Dengue virus, an arbovirus of genus Flavivirus, is an infectious disease causing organisms in the tropical environment leading to numerous deaths every year. No therapeutic is available against the virus till date with only symptomatic relief available. Here, we have tried to design therapeutic compounds from scratch by fragment based method followed by pharmacophore based modelling to find suitable similar structure molecules and validated the same by MD simulation, followed by binding energy calculations and ADMET analysis. The receptor binding region of the dengue envelope protein was considered as the target for prevention of viral host cell entry and thus infection. This resulted in the final selection of kanamycin as a stable binding molecule against the Dengue virus envelope protein receptor binding domain. This study results in selection of a single molecule having high binding energy and prominent stable interactions as determined by post simulation analyses. This study aims to provide a direction for development of small molecule therapeutics against the dengue virus in order to control infection. This study may open a new avenue in the arena of structure based and fragment based therapeutic design to obtain novel molecules with therapeutic potential.
Supplementary information: The online version contains supplementary material available at 10.1007/s40203-024-00262-9.
{"title":"In silico fragment-based design and pharmacophore modelling of therapeutics against dengue virus envelope protein.","authors":"Dwaipayan Chaudhuri, Satyabrata Majumder, Joyeeta Datta, Kalyan Giri","doi":"10.1007/s40203-024-00262-9","DOIUrl":"10.1007/s40203-024-00262-9","url":null,"abstract":"<p><p>Dengue virus, an arbovirus of genus Flavivirus, is an infectious disease causing organisms in the tropical environment leading to numerous deaths every year. No therapeutic is available against the virus till date with only symptomatic relief available. Here, we have tried to design therapeutic compounds from scratch by fragment based method followed by pharmacophore based modelling to find suitable similar structure molecules and validated the same by MD simulation, followed by binding energy calculations and ADMET analysis. The receptor binding region of the dengue envelope protein was considered as the target for prevention of viral host cell entry and thus infection. This resulted in the final selection of kanamycin as a stable binding molecule against the Dengue virus envelope protein receptor binding domain. This study results in selection of a single molecule having high binding energy and prominent stable interactions as determined by post simulation analyses. This study aims to provide a direction for development of small molecule therapeutics against the dengue virus in order to control infection. This study may open a new avenue in the arena of structure based and fragment based therapeutic design to obtain novel molecules with therapeutic potential.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00262-9.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"87"},"PeriodicalIF":0.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415559/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18eCollection Date: 2024-01-01DOI: 10.1007/s40203-024-00258-5
Md Liakot Ali, Fabiha Noushin, Eva Azme, Md Mahmudul Hasan, Neamul Hoque, Afroz Fathema Metu
The cAMP-responsive element binding protein (CREB) binding protein (CBP), a bromodomain-containing protein, engages with multiple transcription factors and enhances the activation of many genes. CBP bromodomain acts as an epigenetic reader and plays an important role in the CBP-chromatin interaction which makes it an important drug target for treating many diseases. Though inhibiting CBP bromodomain was reported to have great potential in cancer therapeutics, approved CBP bromodomain inhibitor is yet to come. We utilized various in silico approaches like molecular docking, ADMET, molecular dynamics (MD) simulations, MM-PBSA calculations, and in silico PASS predictions to identify potential CBP bromodomain inhibitors from marine natural compounds as they have been identified as having distinctive chemical structures and greater anticancer activities. To develop a marine natural compound library for this investigation, Lipinski's rule of five was used. Sequential investigations utilizing molecular docking, ADMET studies, 100 ns MD simulations, and MM-PBSA calculations revealed that three marine compounds-ascididemin, neoamphimedine, and stelletin A-demonstrated superior binding affinity compared to the standard inhibitor, 69 A. These compounds also exhibited suitable drug-like properties, a favorable safety profile, and formed stable protein-ligand complexes. The in-silico PASS tool predicted that these compounds have significant potential for anticancer activity. Among them, ascididemin demonstrated the highest binding affinity in both molecular docking and MM-PBSA calculations, as well as a better stability profile in MD simulations. Hence, ascididemin can be a potential inhibitor of CBP bromodomain. However, in vitro and in vivo validation is required for further confirmation of these findings.
Graphical abstract:
Supplementary information: The online version contains supplementary material available at 10.1007/s40203-024-00258-5.
{"title":"Marine natural compounds as potential CBP bromodomain inhibitors for treating cancer: an in-silico approach using molecular docking, ADMET, molecular dynamics simulations and MM-PBSA binding free energy calculations.","authors":"Md Liakot Ali, Fabiha Noushin, Eva Azme, Md Mahmudul Hasan, Neamul Hoque, Afroz Fathema Metu","doi":"10.1007/s40203-024-00258-5","DOIUrl":"10.1007/s40203-024-00258-5","url":null,"abstract":"<p><p>The cAMP-responsive element binding protein (CREB) binding protein (CBP), a bromodomain-containing protein, engages with multiple transcription factors and enhances the activation of many genes. CBP bromodomain acts as an epigenetic reader and plays an important role in the CBP-chromatin interaction which makes it an important drug target for treating many diseases. Though inhibiting CBP bromodomain was reported to have great potential in cancer therapeutics, approved CBP bromodomain inhibitor is yet to come. We utilized various in silico approaches like molecular docking, ADMET, molecular dynamics (MD) simulations, MM-PBSA calculations, and in silico PASS predictions to identify potential CBP bromodomain inhibitors from marine natural compounds as they have been identified as having distinctive chemical structures and greater anticancer activities. To develop a marine natural compound library for this investigation, Lipinski's rule of five was used. Sequential investigations utilizing molecular docking, ADMET studies, 100 ns MD simulations, and MM-PBSA calculations revealed that three marine compounds-ascididemin, neoamphimedine, and stelletin A-demonstrated superior binding affinity compared to the standard inhibitor, 69 A. These compounds also exhibited suitable drug-like properties, a favorable safety profile, and formed stable protein-ligand complexes. The in-silico PASS tool predicted that these compounds have significant potential for anticancer activity. Among them, ascididemin demonstrated the highest binding affinity in both molecular docking and MM-PBSA calculations, as well as a better stability profile in MD simulations. Hence, ascididemin can be a potential inhibitor of CBP bromodomain. However, in vitro and in vivo validation is required for further confirmation of these findings.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00258-5.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"85"},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18eCollection Date: 2024-01-01DOI: 10.1007/s40203-024-00252-x
Shahnila Qureshi, Nadeem Ahmed, Hafiz Muhammad Rehman, Muhammad Imran Amirzada, Fiza Saleem, Kainat Waheed, Afeefa Chaudhry, Iram Kafait, Muhammad Akram, Hamid Bashir
Targeted delivery of therapeutic anticancer chimeric molecules enhances drug efficacy. Numerous studies have focused on developing novel treatments by employing cytokines, particularly interleukins, to inhibit the growth of cancer cells. In the present study, we fused interleukin 24 with the tumor-targeting peptide P20 through a rigid linker to selectively target cancer cells. The secondary structure, tertiary structure, and physicochemical characteristics of the constructed chimeric IL-24-P20 protein were predicted by using bioinformatics tools. In-silico analysis revealed that the fusion construct has a basic nature with 175 amino acids and a molecular weight of 20 kDa. By using the Rampage and ERRAT2 servers, the validity and quality of the fusion protein were evaluated. The results indicated that 93% of the chimeric proteins contained 90.1% of the residues in the favoured region, resulting in a reliable structure. Finally, docking and simulation studies were conducted via ClusPro and Desmond Schrödinger, respectively. Our results indicate that the constructed fusion protein exhibits excellent quality, interaction capabilities, validity, and stability. These findings suggest that the fusion protein is a promising candidate for targeted cancer therapy.
{"title":"Investigation of therapeutic potential of the Il24-p20 fusion protein against breast cancer: an in-silico approach.","authors":"Shahnila Qureshi, Nadeem Ahmed, Hafiz Muhammad Rehman, Muhammad Imran Amirzada, Fiza Saleem, Kainat Waheed, Afeefa Chaudhry, Iram Kafait, Muhammad Akram, Hamid Bashir","doi":"10.1007/s40203-024-00252-x","DOIUrl":"https://doi.org/10.1007/s40203-024-00252-x","url":null,"abstract":"<p><p>Targeted delivery of therapeutic anticancer chimeric molecules enhances drug efficacy. Numerous studies have focused on developing novel treatments by employing cytokines, particularly interleukins, to inhibit the growth of cancer cells. In the present study, we fused interleukin 24 with the tumor-targeting peptide P20 through a rigid linker to selectively target cancer cells. The secondary structure, tertiary structure, and physicochemical characteristics of the constructed chimeric IL-24-P20 protein were predicted by using bioinformatics tools. In-silico analysis revealed that the fusion construct has a basic nature with 175 amino acids and a molecular weight of 20 kDa. By using the Rampage and ERRAT2 servers, the validity and quality of the fusion protein were evaluated. The results indicated that 93% of the chimeric proteins contained 90.1% of the residues in the favoured region, resulting in a reliable structure. Finally, docking and simulation studies were conducted via ClusPro and Desmond Schrödinger, respectively. Our results indicate that the constructed fusion protein exhibits excellent quality, interaction capabilities, validity, and stability. These findings suggest that the fusion protein is a promising candidate for targeted cancer therapy.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"84"},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408464/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The metabolic disorder Type 2 Diabetes Mellitus (T2DM) is characterized by hyperglycaemia, causing increased mortality and healthcare burden globally. Recent studies emphasize the impact of metabolites in the gut microbiome on T2DM pathogenesis. One such microbial metabolite, imidazole propionate (Imp) derived from histidine metabolism, is shown to interfere with insulin signalling and other key metabolic processes. The key enzyme urocanate reductase (UrdA) is involved in ImP production. Hence, we propose to develop a novel therapeutic vaccine against the gut microbe producing Imp based on UrdA as a target for treating T2DM using immunoinformatics approach. Antigenic, non-allergic, non-toxic, and immunogenic B cell and T cell potential epitopes were predicted using immunoinformatics servers and tools. These epitopes were adjoined using linker sequences, and to increase immunogenicity, adjuvants were added at the N-terminal end of the final vaccine construct. Further, to confirm the vaccine's safety, antigenic and non-allergic characteristics of the developed vaccine construct were assessed. The tertiary structure of the UrdA vaccine sequence was predicted using molecular modelling tools. A molecular docking study was utilized to understand the vaccine construct interaction with immune receptors, followed by molecular dynamics simulation and binding free energy calculations to assess stability of the complex. In silico cloning techniques were employed to evaluate the expression and translation effectiveness of the developed vaccine in pET vector. In conclusion, this study developed an in silico epitope-based vaccine construct as a novel adjunct therapeutic for T2DM.
Graphical abstract:
2 型糖尿病(T2DM)是一种以高血糖为特征的代谢性疾病,在全球范围内造成死亡率和医疗负担的增加。最近的研究强调了肠道微生物组中的代谢物对 T2DM 发病机制的影响。其中一种微生物代谢物--组氨酸代谢产生的咪唑丙酸盐(Imp)被证明会干扰胰岛素信号和其他关键代谢过程。关键酶尿囊酸还原酶(UrdA)参与了 ImP 的生成。因此,我们建议利用免疫信息学方法,以 UrdA 为治疗 T2DM 的靶点,开发一种针对肠道微生物产 Imp 的新型治疗疫苗。我们使用免疫信息学服务器和工具预测了抗原性、非过敏性、无毒性和免疫原性的 B 细胞和 T 细胞潜在表位。这些表位通过连接序列连接起来,为了增加免疫原性,在最终疫苗构建体的 N 端添加了佐剂。此外,为了确认疫苗的安全性,还对所开发疫苗构建体的抗原性和非过敏性特征进行了评估。利用分子建模工具预测了 UrdA 疫苗序列的三级结构。利用分子对接研究了解疫苗构建物与免疫受体的相互作用,然后进行分子动力学模拟和结合自由能计算,以评估复合物的稳定性。此外,还采用硅克隆技术评估了所开发疫苗在 pET 载体中的表达和翻译效果。总之,本研究开发了一种基于表位的硅学疫苗构建体,作为治疗 T2DM 的新型辅助疗法:
{"title":"Anticipatory in silico vaccine designing based on specific antigenic epitopes from <i>Streptococcus mutans</i> against diabetic pathogenesis.","authors":"Gopinath Murugan, Gugan Kothandan, Rajashree Padmanaban","doi":"10.1007/s40203-024-00260-x","DOIUrl":"10.1007/s40203-024-00260-x","url":null,"abstract":"<p><p>The metabolic disorder Type 2 Diabetes Mellitus (T2DM) is characterized by hyperglycaemia, causing increased mortality and healthcare burden globally. Recent studies emphasize the impact of metabolites in the gut microbiome on T2DM pathogenesis. One such microbial metabolite, imidazole propionate (Imp) derived from histidine metabolism, is shown to interfere with insulin signalling and other key metabolic processes. The key enzyme urocanate reductase (UrdA) is involved in ImP production. Hence, we propose to develop a novel therapeutic vaccine against the gut microbe producing Imp based on UrdA as a target for treating T2DM using immunoinformatics approach. Antigenic, non-allergic, non-toxic, and immunogenic B cell and T cell potential epitopes were predicted using immunoinformatics servers and tools. These epitopes were adjoined using linker sequences, and to increase immunogenicity, adjuvants were added at the N-terminal end of the final vaccine construct. Further, to confirm the vaccine's safety, antigenic and non-allergic characteristics of the developed vaccine construct were assessed. The tertiary structure of the UrdA vaccine sequence was predicted using molecular modelling tools. A molecular docking study was utilized to understand the vaccine construct interaction with immune receptors, followed by molecular dynamics simulation and binding free energy calculations to assess stability of the complex. In silico cloning techniques were employed to evaluate the expression and translation effectiveness of the developed vaccine in pET vector. In conclusion, this study developed an in silico epitope-based vaccine construct as a novel adjunct therapeutic for T2DM.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"86"},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14eCollection Date: 2024-01-01DOI: 10.1007/s40203-024-00261-w
Vivek Panwar, Sounok SenGupta, Saroj Kumar, Praveen P Singh, Arun Kumar, Shavkatjon Azizov, Manoj K Gupta, Deepak Kumar
Oxadiazoles an important heterocyclic scaffold of medicinal importance in the field of drug discovery. In the study, a library of oxadiazole based compounds was selected for screening against STAT-3 as anti-cancer target. STAT3 is a potential target of interest in cancer therapy. A total of 544 screened library of compounds was subjected to molecular docking against STAT-3 (6NJS and 6NQU). The compounds with good dock score and binding interations were further subjected to in-silico ADME analysis followed by toxicity estimation. A total of 141 hits were selected against 6NJS and 50 hits against 6NQU and further screened for kinetic properties and drug likeliness. The compounds were screened on the basis of physico-chemical properties, solubility, gastrointestinal absorption, BBB permeability, synthetic accessibility, Lipinski and other violations. Best compounds obtained after ADME analysis were further subjected for toxicity analysis. Carcinogenecity, mutagenicity, Ames and other important parameters were considered for toxicity based screening. The best leads thus obtained (compound 114 and 40) were further subjected to molecular dynamics against the respective target proteins. MD simulations were run to access the stability of C-114 and C-40 along with the dynamic behaviour of both complexes for about 100 ns and shows good stability with the proteins.
{"title":"Discovery, lead identification and exploration of potential oxadiazole derivatives in targeting STAT3 as anti-cancer agents.","authors":"Vivek Panwar, Sounok SenGupta, Saroj Kumar, Praveen P Singh, Arun Kumar, Shavkatjon Azizov, Manoj K Gupta, Deepak Kumar","doi":"10.1007/s40203-024-00261-w","DOIUrl":"https://doi.org/10.1007/s40203-024-00261-w","url":null,"abstract":"<p><p>Oxadiazoles an important heterocyclic scaffold of medicinal importance in the field of drug discovery. In the study, a library of oxadiazole based compounds was selected for screening against STAT-3 as anti-cancer target. STAT3 is a potential target of interest in cancer therapy. A total of 544 screened library of compounds was subjected to molecular docking against STAT-3 (6NJS and 6NQU). The compounds with good dock score and binding interations were further subjected to in-silico ADME analysis followed by toxicity estimation. A total of 141 hits were selected against 6NJS and 50 hits against 6NQU and further screened for kinetic properties and drug likeliness. The compounds were screened on the basis of physico-chemical properties, solubility, gastrointestinal absorption, BBB permeability, synthetic accessibility, Lipinski and other violations. Best compounds obtained after ADME analysis were further subjected for toxicity analysis. Carcinogenecity, mutagenicity, Ames and other important parameters were considered for toxicity based screening. The best leads thus obtained (compound 114 and 40) were further subjected to molecular dynamics against the respective target proteins. MD simulations were run to access the stability of C-114 and C-40 along with the dynamic behaviour of both complexes for about 100 ns and shows good stability with the proteins.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"83"},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11401806/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Postprandial hyperglycemia (PPG) exacerbates endothelial dysfunction and impairs vascular function in diabetes as well in healthy people. Though synthetic drugs are available to regulate PPG, the severe gastrointestinal side effects of those medications have prompted the search for alternative treatments. Recently, some phytochemicals captured the attention because of their inhibitory effects on α-amylase to control diabetes. The aim of this study was to investigate and identify potential alpha-amylase inhibitors in C. indica and W. coagulans. This study also aims to understand one of the possible mechanisms of action of plants for their anti-diabetic activity. A total of 36 phytochemical ligands were subjected for protein-ligand docking analysis. Among the phytochemicals, Taraxerol and Epoxywithanolide-I demonstrated significant binding free energy of - 10.2 kcal/mol and - 11.9 kcal/mol respectively, which was higher than the reference acarbose with - 8.6 kcal/mol. These molecules were subjected for molecular dynamics simulation (MDS) analysis with alpha-amylase protein for a duration of 150 ns. Among the three complexes, Taraxerol and Epoxywithanolide-I complexes demonstrates strong potential as inhibitors of the target protein. MDS results were analyzed via root mean square deviation (RMSD), fluctuation of residues, potential energy, radii of gyration and solvent access surface area analysis. Taraxerol demonstrated a significantly low potential energy of - 1,924,605.25 kJ/mol, and Epoxywithanolide-I demonstrated - 1,964,113.3 kJ/mol of potential energy. RMSD plot shows that Epoxywithanolide-I has much higher stability than the other MDS complexes. Drugability and toxicity studies show that the test ligands are demonstrating strong potential as drug like molecules. The results of the study conclude that, Taraxerol of C. indica and Epoxywithanolide-I of W. coagulans are strong inhibitors of alpha-amylase enzyme and that, this is one of the possible mechanisms of action of the plants for their reported anti-diabetic activities. Further in-vitro analysis is in demand to prove the observed results.
餐后高血糖症(PPG)会加剧糖尿病患者以及健康人的内皮功能障碍并损害血管功能。虽然有合成药物可以调节餐后高血糖,但这些药物对胃肠道的严重副作用促使人们寻找替代疗法。最近,一些植物化学物质引起了人们的注意,因为它们对α-淀粉酶有抑制作用,可以控制糖尿病。本研究的目的是调查和鉴定 C. indica 和 W. coagulans 中潜在的α-淀粉酶抑制剂。本研究还旨在了解植物抗糖尿病活性的可能作用机制之一。共有 36 种植物化学配体被用于蛋白质配体对接分析。在这些植物化学配体中,蒲公英萜醇(Taraxerol)和环氧丹皮酚内酯(Epoxywithanolide-I)的结合自由能分别为-10.2 kcal/mol和-11.9 kcal/mol,高于阿卡波糖(acarbose)的-8.6 kcal/mol。这些分子与α-淀粉酶蛋白进行了持续时间为 150 ns 的分子动力学模拟(MDS)分析。在这三种复合物中,Taraxerol 和 Epoxywithanolide-I 复合物显示出作为目标蛋白质抑制剂的强大潜力。通过均方根偏差(RMSD)、残基波动、势能、回旋半径和溶剂接触表面积分析,对 MDS 结果进行了分析。蒲公英萜醇的势能明显较低,为-1,924,605.25 kJ/mol,而 Epoxywithanolide-I 的势能为-1,964,113.3 kJ/mol。RMSD 图显示,Epoxywithanolide-I 的稳定性远高于其他 MDS 复合物。可药用性和毒性研究表明,测试配体作为类药物分子具有很强的潜力。研究结果得出结论,籼稻中的蒲公英萜醇(Taraxerol of C. indica)和W. coagulans中的环氧花青素-I(Epoxywithanolide-I)是α-淀粉酶的强力抑制剂,这也是这些植物据报道具有抗糖尿病活性的可能作用机制之一。需要进一步的体外分析来证明观察到的结果。
{"title":"In silico analysis reveals α-amylase inhibitory potential of Taraxerol (<i>Coccinia indica</i>) and Epoxywithanolide-1 (<i>Withania coagulans</i>): a possible way to control postprandial hyperglycemia-induced endothelial dysfunction and cardiovascular events.","authors":"Lokesh Ravi, Venkatesh Sadhana, Pratishtha Jain, Shree Kumari Godidhar Raghuram, Mohanasrinivasan Vaithilingam, Reji Manjunathan, Ajith Kumar Krishnan, Mookkandi Palsamy Kesavan","doi":"10.1007/s40203-024-00257-6","DOIUrl":"https://doi.org/10.1007/s40203-024-00257-6","url":null,"abstract":"<p><p>Postprandial hyperglycemia (PPG) exacerbates endothelial dysfunction and impairs vascular function in diabetes as well in healthy people. Though synthetic drugs are available to regulate PPG, the severe gastrointestinal side effects of those medications have prompted the search for alternative treatments. Recently, some phytochemicals captured the attention because of their inhibitory effects on α-amylase to control diabetes. The aim of this study was to investigate and identify potential alpha-amylase inhibitors in <i>C. indica</i> and <i>W. coagulans</i>. This study also aims to understand one of the possible mechanisms of action of plants for their anti-diabetic activity. A total of 36 phytochemical ligands were subjected for protein-ligand docking analysis. Among the phytochemicals, Taraxerol and Epoxywithanolide-I demonstrated significant binding free energy of - 10.2 kcal/mol and - 11.9 kcal/mol respectively, which was higher than the reference acarbose with - 8.6 kcal/mol. These molecules were subjected for molecular dynamics simulation (MDS) analysis with alpha-amylase protein for a duration of 150 ns. Among the three complexes, Taraxerol and Epoxywithanolide-I complexes demonstrates strong potential as inhibitors of the target protein. MDS results were analyzed via root mean square deviation (RMSD), fluctuation of residues, potential energy, radii of gyration and solvent access surface area analysis. Taraxerol demonstrated a significantly low potential energy of - 1,924,605.25 kJ/mol, and Epoxywithanolide-I demonstrated - 1,964,113.3 kJ/mol of potential energy. RMSD plot shows that Epoxywithanolide-I has much higher stability than the other MDS complexes. Drugability and toxicity studies show that the test ligands are demonstrating strong potential as drug like molecules. The results of the study conclude that, Taraxerol of <i>C. indica</i> and Epoxywithanolide-I of <i>W. coagulans</i> are strong inhibitors of alpha-amylase enzyme and that, this is one of the possible mechanisms of action of the plants for their reported anti-diabetic activities. Further <i>in-vitro</i> analysis is in demand to prove the observed results.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"82"},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11383901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To evaluate the therapeutic potential of curcumin tagged cilostazol solid nano dispersion in wistar rat streptozotocin-nicotinamide-induced diabetic nephropathy. Cilostazol (CLT), a Phosphodiesterase (PDE) inhibitor has an inhibitory effect on reactive oxygen species (ROS), and Curcumin (Cur), an antioxidant, and anti-inflammatory, are water-soluble. Solid Nano dispersions were developed using the "Box-Behnken Design" and emulsion solvent evaporation procedure to improve the solubility and bioavailability. Streptozotocin (SPZ) and Nicotinamide (NA) caused diabetes in Wistar rats. DN developed 30-45 days after disease induction. All rat groups underwent histological, biochemical and pharmacokinetic evaluation. The optimized batch of Cilostazol Loaded Novel Curcumin Tagged Solid Nanodispersion (CLT-15 SND) estimated renal, lipid, and cytokine profiles better than the conventional batch. CLT-15 SND, given orally to diabetic rats for 45 days, significantly lowered fasting BGL and IL-6 levels and improved lipid and kidney-profile markers and body weight compared to plain Cilostazol Loaded Solid Nanodispersion (CLT-15 WC SND). CLT-15 SND treatment groups showed decreased blood glucose by 3.38 and 9.71 percent, increased body weight by 2.81 and 5.27 percent, improved Interleukin-6 (IL-6) by 21.36 and 18.36 percent, improved urine albumin levels by 5.67 and 14.19 percent and creatinine levels by 3.125 and 37.5 percent, improved serum urea by 30.48 percent, increased serum albumin by 2.59 and 11.18 percent, and decreased creatinine and 5.03 and 8.12 percent, respectively as compared to CLT-15 WC and MP treatment animal groups. CLT and Cur reduced IL-6, kidney, and lipid markers, demonstrating their renoprotective and pancreas-protective effects. CLT and Cur's inhibition may be the mechanism.
{"title":"Preclinical pharmacology and pharmacokinetics of curcumin tagged cilostazol nanodispersion for the management of diabetic nephropathy in wister rat model.","authors":"Aruna Rawat, Samrat Chauhan, Monika, Rahul Pratap Singh, Sumeet Gupta, Vikas Jhawat","doi":"10.1007/s40203-024-00256-7","DOIUrl":"10.1007/s40203-024-00256-7","url":null,"abstract":"<p><p>To evaluate the therapeutic potential of curcumin tagged cilostazol solid nano dispersion in wistar rat streptozotocin-nicotinamide-induced diabetic nephropathy. Cilostazol (CLT), a Phosphodiesterase (PDE) inhibitor has an inhibitory effect on reactive oxygen species (ROS), and Curcumin (Cur), an antioxidant, and anti-inflammatory, are water-soluble. Solid Nano dispersions were developed using the \"Box-Behnken Design\" and emulsion solvent evaporation procedure to improve the solubility and bioavailability. Streptozotocin (SPZ) and Nicotinamide (NA) caused diabetes in Wistar rats. DN developed 30-45 days after disease induction. All rat groups underwent histological, biochemical and pharmacokinetic evaluation. The optimized batch of Cilostazol Loaded Novel Curcumin Tagged Solid Nanodispersion (CLT-15 SND) estimated renal, lipid, and cytokine profiles better than the conventional batch. CLT-15 SND, given orally to diabetic rats for 45 days, significantly lowered fasting BGL and IL-6 levels and improved lipid and kidney-profile markers and body weight compared to plain Cilostazol Loaded Solid Nanodispersion (CLT-15 WC SND). CLT-15 SND treatment groups showed decreased blood glucose by 3.38 and 9.71 percent, increased body weight by 2.81 and 5.27 percent, improved Interleukin-6 (IL-6) by 21.36 and 18.36 percent, improved urine albumin levels by 5.67 and 14.19 percent and creatinine levels by 3.125 and 37.5 percent, improved serum urea by 30.48 percent, increased serum albumin by 2.59 and 11.18 percent, and decreased creatinine and 5.03 and 8.12 percent, respectively as compared to CLT-15 WC and MP treatment animal groups. CLT and Cur reduced IL-6, kidney, and lipid markers, demonstrating their renoprotective and pancreas-protective effects. CLT and Cur's inhibition may be the mechanism.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"81"},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368884/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-31eCollection Date: 2024-01-01DOI: 10.1007/s40203-024-00250-z
Samuel O Olalekan, Vincent A Obakachi, Abosede A Badeji, Oyesolape B Akinsipo Oyelaja, Oluwole Familoni, Olayinka T Asekun, Segun D Oladipo, Adejoke D Osinubi
Alzheimer's disease (AD) presents a significant global health challenge, with its prevalence expected to rise sharply in the coming years. Despite extensive research, effective treatments addressing the multifaceted pathophysiology of AD remain elusive. This study investigates the therapeutic potential of twenty-seven prolinamides (P1 - P27), with the focus on their interactions with key proteins implicated in AD pathogenesis. Four of the compounds, namely; 10-((4-nitrophenyl)prolyl)-10 H-phenothiazine (P14), 2-((4-nitrophenyl)prolyl)isoindoline (P19), 1-(4-formylphenyl)-N-(p-tolyl)pyrrolidine-2-carboxamide (P22), and N,1-bis(4-nitrophenyl)pyrrolidine-2-carboxamide (P27) showed promising potential as Alzheimer's drug. In-silico approaches including molecular docking, molecular dynamic (MD) simulation, post md study, physicochemical and drug-likeness parameters were employed to ascertain the potential of these compounds as inhibitors of certain proteins implicated in the pathophysiology of Alzheimer's disease. Molecular docking and dynamics simulations demonstrated that P14, P19, P22 and P27 exhibited promising binding affinities towards crucial AD-associated proteins, including Beta-Secretase 1 (BACE1), Butyrylcholinesterase (BuChE), and Tau-tubulin kinase 2 (TTBK2). Structural stability analyses revealed that prolinamides, particularly P22 and P27 for BACE1 and P14 and P19 for BuChE, exhibited greater stability than their reference ligands, indicated by lower RMSD, RoG, and RMSF values. For BuChE, Rivastigmine had a docking score of -7.0 kcal/mol, a binding free energy (ΔGbind) of -22.19 ± 2.44 kcal/mol, RMSD of 1.361 ± 0.162 Å, RMSF of 9.357 ± 3.212 Å, and RoG of 22.919 ± 0.064 Å, whereas P19 exhibited a superior docking score of -10.3 kcal/mol, a significantly better ΔGbind of -33.74 ± 2.84 kcal/mol, RMSD of 1.347 ± 0.132 Å, RMSF of 8.164 ± 2.748 Å, and RoG of 22.868 ± 0.070 Å. Physicochemical and pharmacokinetic assessments affirmed the drug-likeness and bioavailability of P19 notably capable of penetrating the blood-brain barrier. Compounds P19 and P22, emerged as multi-targeted ligands, offering the potential for simultaneous modulation of multiple AD-related pathways. These findings highlight the possibilities of these compounds to be explored as novel therapeutic agents for AD. They also highlight the need for further experimental validation to confirm their efficacy and safety profiles, advancing them toward clinical application in AD management.
Graphical abstract:
Supplementary information: The online version contains supplementary material available at 10.1007/s40203-024-00250-z.
{"title":"Exploring the therapeutic potential of prolinamides as multi-targeted agents for Alzheimer's disease treatment: molecular docking and molecular dynamic simulation studies.","authors":"Samuel O Olalekan, Vincent A Obakachi, Abosede A Badeji, Oyesolape B Akinsipo Oyelaja, Oluwole Familoni, Olayinka T Asekun, Segun D Oladipo, Adejoke D Osinubi","doi":"10.1007/s40203-024-00250-z","DOIUrl":"10.1007/s40203-024-00250-z","url":null,"abstract":"<p><p>Alzheimer's disease (AD) presents a significant global health challenge, with its prevalence expected to rise sharply in the coming years. Despite extensive research, effective treatments addressing the multifaceted pathophysiology of AD remain elusive. This study investigates the therapeutic potential of twenty-seven prolinamides (P1 - P27), with the focus on their interactions with key proteins implicated in AD pathogenesis. Four of the compounds, namely; 10-((4-nitrophenyl)prolyl)-10 H-phenothiazine (P14), 2-((4-nitrophenyl)prolyl)isoindoline (P19), 1-(4-formylphenyl)-<i>N</i>-(p-tolyl)pyrrolidine-2-carboxamide (P22), and <i>N</i>,1-bis(4-nitrophenyl)pyrrolidine-2-carboxamide (P27) showed promising potential as Alzheimer's drug. In-silico approaches including molecular docking, molecular dynamic (MD) simulation, post md study, physicochemical and drug-likeness parameters were employed to ascertain the potential of these compounds as inhibitors of certain proteins implicated in the pathophysiology of Alzheimer's disease. Molecular docking and dynamics simulations demonstrated that P14, P19, P22 and P27 exhibited promising binding affinities towards crucial AD-associated proteins, including Beta-Secretase 1 (BACE1), Butyrylcholinesterase (BuChE), and Tau-tubulin kinase 2 (TTBK2). Structural stability analyses revealed that prolinamides, particularly P22 and P27 for BACE1 and P14 and P19 for BuChE, exhibited greater stability than their reference ligands, indicated by lower RMSD, RoG, and RMSF values. For BuChE, Rivastigmine had a docking score of -7.0 kcal/mol, a binding free energy (ΔG<sub>bind</sub>) of -22.19 ± 2.44 kcal/mol, RMSD of 1.361 ± 0.162 Å, RMSF of 9.357 ± 3.212 Å, and RoG of 22.919 ± 0.064 Å, whereas P19 exhibited a superior docking score of -10.3 kcal/mol, a significantly better ΔG<sub>bind</sub> of -33.74 ± 2.84 kcal/mol, RMSD of 1.347 ± 0.132 Å, RMSF of 8.164 ± 2.748 Å, and RoG of 22.868 ± 0.070 Å. Physicochemical and pharmacokinetic assessments affirmed the drug-likeness and bioavailability of P19 notably capable of penetrating the blood-brain barrier. Compounds P19 and P22, emerged as multi-targeted ligands, offering the potential for simultaneous modulation of multiple AD-related pathways. These findings highlight the possibilities of these compounds to be explored as novel therapeutic agents for AD. They also highlight the need for further experimental validation to confirm their efficacy and safety profiles, advancing them toward clinical application in AD management.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00250-z.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"80"},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365881/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the quest to combat tuberculosis, DprE1, a challenging target for novel anti-tubercular agents due to its small size and membrane location, has been a focus of research. DprE1 catalyzes the transformation of DPR into Ketoribose DPX, with Benzothiazinone emerging as a potent pharmacophore for inhibiting DprE1. Clinical trial drugs such as BTZ043, BTZ038, PBTZ169, and TMC-207 have shown promising results as DprE1 inhibitors. This study employed pharmacophore mapping of Pyrazolopyridine, Dinitrobenzamide, and Benzothiazinone derivatives to identify crucial features for eliciting a biological response. Benzothiazinone (Ligand code: 73) emerged as a reference ligand with a fitness score of 3.000. ROC analysis validated the pharmacophore with an excellent score of 0.71. To build a 3D QSAR model, a series of Benzothiazinone congeneric derivatives were explored. The model exhibited strong performance, with a standard deviation of 0.1531, a correlation coefficient for the training set (R2) value of 0.9754, and a correlation coefficient for test set Q2 value of 0.7632, indicating robust predictive capabilities. Contour maps guided the design of novel benzothiazinone derivatives, emphasizing steric, electrostatic, hydrophobic, H-bond acceptor, and H-bond donor groups for structure-activity relationships. Docking studies against PDB ID: 4NCR demonstrated favorable scores, with interactions aligning well with the in-built ligand 26 J. Docking validation via RMSD values supported the reliability of the docking results. This comprehensive approach aids in the design of novel benzothiazinone derivatives with potential anti-tubercular properties, contributing to the development of novel anti-tubercular agents which can be pivotal in the eradication of tuberculosis.
{"title":"Pharmacophore mapping, 3D QSAR, molecular docking, and ADME prediction studies of novel Benzothiazinone derivatives.","authors":"Jahaan Shaikh, Salman Patel, Afzal Nagani, Moksh Shah, Siddik Ugharatdar, Ashish Patel, Drashti Shah, Dharti Patel","doi":"10.1007/s40203-024-00255-8","DOIUrl":"10.1007/s40203-024-00255-8","url":null,"abstract":"<p><p>In the quest to combat tuberculosis, DprE1, a challenging target for novel anti-tubercular agents due to its small size and membrane location, has been a focus of research. DprE1 catalyzes the transformation of DPR into Ketoribose DPX, with Benzothiazinone emerging as a potent pharmacophore for inhibiting DprE1. Clinical trial drugs such as BTZ043, BTZ038, PBTZ169, and TMC-207 have shown promising results as DprE1 inhibitors. This study employed pharmacophore mapping of Pyrazolopyridine, Dinitrobenzamide, and Benzothiazinone derivatives to identify crucial features for eliciting a biological response. Benzothiazinone (Ligand code: 73) emerged as a reference ligand with a fitness score of 3.000. ROC analysis validated the pharmacophore with an excellent score of 0.71. To build a 3D QSAR model, a series of Benzothiazinone congeneric derivatives were explored. The model exhibited strong performance, with a standard deviation of 0.1531, a correlation coefficient for the training set (R<sup>2</sup>) value of 0.9754, and a correlation coefficient for test set Q<sup>2</sup> value of 0.7632, indicating robust predictive capabilities. Contour maps guided the design of novel benzothiazinone derivatives, emphasizing steric, electrostatic, hydrophobic, H-bond acceptor, and H-bond donor groups for structure-activity relationships. Docking studies against PDB ID: 4NCR demonstrated favorable scores, with interactions aligning well with the in-built ligand 26 J. Docking validation via RMSD values supported the reliability of the docking results. This comprehensive approach aids in the design of novel benzothiazinone derivatives with potential anti-tubercular properties, contributing to the development of novel anti-tubercular agents which can be pivotal in the eradication of tuberculosis.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"79"},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bovine mastitis is a worldwide disease affecting dairy cattle and causes major economic losses in the dairy industry. Recently, the emergence of microbial resistance to the current antibiotics complicates the treatment protocol which necessitates antibiotic stewardship and further research to find new active compounds. Recently, phytobiotics have gained interest in being used as an alternative to antibiotics in the poultry industry as an antibiotic stewardship intervention. This study evaluated the in vitro antibacterial activity of 16 flavonoids against bovine mastitis pathogens. Two flavones: 2-(4-methoxyphenyl)chromen-4-one (1) and 2-(3-hydroxyphenyl)chromen-4-one (4) showed inhibition of the growth of Klebsiella oxytoca with MIC values range (25-50 µg mL- 1) followed by a structure-activity relationship (SAR) study indicating that the presence of a hydroxyl group at C-3` or methoxy at C-4` increases the activity against Klebsiella oxytoca while the presence of hydroxyl group at C-7 decreases the activity. Furthermore, a structure-based drug development approach was applied using several in silico tools to understand the interactions of active flavones at the active site of the DNA gyrase protein. Compound (4) showed a higher docking score than quercetin (standard) which is known to have antibacterial activity by inhibiting the DNA gyrase. In addition, the structure-based pharmacophores of compound (4) and quercetin showed similar pharmacophoric features and interactions with DNA gyrase. Based on our findings, compounds (1) and (4) are promising for further study as potential anti-microbial phytochemicals that can have a role in controlling bovine mastitis as well as to investigate their mechanism of action further.
Supplementary information: The online version contains supplementary material available at 10.1007/s40203-024-00253-w.
牛乳腺炎是一种影响奶牛的世界性疾病,给乳制品行业造成了重大经济损失。近来,微生物对现有抗生素产生了抗药性,这使得治疗方案变得更加复杂,因此必须加强抗生素管理,并进一步研究寻找新的活性化合物。最近,植物生物制剂作为一种抗生素管理干预措施,在家禽业中被用作抗生素的替代品,这引起了人们的兴趣。本研究评估了 16 种黄酮类化合物对牛乳腺炎病原体的体外抗菌活性。其中有两种黄酮类化合物2-(4- 甲氧基苯基)色烯-4-酮(1)和 2-(3-羟基苯基)色烯-4-酮(4)显示出对牛克雷伯氏菌生长的抑制作用,其 MIC 值范围为(25-50 µg mL- 1),随后进行的结构-活性关系(SAR)研究表明,C-3`处羟基或 C-4` 处甲氧基的存在会增加对牛克雷伯氏菌的活性,而 C-7 处羟基的存在则会降低活性。此外,研究人员还采用了一种基于结构的药物开发方法,利用几种硅学工具来了解活性黄酮在 DNA 回旋酶蛋白活性位点上的相互作用。化合物(4)的对接得分高于槲皮素(标准品),后者具有抑制 DNA 回旋酶的抗菌活性。此外,化合物(4)和槲皮素的药效结构显示出相似的药效特征以及与 DNA 回旋酶的相互作用。根据我们的研究结果,化合物(1)和(4)有望作为潜在的抗微生物植物化学物质得到进一步研究,从而在控制牛乳腺炎方面发挥作用,并进一步研究其作用机制:在线版本包含补充材料,可查阅 10.1007/s40203-024-00253-w。
{"title":"Antibacterial activity of natural flavones against bovine mastitis pathogens: in vitro, SAR analysis, and computational study.","authors":"Ahlam Haj Hasan, Gagan Preet, Rishi Vachaspathy Astakala, Hanan Al-Adilah, Emmanuel Tope Oluwabusola, Rainer Ebel, Marcel Jaspars","doi":"10.1007/s40203-024-00253-w","DOIUrl":"10.1007/s40203-024-00253-w","url":null,"abstract":"<p><p>Bovine mastitis is a worldwide disease affecting dairy cattle and causes major economic losses in the dairy industry. Recently, the emergence of microbial resistance to the current antibiotics complicates the treatment protocol which necessitates antibiotic stewardship and further research to find new active compounds. Recently, phytobiotics have gained interest in being used as an alternative to antibiotics in the poultry industry as an antibiotic stewardship intervention. This study evaluated the in vitro antibacterial activity of 16 flavonoids against bovine mastitis pathogens. Two flavones: 2-(4-methoxyphenyl)chromen-4-one (<b>1</b>) and 2-(3-hydroxyphenyl)chromen-4-one (<b>4</b>) showed inhibition of the growth of <i>Klebsiella oxytoca</i> with MIC values range (25-50 µg mL<sup>- 1</sup>) followed by a structure-activity relationship (SAR) study indicating that the presence of a hydroxyl group at C-3` or methoxy at C-4` increases the activity against <i>Klebsiella oxytoca</i> while the presence of hydroxyl group at C-7 decreases the activity. Furthermore, a structure-based drug development approach was applied using several in silico tools to understand the interactions of active flavones at the active site of the DNA gyrase protein. Compound (<b>4</b>) showed a higher docking score than quercetin (standard) which is known to have antibacterial activity by inhibiting the DNA gyrase. In addition, the structure-based pharmacophores of compound (<b>4</b>) and quercetin showed similar pharmacophoric features and interactions with DNA gyrase. Based on our findings, compounds (<b>1</b>) and (<b>4</b>) are promising for further study as potential anti-microbial phytochemicals that can have a role in controlling bovine mastitis as well as to investigate their mechanism of action further.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00253-w.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"78"},"PeriodicalIF":0.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344746/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}