首页 > 最新文献

Journal of open source software最新文献

英文 中文
D3mirt: Descriptive Three-Dimensional MultidimensionalItem Response Theory for R D3mirt:用于 R 的描述性三维多维项目反应理论
Pub Date : 2024-07-15 DOI: 10.21105/joss.06523
Erik Forsberg
{"title":"D3mirt: Descriptive Three-Dimensional Multidimensional\u0000Item Response Theory for R","authors":"Erik Forsberg","doi":"10.21105/joss.06523","DOIUrl":"https://doi.org/10.21105/joss.06523","url":null,"abstract":"","PeriodicalId":94101,"journal":{"name":"Journal of open source software","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141646407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scanbot: An STM Automation Bot 扫描机器人STM 自动化机器人
Pub Date : 2024-07-15 DOI: 10.21105/joss.06028
Julian Ceddia, Jack Hellerstedt, Benjamin Lowe, A. Schiffrin
{"title":"Scanbot: An STM Automation Bot","authors":"Julian Ceddia, Jack Hellerstedt, Benjamin Lowe, A. Schiffrin","doi":"10.21105/joss.06028","DOIUrl":"https://doi.org/10.21105/joss.06028","url":null,"abstract":"","PeriodicalId":94101,"journal":{"name":"Journal of open source software","volume":"37 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141645517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
pyGCodeDecode: A Python package for time-accurate GCodesimulation in material extrusion processes pyGCodeDecode:用于在材料挤压过程中进行时间精确的 GCodesimulation 的 Python 软件包
Pub Date : 2024-07-15 DOI: 10.21105/joss.06465
Jonathan Knirsch, Felix Frölich, Lukas Hof, Florian Wittemann, Luise Kärger
The Machine instructions for material extrusion processes (MEX), such as the fused filament fabrication (FFF) process, are typically provided as GCode, which can be generated by a variety of slicer programs. The 3D model of the part is sliced into multiple layers and a tool path is created for each according to the parameters for infill, perimeters supports and other structures
材料挤压工艺(MEX)(如熔融长丝制造(FFF)工艺)的机器指令通常以 GCode 的形式提供,可由各种切片程序生成。零件的三维模型被切成多层,然后根据填充、周边支撑和其他结构的参数,为每一层创建刀具路径。
{"title":"pyGCodeDecode: A Python package for time-accurate GCode\u0000simulation in material extrusion processes","authors":"Jonathan Knirsch, Felix Frölich, Lukas Hof, Florian Wittemann, Luise Kärger","doi":"10.21105/joss.06465","DOIUrl":"https://doi.org/10.21105/joss.06465","url":null,"abstract":"The Machine instructions for material extrusion processes (MEX), such as the fused filament fabrication (FFF) process, are typically provided as GCode, which can be generated by a variety of slicer programs. The 3D model of the part is sliced into multiple layers and a tool path is created for each according to the parameters for infill, perimeters supports and other structures","PeriodicalId":94101,"journal":{"name":"Journal of open source software","volume":"29 27","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141645704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reggae: A Parametric Tuner for PBJam, and aVisualization Tool for Red Giant Oscillation Spectra 雷鬼PBJam 参数调谐器和红巨星振荡光谱可视化工具
Pub Date : 2024-07-13 DOI: 10.21105/joss.06588
J. Ong, Martin B. Nielsen, Emily J. Hatt, Guy R. Davies
The upcoming second release of PBJam -- a software instrument for fitting normal modes ("peakbagging") -- supplements the simple power-spectrum model used in the first version to additionally constrain other features. Dipole ($ell = 1$) modes, which had been excluded in the initial version of the tool, are now specifically included. The primary samples of the PLATO mission consist mainly of main-sequence and subgiant stars, so PBjam implements a single parameterisation of dipole mixed-mode frequencies that reduces to pure p-modes in the former, and is suitable for use with the latter, outside the red-giant"asymptotic"regime. In keeping with the overall philosophy of PBjam's design, PBjam 2 will specify prior distributions on these parameters empirically, through predetermined values found for existing samples of solar-like oscillators. While the red-giant asymptotic regime has been extensively characterised observationally, the nonasymptotic construction for subgiants here has not, requiring us to construct this prior sample ourselves. To assist in this task, we built a tool -- Reggae -- to manually fine-tune and fit the dipole-mode model, and check the quality of both our initial guesses and fitted solutions. We have found it very helpful both for these tuning and visualisation tasks, and also as a didactic aid to understanding the dipole mixed-mode parameters. Moreover, no other tools currently exist for performing these tasks in the nonasymptotic parameterisation considered here. As such, we release Reggae publicly in advance of this update to PBjam, as we believe the community will benefit from access to such a visualisation tool. This will also assist future users of PBjam in devising ad-hoc prior constraints on the mixed-mode parameters, should they wish to perform mode identification for anomalous stars.
PBJam 是一种用于拟合正态模式("峰包")的软件工具,即将发布的第二版对第一版中使用的简单功率谱模型进行了补充,增加了对其他特征的约束。偶极子($ell = 1$)模式在该工具的最初版本中被排除在外,现在则被特别包括在内。PLATO 任务的主要样本主要由主序星和亚巨星组成,因此 PBjam 实现了偶极混合模式频率的单一参数化,在前者中可以简化为纯 p 模式,在后者中则适用于红巨星 "渐近 "机制之外的情况。为了与 PBjam 的总体设计理念保持一致,PBjam 2 将通过现有类太阳振荡器样本的预定值,根据经验指定这些参数的先验分布。虽然红巨星的渐近机制已经得到了广泛的观测表征,但这里的亚巨星非渐近结构却没有,这就要求我们自己构建这个先验样本。为了协助完成这项任务,我们制作了一个工具--Reggae--来手动微调和拟合偶极模式模型,并检查我们的初始猜测和拟合解的质量。我们发现它对这些调整和可视化任务非常有帮助,同时也是理解偶极混合模式参数的教学辅助工具。此外,目前还没有其他工具可以在这里考虑的非渐近参数化中执行这些任务。因此,我们在更新 PBjam 之前公开发布了 Reggae,因为我们相信社区将受益于这种可视化工具。如果PBjam的未来用户希望对异常恒星进行模式识别,这也将有助于他们对混合模式参数设计临时先验约束。
{"title":"Reggae: A Parametric Tuner for PBJam, and a\u0000Visualization Tool for Red Giant Oscillation Spectra","authors":"J. Ong, Martin B. Nielsen, Emily J. Hatt, Guy R. Davies","doi":"10.21105/joss.06588","DOIUrl":"https://doi.org/10.21105/joss.06588","url":null,"abstract":"The upcoming second release of PBJam -- a software instrument for fitting normal modes (\"peakbagging\") -- supplements the simple power-spectrum model used in the first version to additionally constrain other features. Dipole ($ell = 1$) modes, which had been excluded in the initial version of the tool, are now specifically included. The primary samples of the PLATO mission consist mainly of main-sequence and subgiant stars, so PBjam implements a single parameterisation of dipole mixed-mode frequencies that reduces to pure p-modes in the former, and is suitable for use with the latter, outside the red-giant\"asymptotic\"regime. In keeping with the overall philosophy of PBjam's design, PBjam 2 will specify prior distributions on these parameters empirically, through predetermined values found for existing samples of solar-like oscillators. While the red-giant asymptotic regime has been extensively characterised observationally, the nonasymptotic construction for subgiants here has not, requiring us to construct this prior sample ourselves. To assist in this task, we built a tool -- Reggae -- to manually fine-tune and fit the dipole-mode model, and check the quality of both our initial guesses and fitted solutions. We have found it very helpful both for these tuning and visualisation tasks, and also as a didactic aid to understanding the dipole mixed-mode parameters. Moreover, no other tools currently exist for performing these tasks in the nonasymptotic parameterisation considered here. As such, we release Reggae publicly in advance of this update to PBjam, as we believe the community will benefit from access to such a visualisation tool. This will also assist future users of PBjam in devising ad-hoc prior constraints on the mixed-mode parameters, should they wish to perform mode identification for anomalous stars.","PeriodicalId":94101,"journal":{"name":"Journal of open source software","volume":"67 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141651552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TransitionsInTimeseries.jl: A performant, extensibleand reliable software for reproducible detection and prediction oftransitions in timeseries TransitionsInTimeseries.jl:一个性能良好、可扩展且可靠的软件,用于可重现地检测和预测时间序列中的转变
Pub Date : 2024-07-13 DOI: 10.21105/joss.06464
Jan Swierczek-Jereczek, George Datseris
{"title":"TransitionsInTimeseries.jl: A performant, extensible\u0000and reliable software for reproducible detection and prediction of\u0000transitions in timeseries","authors":"Jan Swierczek-Jereczek, George Datseris","doi":"10.21105/joss.06464","DOIUrl":"https://doi.org/10.21105/joss.06464","url":null,"abstract":"","PeriodicalId":94101,"journal":{"name":"Journal of open source software","volume":"51 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141651868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
fff_segmenter: A signal segmentation script foracoustic FFF fabrication data in MATLAB ffff_segmenter:MATLAB 中的声学 FFF 制造数据信号分割脚本
Pub Date : 2024-07-12 DOI: 10.21105/joss.06620
Thiago Glissoi Lopes, Paulo Monteiro de Carvalho Monson, P. R. de Aguiar, Reinaldo Götz de Oliveira Junior, P. O. C. Júnior
{"title":"fff_segmenter: A signal segmentation script for\u0000acoustic FFF fabrication data in MATLAB","authors":"Thiago Glissoi Lopes, Paulo Monteiro de Carvalho Monson, P. R. de Aguiar, Reinaldo Götz de Oliveira Junior, P. O. C. Júnior","doi":"10.21105/joss.06620","DOIUrl":"https://doi.org/10.21105/joss.06620","url":null,"abstract":"","PeriodicalId":94101,"journal":{"name":"Journal of open source software","volume":"58 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141654543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Library of Lower Fidelity Dynamics Models (LFDMs) ForOn-Road Vehicle Dynamics Targeting Faster Than Real-TimeApplications 低保真动态模型 (LFDM) 库,用于以快于实时应用为目标的公路车辆动态研究
Pub Date : 2024-07-12 DOI: 10.21105/joss.06548
H. Unjhawala, Ishaan Mahajan, R. Serban, D. Negrut
{"title":"A Library of Lower Fidelity Dynamics Models (LFDMs) For\u0000On-Road Vehicle Dynamics Targeting Faster Than Real-Time\u0000Applications","authors":"H. Unjhawala, Ishaan Mahajan, R. Serban, D. Negrut","doi":"10.21105/joss.06548","DOIUrl":"https://doi.org/10.21105/joss.06548","url":null,"abstract":"","PeriodicalId":94101,"journal":{"name":"Journal of open source software","volume":"47 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141654483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DSSE: An environment for simulation of reinforcementlearning-empowered drone swarm maritime search and rescuemissions DSSE:强化学习无人机群海上搜救模拟环境
Pub Date : 2024-07-11 DOI: 10.21105/joss.06746
Renato Laffranchi Falcão, Jorás Custódio Campos de Oliveira, Pedro Henrique Britto Aragão Andrade, Ricardo Ribeiro Rodrigues, Fabrício Jailson Barth, J. F. B. Brancalion
The goal of this project is to advance research in maritime search and rescue missions using Reinforcement Learning techniques. The software provides researchers with two distinct environments: one simulates shipwrecked people drifting with maritime currents, creating a stochastic setting for training and evaluating autonomous agents; the other features a realistic particle simulation for mapping and optimizing search area coverage by autonomous agents. Both environments adhere to open-source standards and offer extensive customization options, allowing users to tailor them to specific research needs. These tools enable Reinforcement Learning agents to learn efficient policies for locating shipwrecked individuals or maximizing search area coverage, thereby enhancing the effectiveness of maritime rescue operations
该项目的目标是利用强化学习技术推进海上搜救任务的研究。该软件为研究人员提供了两种截然不同的环境:一种环境模拟了随海流漂流的遇难船员,为训练和评估自主代理创造了随机环境;另一种环境则采用了逼真的粒子模拟,用于绘制和优化自主代理的搜索区域覆盖范围。这两个环境都遵循开源标准,并提供广泛的定制选项,使用户能够根据具体研究需求进行定制。这些工具使强化学习代理能够学习高效的策略,以确定遇难人员的位置或最大限度地扩大搜索区域的覆盖范围,从而提高海上救援行动的效率。
{"title":"DSSE: An environment for simulation of reinforcement\u0000learning-empowered drone swarm maritime search and rescue\u0000missions","authors":"Renato Laffranchi Falcão, Jorás Custódio Campos de Oliveira, Pedro Henrique Britto Aragão Andrade, Ricardo Ribeiro Rodrigues, Fabrício Jailson Barth, J. F. B. Brancalion","doi":"10.21105/joss.06746","DOIUrl":"https://doi.org/10.21105/joss.06746","url":null,"abstract":"The goal of this project is to advance research in maritime search and rescue missions using Reinforcement Learning techniques. The software provides researchers with two distinct environments: one simulates shipwrecked people drifting with maritime currents, creating a stochastic setting for training and evaluating autonomous agents; the other features a realistic particle simulation for mapping and optimizing search area coverage by autonomous agents. Both environments adhere to open-source standards and offer extensive customization options, allowing users to tailor them to specific research needs. These tools enable Reinforcement Learning agents to learn efficient policies for locating shipwrecked individuals or maximizing search area coverage, thereby enhancing the effectiveness of maritime rescue operations","PeriodicalId":94101,"journal":{"name":"Journal of open source software","volume":"131 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141656442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
rgfrosh: A Python package for calculating shockconditions using real gas equations of state rgfrosh:使用真实气体状态方程计算冲击条件的 Python 软件包
Pub Date : 2024-07-11 DOI: 10.21105/joss.06855
Cory Kinney, Subith S. Vasu
effects in experimental measurements and model simulations
实验测量和模型模拟的影响
{"title":"rgfrosh: A Python package for calculating shock\u0000conditions using real gas equations of state","authors":"Cory Kinney, Subith S. Vasu","doi":"10.21105/joss.06855","DOIUrl":"https://doi.org/10.21105/joss.06855","url":null,"abstract":"effects in experimental measurements and model simulations","PeriodicalId":94101,"journal":{"name":"Journal of open source software","volume":"65 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141655743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
servir-aces: A Python Package for Training MachineLearning Models for Remote Sensing Applications servir-aces:用于训练遥感应用机器学习模型的 Python 软件包
Pub Date : 2024-07-10 DOI: 10.21105/joss.06729
B. Bhandari, Timothy Mayer
{"title":"servir-aces: A Python Package for Training Machine\u0000Learning Models for Remote Sensing Applications","authors":"B. Bhandari, Timothy Mayer","doi":"10.21105/joss.06729","DOIUrl":"https://doi.org/10.21105/joss.06729","url":null,"abstract":"","PeriodicalId":94101,"journal":{"name":"Journal of open source software","volume":"28 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141662462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of open source software
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1