力。根据室内 PASS 工具的预测,这些化合物具有显著的抗癌活性潜力。其中, ascidemin 在分子对接和 MM-PBSA 计算中表现出最高的结合亲和力,在 MD 模拟中也表现出更好的稳定性。因此,升麻素可能是一种潜在的 CBP 溴链抑制剂。然而,要进一步证实这些发现,还需要体外和体内验证:在线版本包含补充材料,可查阅 10.1007/s40203-024-00258-5。
{"title":"Marine natural compounds as potential CBP bromodomain inhibitors for treating cancer: an in-silico approach using molecular docking, ADMET, molecular dynamics simulations and MM-PBSA binding free energy calculations.","authors":"Md Liakot Ali, Fabiha Noushin, Eva Azme, Md Mahmudul Hasan, Neamul Hoque, Afroz Fathema Metu","doi":"10.1007/s40203-024-00258-5","DOIUrl":"10.1007/s40203-024-00258-5","url":null,"abstract":"<p><p>The cAMP-responsive element binding protein (CREB) binding protein (CBP), a bromodomain-containing protein, engages with multiple transcription factors and enhances the activation of many genes. CBP bromodomain acts as an epigenetic reader and plays an important role in the CBP-chromatin interaction which makes it an important drug target for treating many diseases. Though inhibiting CBP bromodomain was reported to have great potential in cancer therapeutics, approved CBP bromodomain inhibitor is yet to come. We utilized various in silico approaches like molecular docking, ADMET, molecular dynamics (MD) simulations, MM-PBSA calculations, and in silico PASS predictions to identify potential CBP bromodomain inhibitors from marine natural compounds as they have been identified as having distinctive chemical structures and greater anticancer activities. To develop a marine natural compound library for this investigation, Lipinski's rule of five was used. Sequential investigations utilizing molecular docking, ADMET studies, 100 ns MD simulations, and MM-PBSA calculations revealed that three marine compounds-ascididemin, neoamphimedine, and stelletin A-demonstrated superior binding affinity compared to the standard inhibitor, 69 A. These compounds also exhibited suitable drug-like properties, a favorable safety profile, and formed stable protein-ligand complexes. The in-silico PASS tool predicted that these compounds have significant potential for anticancer activity. Among them, ascididemin demonstrated the highest binding affinity in both molecular docking and MM-PBSA calculations, as well as a better stability profile in MD simulations. Hence, ascididemin can be a potential inhibitor of CBP bromodomain. However, in vitro and in vivo validation is required for further confirmation of these findings.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00258-5.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"85"},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of therapeutic potential of the Il24-p20 fusion protein against breast cancer: an in-silico approach. Il24-p20融合蛋白对乳腺癌治疗潜力的研究:一种内模拟方法。
Pub Date : 2024-09-18 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00252-x
Shahnila Qureshi, Nadeem Ahmed, Hafiz Muhammad Rehman, Muhammad Imran Amirzada, Fiza Saleem, Kainat Waheed, Afeefa Chaudhry, Iram Kafait, Muhammad Akram, Hamid Bashir

Targeted delivery of therapeutic anticancer chimeric molecules enhances drug efficacy. Numerous studies have focused on developing novel treatments by employing cytokines, particularly interleukins, to inhibit the growth of cancer cells. In the present study, we fused interleukin 24 with the tumor-targeting peptide P20 through a rigid linker to selectively target cancer cells. The secondary structure, tertiary structure, and physicochemical characteristics of the constructed chimeric IL-24-P20 protein were predicted by using bioinformatics tools. In-silico analysis revealed that the fusion construct has a basic nature with 175 amino acids and a molecular weight of 20 kDa. By using the Rampage and ERRAT2 servers, the validity and quality of the fusion protein were evaluated. The results indicated that 93% of the chimeric proteins contained 90.1% of the residues in the favoured region, resulting in a reliable structure. Finally, docking and simulation studies were conducted via ClusPro and Desmond Schrödinger, respectively. Our results indicate that the constructed fusion protein exhibits excellent quality, interaction capabilities, validity, and stability. These findings suggest that the fusion protein is a promising candidate for targeted cancer therapy.

靶向递送治疗性抗癌嵌合分子可提高药物疗效。许多研究都集中在利用细胞因子,尤其是白细胞介素来抑制癌细胞生长,从而开发新的治疗方法。在本研究中,我们通过刚性连接体将白细胞介素 24 与肿瘤靶向肽 P20 融合,从而选择性地靶向癌细胞。我们利用生物信息学工具预测了所构建的嵌合 IL-24-P20 蛋白的二级结构、三级结构和理化特性。体内分析表明,该融合构建体具有基本性质,含有 175 个氨基酸,分子量为 20 kDa。利用 Rampage 和 ERRAT2 服务器对融合蛋白的有效性和质量进行了评估。结果表明,93% 的嵌合蛋白含有 90.1% 的残基位于有利区域,结构可靠。最后,分别通过 ClusPro 和 Desmond Schrödinger 进行了对接和模拟研究。结果表明,所构建的融合蛋白在质量、相互作用能力、有效性和稳定性方面均表现优异。这些研究结果表明,该融合蛋白有望用于癌症靶向治疗。
{"title":"Investigation of therapeutic potential of the Il24-p20 fusion protein against breast cancer: an in-silico approach.","authors":"Shahnila Qureshi, Nadeem Ahmed, Hafiz Muhammad Rehman, Muhammad Imran Amirzada, Fiza Saleem, Kainat Waheed, Afeefa Chaudhry, Iram Kafait, Muhammad Akram, Hamid Bashir","doi":"10.1007/s40203-024-00252-x","DOIUrl":"https://doi.org/10.1007/s40203-024-00252-x","url":null,"abstract":"<p><p>Targeted delivery of therapeutic anticancer chimeric molecules enhances drug efficacy. Numerous studies have focused on developing novel treatments by employing cytokines, particularly interleukins, to inhibit the growth of cancer cells. In the present study, we fused interleukin 24 with the tumor-targeting peptide P20 through a rigid linker to selectively target cancer cells. The secondary structure, tertiary structure, and physicochemical characteristics of the constructed chimeric IL-24-P20 protein were predicted by using bioinformatics tools. In-silico analysis revealed that the fusion construct has a basic nature with 175 amino acids and a molecular weight of 20 kDa. By using the Rampage and ERRAT2 servers, the validity and quality of the fusion protein were evaluated. The results indicated that 93% of the chimeric proteins contained 90.1% of the residues in the favoured region, resulting in a reliable structure. Finally, docking and simulation studies were conducted via ClusPro and Desmond Schrödinger, respectively. Our results indicate that the constructed fusion protein exhibits excellent quality, interaction capabilities, validity, and stability. These findings suggest that the fusion protein is a promising candidate for targeted cancer therapy.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"84"},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408464/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anticipatory in silico vaccine designing based on specific antigenic epitopes from Streptococcus mutans against diabetic pathogenesis. 基于变异链球菌的特异性抗原表位设计预防糖尿病发病的预期性硅学疫苗。
Pub Date : 2024-09-18 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00260-x
Gopinath Murugan, Gugan Kothandan, Rajashree Padmanaban

The metabolic disorder Type 2 Diabetes Mellitus (T2DM) is characterized by hyperglycaemia, causing increased mortality and healthcare burden globally. Recent studies emphasize the impact of metabolites in the gut microbiome on T2DM pathogenesis. One such microbial metabolite, imidazole propionate (Imp) derived from histidine metabolism, is shown to interfere with insulin signalling and other key metabolic processes. The key enzyme urocanate reductase (UrdA) is involved in ImP production. Hence, we propose to develop a novel therapeutic vaccine against the gut microbe producing Imp based on UrdA as a target for treating T2DM using immunoinformatics approach. Antigenic, non-allergic, non-toxic, and immunogenic B cell and T cell potential epitopes were predicted using immunoinformatics servers and tools. These epitopes were adjoined using linker sequences, and to increase immunogenicity, adjuvants were added at the N-terminal end of the final vaccine construct. Further, to confirm the vaccine's safety, antigenic and non-allergic characteristics of the developed vaccine construct were assessed. The tertiary structure of the UrdA vaccine sequence was predicted using molecular modelling tools. A molecular docking study was utilized to understand the vaccine construct interaction with immune receptors, followed by molecular dynamics simulation and binding free energy calculations to assess stability of the complex. In silico cloning techniques were employed to evaluate the expression and translation effectiveness of the developed vaccine in pET vector. In conclusion, this study developed an in silico epitope-based vaccine construct as a novel adjunct therapeutic for T2DM.

Graphical abstract:

2 型糖尿病(T2DM)是一种以高血糖为特征的代谢性疾病,在全球范围内造成死亡率和医疗负担的增加。最近的研究强调了肠道微生物组中的代谢物对 T2DM 发病机制的影响。其中一种微生物代谢物--组氨酸代谢产生的咪唑丙酸盐(Imp)被证明会干扰胰岛素信号和其他关键代谢过程。关键酶尿囊酸还原酶(UrdA)参与了 ImP 的生成。因此,我们建议利用免疫信息学方法,以 UrdA 为治疗 T2DM 的靶点,开发一种针对肠道微生物产 Imp 的新型治疗疫苗。我们使用免疫信息学服务器和工具预测了抗原性、非过敏性、无毒性和免疫原性的 B 细胞和 T 细胞潜在表位。这些表位通过连接序列连接起来,为了增加免疫原性,在最终疫苗构建体的 N 端添加了佐剂。此外,为了确认疫苗的安全性,还对所开发疫苗构建体的抗原性和非过敏性特征进行了评估。利用分子建模工具预测了 UrdA 疫苗序列的三级结构。利用分子对接研究了解疫苗构建物与免疫受体的相互作用,然后进行分子动力学模拟和结合自由能计算,以评估复合物的稳定性。此外,还采用硅克隆技术评估了所开发疫苗在 pET 载体中的表达和翻译效果。总之,本研究开发了一种基于表位的硅学疫苗构建体,作为治疗 T2DM 的新型辅助疗法:
{"title":"Anticipatory in silico vaccine designing based on specific antigenic epitopes from <i>Streptococcus mutans</i> against diabetic pathogenesis.","authors":"Gopinath Murugan, Gugan Kothandan, Rajashree Padmanaban","doi":"10.1007/s40203-024-00260-x","DOIUrl":"10.1007/s40203-024-00260-x","url":null,"abstract":"<p><p>The metabolic disorder Type 2 Diabetes Mellitus (T2DM) is characterized by hyperglycaemia, causing increased mortality and healthcare burden globally. Recent studies emphasize the impact of metabolites in the gut microbiome on T2DM pathogenesis. One such microbial metabolite, imidazole propionate (Imp) derived from histidine metabolism, is shown to interfere with insulin signalling and other key metabolic processes. The key enzyme urocanate reductase (UrdA) is involved in ImP production. Hence, we propose to develop a novel therapeutic vaccine against the gut microbe producing Imp based on UrdA as a target for treating T2DM using immunoinformatics approach. Antigenic, non-allergic, non-toxic, and immunogenic B cell and T cell potential epitopes were predicted using immunoinformatics servers and tools. These epitopes were adjoined using linker sequences, and to increase immunogenicity, adjuvants were added at the N-terminal end of the final vaccine construct. Further, to confirm the vaccine's safety, antigenic and non-allergic characteristics of the developed vaccine construct were assessed. The tertiary structure of the UrdA vaccine sequence was predicted using molecular modelling tools. A molecular docking study was utilized to understand the vaccine construct interaction with immune receptors, followed by molecular dynamics simulation and binding free energy calculations to assess stability of the complex. In silico cloning techniques were employed to evaluate the expression and translation effectiveness of the developed vaccine in pET vector. In conclusion, this study developed an in silico epitope-based vaccine construct as a novel adjunct therapeutic for T2DM.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"86"},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery, lead identification and exploration of potential oxadiazole derivatives in targeting STAT3 as anti-cancer agents. 发现、鉴定和探索以 STAT3 为靶向的潜在噁二唑衍生物作为抗癌药物。
Pub Date : 2024-09-14 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00261-w
Vivek Panwar, Sounok SenGupta, Saroj Kumar, Praveen P Singh, Arun Kumar, Shavkatjon Azizov, Manoj K Gupta, Deepak Kumar

Oxadiazoles an important heterocyclic scaffold of medicinal importance in the field of drug discovery. In the study, a library of oxadiazole based compounds was selected for screening against STAT-3 as anti-cancer target. STAT3 is a potential target of interest in cancer therapy. A total of 544 screened library of compounds was subjected to molecular docking against STAT-3 (6NJS and 6NQU). The compounds with good dock score and binding interations were further subjected to in-silico ADME analysis followed by toxicity estimation. A total of 141 hits were selected against 6NJS and 50 hits against 6NQU and further screened for kinetic properties and drug likeliness. The compounds were screened on the basis of physico-chemical properties, solubility, gastrointestinal absorption, BBB permeability, synthetic accessibility, Lipinski and other violations. Best compounds obtained after ADME analysis were further subjected for toxicity analysis. Carcinogenecity, mutagenicity, Ames and other important parameters were considered for toxicity based screening. The best leads thus obtained (compound 114 and 40) were further subjected to molecular dynamics against the respective target proteins. MD simulations were run to access the stability of C-114 and C-40 along with the dynamic behaviour of both complexes for about 100 ns and shows good stability with the proteins.

噁二唑是一种重要的杂环支架,在药物发现领域具有重要的药用价值。在这项研究中,我们选择了一个恶二唑化合物库,针对 STAT-3 这一抗癌靶点进行筛选。STAT3 是癌症治疗的潜在靶点。共筛选出 544 个化合物库,并与 STAT-3(6NJS 和 6NQU)进行了分子对接。具有良好对接得分和结合界面的化合物将进一步进行体内 ADME 分析,然后进行毒性评估。共筛选出 141 个与 6NJS 结合的化合物和 50 个与 6NQU 结合的化合物,并对其动力学特性和药物相容性进行了进一步筛选。筛选化合物的依据包括理化性质、溶解性、胃肠道吸收性、BBB 渗透性、合成可得性、Lipinski 和其他违规情况。经 ADME 分析后获得的最佳化合物将进一步进行毒性分析。在进行毒性筛选时,考虑了致癌性、诱变性、Ames 和其他重要参数。对由此获得的最佳先导化合物(化合物 114 和 40)进一步进行了针对各自靶蛋白的分子动力学分析。通过运行 MD 模拟来了解 C-114 和 C-40 的稳定性,以及这两种复合物在约 100 毫微秒内的动态行为,结果表明这两种复合物在蛋白质中具有良好的稳定性。
{"title":"Discovery, lead identification and exploration of potential oxadiazole derivatives in targeting STAT3 as anti-cancer agents.","authors":"Vivek Panwar, Sounok SenGupta, Saroj Kumar, Praveen P Singh, Arun Kumar, Shavkatjon Azizov, Manoj K Gupta, Deepak Kumar","doi":"10.1007/s40203-024-00261-w","DOIUrl":"https://doi.org/10.1007/s40203-024-00261-w","url":null,"abstract":"<p><p>Oxadiazoles an important heterocyclic scaffold of medicinal importance in the field of drug discovery. In the study, a library of oxadiazole based compounds was selected for screening against STAT-3 as anti-cancer target. STAT3 is a potential target of interest in cancer therapy. A total of 544 screened library of compounds was subjected to molecular docking against STAT-3 (6NJS and 6NQU). The compounds with good dock score and binding interations were further subjected to in-silico ADME analysis followed by toxicity estimation. A total of 141 hits were selected against 6NJS and 50 hits against 6NQU and further screened for kinetic properties and drug likeliness. The compounds were screened on the basis of physico-chemical properties, solubility, gastrointestinal absorption, BBB permeability, synthetic accessibility, Lipinski and other violations. Best compounds obtained after ADME analysis were further subjected for toxicity analysis. Carcinogenecity, mutagenicity, Ames and other important parameters were considered for toxicity based screening. The best leads thus obtained (compound 114 and 40) were further subjected to molecular dynamics against the respective target proteins. MD simulations were run to access the stability of C-114 and C-40 along with the dynamic behaviour of both complexes for about 100 ns and shows good stability with the proteins.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"83"},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11401806/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In silico analysis reveals α-amylase inhibitory potential of Taraxerol (Coccinia indica) and Epoxywithanolide-1 (Withania coagulans): a possible way to control postprandial hyperglycemia-induced endothelial dysfunction and cardiovascular events. 硅学分析揭示了蒲公英萜醇(Coccinia indica)和淫羊藿内酯-1(Withania coagulans)抑制α-淀粉酶的潜力:一种控制餐后高血糖诱发的内皮功能障碍和心血管事件的可能方法。
Pub Date : 2024-09-09 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00257-6
Lokesh Ravi, Venkatesh Sadhana, Pratishtha Jain, Shree Kumari Godidhar Raghuram, Mohanasrinivasan Vaithilingam, Reji Manjunathan, Ajith Kumar Krishnan, Mookkandi Palsamy Kesavan

Postprandial hyperglycemia (PPG) exacerbates endothelial dysfunction and impairs vascular function in diabetes as well in healthy people. Though synthetic drugs are available to regulate PPG, the severe gastrointestinal side effects of those medications have prompted the search for alternative treatments. Recently, some phytochemicals captured the attention because of their inhibitory effects on α-amylase to control diabetes. The aim of this study was to investigate and identify potential alpha-amylase inhibitors in C. indica and W. coagulans. This study also aims to understand one of the possible mechanisms of action of plants for their anti-diabetic activity. A total of 36 phytochemical ligands were subjected for protein-ligand docking analysis. Among the phytochemicals, Taraxerol and Epoxywithanolide-I demonstrated significant binding free energy of - 10.2 kcal/mol and - 11.9 kcal/mol respectively, which was higher than the reference acarbose with - 8.6 kcal/mol. These molecules were subjected for molecular dynamics simulation (MDS) analysis with alpha-amylase protein for a duration of 150 ns. Among the three complexes, Taraxerol and Epoxywithanolide-I complexes demonstrates strong potential as inhibitors of the target protein. MDS results were analyzed via root mean square deviation (RMSD), fluctuation of residues, potential energy, radii of gyration and solvent access surface area analysis. Taraxerol demonstrated a significantly low potential energy of - 1,924,605.25 kJ/mol, and Epoxywithanolide-I demonstrated - 1,964,113.3 kJ/mol of potential energy. RMSD plot shows that Epoxywithanolide-I has much higher stability than the other MDS complexes. Drugability and toxicity studies show that the test ligands are demonstrating strong potential as drug like molecules. The results of the study conclude that, Taraxerol of C. indica and Epoxywithanolide-I of W. coagulans are strong inhibitors of alpha-amylase enzyme and that, this is one of the possible mechanisms of action of the plants for their reported anti-diabetic activities. Further in-vitro analysis is in demand to prove the observed results.

餐后高血糖症(PPG)会加剧糖尿病患者以及健康人的内皮功能障碍并损害血管功能。虽然有合成药物可以调节餐后高血糖,但这些药物对胃肠道的严重副作用促使人们寻找替代疗法。最近,一些植物化学物质引起了人们的注意,因为它们对α-淀粉酶有抑制作用,可以控制糖尿病。本研究的目的是调查和鉴定 C. indica 和 W. coagulans 中潜在的α-淀粉酶抑制剂。本研究还旨在了解植物抗糖尿病活性的可能作用机制之一。共有 36 种植物化学配体被用于蛋白质配体对接分析。在这些植物化学配体中,蒲公英萜醇(Taraxerol)和环氧丹皮酚内酯(Epoxywithanolide-I)的结合自由能分别为-10.2 kcal/mol和-11.9 kcal/mol,高于阿卡波糖(acarbose)的-8.6 kcal/mol。这些分子与α-淀粉酶蛋白进行了持续时间为 150 ns 的分子动力学模拟(MDS)分析。在这三种复合物中,Taraxerol 和 Epoxywithanolide-I 复合物显示出作为目标蛋白质抑制剂的强大潜力。通过均方根偏差(RMSD)、残基波动、势能、回旋半径和溶剂接触表面积分析,对 MDS 结果进行了分析。蒲公英萜醇的势能明显较低,为-1,924,605.25 kJ/mol,而 Epoxywithanolide-I 的势能为-1,964,113.3 kJ/mol。RMSD 图显示,Epoxywithanolide-I 的稳定性远高于其他 MDS 复合物。可药用性和毒性研究表明,测试配体作为类药物分子具有很强的潜力。研究结果得出结论,籼稻中的蒲公英萜醇(Taraxerol of C. indica)和W. coagulans中的环氧花青素-I(Epoxywithanolide-I)是α-淀粉酶的强力抑制剂,这也是这些植物据报道具有抗糖尿病活性的可能作用机制之一。需要进一步的体外分析来证明观察到的结果。
{"title":"In silico analysis reveals α-amylase inhibitory potential of Taraxerol (<i>Coccinia indica</i>) and Epoxywithanolide-1 (<i>Withania coagulans</i>): a possible way to control postprandial hyperglycemia-induced endothelial dysfunction and cardiovascular events.","authors":"Lokesh Ravi, Venkatesh Sadhana, Pratishtha Jain, Shree Kumari Godidhar Raghuram, Mohanasrinivasan Vaithilingam, Reji Manjunathan, Ajith Kumar Krishnan, Mookkandi Palsamy Kesavan","doi":"10.1007/s40203-024-00257-6","DOIUrl":"https://doi.org/10.1007/s40203-024-00257-6","url":null,"abstract":"<p><p>Postprandial hyperglycemia (PPG) exacerbates endothelial dysfunction and impairs vascular function in diabetes as well in healthy people. Though synthetic drugs are available to regulate PPG, the severe gastrointestinal side effects of those medications have prompted the search for alternative treatments. Recently, some phytochemicals captured the attention because of their inhibitory effects on α-amylase to control diabetes. The aim of this study was to investigate and identify potential alpha-amylase inhibitors in <i>C. indica</i> and <i>W. coagulans</i>. This study also aims to understand one of the possible mechanisms of action of plants for their anti-diabetic activity. A total of 36 phytochemical ligands were subjected for protein-ligand docking analysis. Among the phytochemicals, Taraxerol and Epoxywithanolide-I demonstrated significant binding free energy of - 10.2 kcal/mol and - 11.9 kcal/mol respectively, which was higher than the reference acarbose with - 8.6 kcal/mol. These molecules were subjected for molecular dynamics simulation (MDS) analysis with alpha-amylase protein for a duration of 150 ns. Among the three complexes, Taraxerol and Epoxywithanolide-I complexes demonstrates strong potential as inhibitors of the target protein. MDS results were analyzed via root mean square deviation (RMSD), fluctuation of residues, potential energy, radii of gyration and solvent access surface area analysis. Taraxerol demonstrated a significantly low potential energy of - 1,924,605.25 kJ/mol, and Epoxywithanolide-I demonstrated - 1,964,113.3 kJ/mol of potential energy. RMSD plot shows that Epoxywithanolide-I has much higher stability than the other MDS complexes. Drugability and toxicity studies show that the test ligands are demonstrating strong potential as drug like molecules. The results of the study conclude that, Taraxerol of <i>C. indica</i> and Epoxywithanolide-I of <i>W. coagulans</i> are strong inhibitors of alpha-amylase enzyme and that, this is one of the possible mechanisms of action of the plants for their reported anti-diabetic activities. Further <i>in-vitro</i> analysis is in demand to prove the observed results.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"82"},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11383901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
In silico pharmacology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1