In this paper, we investigate an axisymmetric model of intimal thickening using hyperelasticity theory. Our model describes the growth of the arterial intima due to cell proliferation which, in turn, is driven by the release of a cytokine such as platelet-derived growth factor (PDGF). With the growth rate tied to both local stress and the local concentration of PDGF, we derive a quadruple free boundary problem with different regions of the vessel wall characterized by different homeostatic stress. We compare our model predictions to rabbit and rodent models of atherosclerosis and find that in order to achieve the growth rates reported in the experiments, growth must be mainly cytokine induced rather than stress induced. Our model is also able to reproduce Glagov remodelling where, as a vessel becomes more diseased, the lumen expands before rapidly contracting.
{"title":"A biochemical and mechanical model of injury-induced intimal thickening","authors":"Pak-Wing Fok;Rebecca Sanft","doi":"10.1093/imammb/dqv040","DOIUrl":"https://doi.org/10.1093/imammb/dqv040","url":null,"abstract":"In this paper, we investigate an axisymmetric model of intimal thickening using hyperelasticity theory. Our model describes the growth of the arterial intima due to cell proliferation which, in turn, is driven by the release of a cytokine such as platelet-derived growth factor (PDGF). With the growth rate tied to both local stress and the local concentration of PDGF, we derive a quadruple free boundary problem with different regions of the vessel wall characterized by different homeostatic stress. We compare our model predictions to rabbit and rodent models of atherosclerosis and find that in order to achieve the growth rates reported in the experiments, growth must be mainly cytokine induced rather than stress induced. Our model is also able to reproduce Glagov remodelling where, as a vessel becomes more diseased, the lumen expands before rapidly contracting.","PeriodicalId":94130,"journal":{"name":"Mathematical medicine and biology : a journal of the IMA","volume":"34 1","pages":"77-108"},"PeriodicalIF":0.0,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imammb/dqv040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49992395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lydia Hill;Mark A. J. Chaplain;Roland Wolf;Yury Kapelyukh
The Cytochrome P450 (CYP) system is involved in 90% of the human body's interactions with xenobiotics and due to this, it has become an area of avid research including the creation of transgenic mice. This paper proposes a three-compartment model which is used to explain the drug metabolism in the Hepatic Reductase Null (HRN) mouse developed by the University of Dundee (Henderson, C. J., Otto, D. M. E., Carrie, D., Magnuson, M. A., McLaren, A. W., Rosewell, I. and Wolf, C. R. (2003) Inactivation of the hepatic cytochrome p450 system by conditional deletion of hepatic cytochrome p450 reductase. J. Biol. Chem. 278, 13480–13486). The model is compared with a two-compartment model using experimental data from studies using wild-type and HRN mice. This comparison allowed for metabolic differences between the two types of mice to be isolated. The three sets of drug data (Gefitinib, Midazolam and Thalidomide) showed that the transgenic mouse has a decreased rate of metabolism.
{"title":"The usage of a three-compartment model to investigate the metabolic differences between hepatic reductase null and wild-type mice","authors":"Lydia Hill;Mark A. J. Chaplain;Roland Wolf;Yury Kapelyukh","doi":"10.1093/imammb/dqv029","DOIUrl":"10.1093/imammb/dqv029","url":null,"abstract":"The Cytochrome P450 (CYP) system is involved in 90% of the human body's interactions with xenobiotics and due to this, it has become an area of avid research including the creation of transgenic mice. This paper proposes a three-compartment model which is used to explain the drug metabolism in the Hepatic Reductase Null (HRN) mouse developed by the University of Dundee (Henderson, C. J., Otto, D. M. E., Carrie, D., Magnuson, M. A., McLaren, A. W., Rosewell, I. and Wolf, C. R. (2003) Inactivation of the hepatic cytochrome p450 system by conditional deletion of hepatic cytochrome p450 reductase. J. Biol. Chem. 278, 13480–13486). The model is compared with a two-compartment model using experimental data from studies using wild-type and HRN mice. This comparison allowed for metabolic differences between the two types of mice to be isolated. The three sets of drug data (Gefitinib, Midazolam and Thalidomide) showed that the transgenic mouse has a decreased rate of metabolism.","PeriodicalId":94130,"journal":{"name":"Mathematical medicine and biology : a journal of the IMA","volume":"34 1","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imammb/dqv029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34236577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The tumour growth paradox refers to the observation that incomplete treatment of cancers can enhance their growth. As shown here and elsewhere, the existence of cancer stem cells (CSCs) can explain this effect. CSC are less sensitive to treatments, hence any stress applied to the tumour selects for CSC, thereby increasing the fitness of the tumour. In this paper, we use a mathematical model to understand the role of CSC in the progression of cancer. Our model is a rather general system of integro-differential equations for tumour growth and tumour spread. Such a model has never been analysed, and we prove results on local and global existence of solutions, their uniqueness and their boundedness. We show numerically that this model exhibits the tumour growth paradox for all parameters tested. This effect becomes more relevant for small renewal rate of the CSC.
{"title":"A non-local model for cancer stem cells and the tumour growth paradox","authors":"I. Borsi;A. Fasano;M. Primicerio;T. Hillen","doi":"10.1093/imammb/dqv037","DOIUrl":"https://doi.org/10.1093/imammb/dqv037","url":null,"abstract":"The tumour growth paradox refers to the observation that incomplete treatment of cancers can enhance their growth. As shown here and elsewhere, the existence of cancer stem cells (CSCs) can explain this effect. CSC are less sensitive to treatments, hence any stress applied to the tumour selects for CSC, thereby increasing the fitness of the tumour. In this paper, we use a mathematical model to understand the role of CSC in the progression of cancer. Our model is a rather general system of integro-differential equations for tumour growth and tumour spread. Such a model has never been analysed, and we prove results on local and global existence of solutions, their uniqueness and their boundedness. We show numerically that this model exhibits the tumour growth paradox for all parameters tested. This effect becomes more relevant for small renewal rate of the CSC.","PeriodicalId":94130,"journal":{"name":"Mathematical medicine and biology : a journal of the IMA","volume":"34 1","pages":"59-75"},"PeriodicalIF":0.0,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imammb/dqv037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49992396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We develop a mathematical and statistical methodology for estimation of important unobservable characteristics of the individual natural history of cancer from a sample of cross-sectional diameters of liver metastases measured at autopsy. Estimation of the natural history of cancer is based on a previously proposed stochastic model of cancer progression tailored to this type of observations. The model accounts for primary tumour growth, shedding of metastases, their selection, latency and growth in a given secondary site. The model was applied to the aforementioned data on 428 liver metastases detected in one untreated small cell lung cancer patient. Identifiable model parameters were estimated by the method of maximum likelihood and through minimizing the $L^{2}$