Pub Date : 2015-11-16DOI: 10.18632/ONCOSCIENCE.265
D. Del Bufalo, F. Degrassi
The process of cell division represents an extraordinary target to develop antitumor therapies. Indeed, a large number of clinically relevant anti-cancer drugs, such as taxanes and vinca alkaloids, target mitosis by stimulating or inhibiting microtubule (MT) polymerization. During the past decades anti-tubulin drugs have proven very effective against a wide range of tumors. However, collateral effects, such as myelosuppression and MT disruption in non-dividing tissues, including brain, are common. Recently, the increased understanding of the cell division process and the identification of several signaling pathways controlling mitosis have provided novel opportunities for cancer drug discovery. Consequently, mitotic proteins have become attractive targets to develop molecular cancer therapeutics. In this scenario, kinetochores (KTs) represent an attractive therapeutic target in light of their fundamental role in driving chromosome segregation and controlling chromosome segregation errors. Indeed, cells require a fine regulation of the kinetochore-microtubule (KT-MT) attachment stability to prevent chromosome instability, and KT-MT attachment dynamics is often deregulated in tumour cells [2]. Chromosome instability is commonly accepted as a driving force in the development of cancer, but more recent work has demonstrated that extensive chromosome missegregation may be detrimental to cancer cells and act as a tumor suppression mechanism [3]. In light of this double role of chromosome instability in cancer, we have explored the hypothesis that interfering with KT-MT attachment dynamics could drive massive chromosome missegregation and kill tumor cells. Highly Expressed in Cancer protein 1 (Hec1) is a constituent of the evolutionary conserved Ndc80 complex, the molecular connector between KTs and MTs. Among the subunits of the Ndc80 complex, Hec1 directly interacts with MTs and regulates KT-MT dynamics and attachment stability [3]. Importantly, Hec1 is frequently overexpressed in cancer. We previously demonstrated that expression of Hec1 fused with the enhanced green fluorescent protein (EGFP) tag at its N-terminus (EGFP-Hec1), the protein domain that regulates MT attachment dynamics, led to a strong accumulation of this modified protein, which acted as a dominant negative mutant over the endogenous Hec1. Mitotic cells expressing a N-terminus tagged Hec1 accumulated lateral KT-MT attachments and underwent a spindle assembly checkpoint (SAC) dependent mitotic arrest associated with the formation of multipolar spindles [4]. We further showed that expression of an inducible N-terminus modified Hec1 completely abolished in vitro growth of EGFP-Hec1 expressing HeLa cells but had no effects on untransformed human fibroblasts or epithelial cells [5]. These in vitro cell-based data were validated in vivo by showing that inducible EGFP-Hec1 expression strongly inhibited tumor growth in a HeLa xenograft mouse model [5]. Strikingly, in both in vitro and in vivo
细胞分裂过程是开发抗肿瘤疗法的重要靶点。事实上,大量临床相关的抗癌药物,如紫杉烷和长春花生物碱,都是通过刺激或抑制微管(MT)聚合来靶向有丝分裂的。在过去的几十年里,抗微管蛋白药物已被证明对多种肿瘤非常有效。然而,附带效应,如骨髓抑制和MT破坏非分裂组织,包括脑,是常见的。最近,对细胞分裂过程的进一步了解和控制有丝分裂的几个信号通路的鉴定为癌症药物的发现提供了新的机会。因此,有丝分裂蛋白已成为开发分子癌症治疗的有吸引力的靶点。在这种情况下,着丝点(KTs)代表了一个有吸引力的治疗靶点,因为它们在驱动染色体分离和控制染色体分离错误方面起着基本作用。事实上,细胞需要对着丝点-微管(KT-MT)的附着稳定性进行精细调节,以防止染色体不稳定,而在肿瘤细胞中,KT-MT的附着动力学通常是不受调节的[2]。染色体不稳定被普遍认为是癌症发展的驱动力,但最近的研究表明,广泛的染色体错分离可能对癌细胞有害,并起到肿瘤抑制机制的作用[3]。鉴于染色体不稳定性在癌症中的双重作用,我们探索了干扰KT-MT附着动力学可能导致大量染色体错分离并杀死肿瘤细胞的假设。在Cancer protein 1 (Hec1)中高表达,是进化保守的Ndc80复合物的一个组成部分,Ndc80复合物是kt和mt之间的分子连接物,在Ndc80复合物的亚基中,Hec1直接与mt相互作用,调节KT-MT动力学和附着稳定性[3]。重要的是,Hec1在癌症中经常过表达。我们之前已经证明,Hec1在其n端与增强型绿色荧光蛋白(EGFP)标签(EGFP-Hec1)(调节MT附着动力学的蛋白质结构域)融合的表达导致这种修饰蛋白的强烈积累,作为内源性Hec1的显性负突变体。表达n端标记Hec1的有丝分裂细胞积累了侧向KT-MT附着,并经历了与多极纺锤体形成相关的纺锤体组装检查点(SAC)依赖的有丝分裂停滞[4]。我们进一步发现,诱导型n端修饰的Hec1的表达完全抑制了表达HeLa细胞的EGFP-Hec1的体外生长,但对未转化的人成纤维细胞或上皮细胞没有影响[5]。这些基于体外细胞的数据在体内得到验证,表明可诱导的EGFP-Hec1表达强烈抑制HeLa异种移植小鼠模型中的肿瘤生长[5]。引人注目的是,在体外和体内模型中,表达EGFP-Hec1的细胞在有丝分裂中永久停止并产生多极纺锤体。表达EGFP-Hec1的细胞的实时成像显示,多极纺锤体内染色体分离受损诱导有丝分裂灾难,通过诱导有丝分裂引起的凋亡死亡,或细胞分裂失败和多核来鉴定。最后,对MT通量率和KT周转率的测量表明,EGFP-Hec1增加了KT-MT附着的稳定性,这表明稳定KT-MT附着动力学是一种很有前途的治疗方法[5]。与KT-MT附着动力学是抗癌作用的分子靶点一致,在c端表达he1与EGFP融合,不影响KT-MT附着动力学,对癌细胞增殖没有显著影响[5]。总的来说,我们的研究结果表明,多极纺锤体内大量的染色体错分离可以通过激活有丝分裂突变过程来杀死肿瘤细胞。在我们的实验模型中,多极性的诱导是由细胞在前期的时间延长引起的,这促进了内聚疲劳(不协调的着丝粒内聚释放),并通过泄漏分离酶激活导致中心粒脱离,如图11所示[6,7]。在控制SAC沉默的蛋白质耗尽或抑制后期促进复合物/cdc20 (APC/C)活性后,内聚疲劳依赖性多极性诱导的癌细胞死亡已被证明(图(图1)),其中一些治疗方法被发现在避免有丝分裂滑移和产生癌细胞死亡方面比MT抑制剂更有效(7,8)。这些研究和我们的工作表明,刺激纺锤体多极可以作为一种抗癌策略,通过激活多极有丝分裂后的有丝分裂灾难。 此外,他们指出,靶向参与调节KT-MT附着动力学,纠正KT-MT错误附着或沉默纺锤体组装检查点的机制可能是抗癌策略发展的新前沿。
{"title":"Kinetochore-microtube attachments in cancer therapy","authors":"D. Del Bufalo, F. Degrassi","doi":"10.18632/ONCOSCIENCE.265","DOIUrl":"https://doi.org/10.18632/ONCOSCIENCE.265","url":null,"abstract":"The process of cell division represents an extraordinary target to develop antitumor therapies. Indeed, a large number of clinically relevant anti-cancer drugs, such as taxanes and vinca alkaloids, target mitosis by stimulating or inhibiting microtubule (MT) polymerization. During the past decades anti-tubulin drugs have proven very effective against a wide range of tumors. However, collateral effects, such as myelosuppression and MT disruption in non-dividing tissues, including brain, are common. Recently, the increased understanding of the cell division process and the identification of several signaling pathways controlling mitosis have provided novel opportunities for cancer drug discovery. Consequently, mitotic proteins have become attractive targets to develop molecular cancer therapeutics. In this scenario, kinetochores (KTs) represent an attractive therapeutic target in light of their fundamental role in driving chromosome segregation and controlling chromosome segregation errors. Indeed, cells require a fine regulation of the kinetochore-microtubule (KT-MT) attachment stability to prevent chromosome instability, and KT-MT attachment dynamics is often deregulated in tumour cells [2]. Chromosome instability is commonly accepted as a driving force in the development of cancer, but more recent work has demonstrated that extensive chromosome missegregation may be detrimental to cancer cells and act as a tumor suppression mechanism [3]. In light of this double role of chromosome instability in cancer, we have explored the hypothesis that interfering with KT-MT attachment dynamics could drive massive chromosome missegregation and kill tumor cells. Highly Expressed in Cancer protein 1 (Hec1) is a constituent of the evolutionary conserved Ndc80 complex, the molecular connector between KTs and MTs. Among the subunits of the Ndc80 complex, Hec1 directly interacts with MTs and regulates KT-MT dynamics and attachment stability [3]. Importantly, Hec1 is frequently overexpressed in cancer. We previously demonstrated that expression of Hec1 fused with the enhanced green fluorescent protein (EGFP) tag at its N-terminus (EGFP-Hec1), the protein domain that regulates MT attachment dynamics, led to a strong accumulation of this modified protein, which acted as a dominant negative mutant over the endogenous Hec1. Mitotic cells expressing a N-terminus tagged Hec1 accumulated lateral KT-MT attachments and underwent a spindle assembly checkpoint (SAC) dependent mitotic arrest associated with the formation of multipolar spindles [4]. We further showed that expression of an inducible N-terminus modified Hec1 completely abolished in vitro growth of EGFP-Hec1 expressing HeLa cells but had no effects on untransformed human fibroblasts or epithelial cells [5]. These in vitro cell-based data were validated in vivo by showing that inducible EGFP-Hec1 expression strongly inhibited tumor growth in a HeLa xenograft mouse model [5]. Strikingly, in both in vitro and in vivo","PeriodicalId":94164,"journal":{"name":"Oncoscience","volume":"43 1","pages":"902 - 903"},"PeriodicalIF":0.0,"publicationDate":"2015-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82653381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-11-16DOI: 10.18632/ONCOSCIENCE.262
J. Baulida
Mortality in cancer is strongly associated with the capacity of tumor cells to spread and critically affect other tissues and organs. Genetic mutations accumulated by tumor cells and cross-signaling between tumor and host cells underlie the formation of metastasis. Cancer-activated fibroblasts (CAFs), which are host fibroblasts activated by tumor signaling, can alter tumor cell behavior by both paracrine signaling (secreting diffusible molecules) and mechanical signaling (modifying the composition and organization of the stroma). These fibroblasts resemble myofibroblasts (MFs) of the granulation tissue generated during wound healing, which produce a rigid desmoplastic stroma rich in signaling molecules and cross-linked extracellular fibers. Desmoplasia favors malignant tumor cell properties such as mobility, stemness, and even resistance to pharmacological insults [1].
{"title":"Snail1 controls cooperative cell plasticity during metastasis","authors":"J. Baulida","doi":"10.18632/ONCOSCIENCE.262","DOIUrl":"https://doi.org/10.18632/ONCOSCIENCE.262","url":null,"abstract":"Mortality in cancer is strongly associated with the capacity of tumor cells to spread and critically affect other tissues and organs. Genetic mutations accumulated by tumor cells and cross-signaling between tumor and host cells underlie the formation of metastasis. Cancer-activated fibroblasts (CAFs), which are host fibroblasts activated by tumor signaling, can alter tumor cell behavior by both paracrine signaling (secreting diffusible molecules) and mechanical signaling (modifying the composition and organization of the stroma). These fibroblasts resemble myofibroblasts (MFs) of the granulation tissue generated during wound healing, which produce a rigid desmoplastic stroma rich in signaling molecules and cross-linked extracellular fibers. Desmoplasia favors malignant tumor cell properties such as mobility, stemness, and even resistance to pharmacological insults [1].","PeriodicalId":94164,"journal":{"name":"Oncoscience","volume":"33 1","pages":"898 - 899"},"PeriodicalIF":0.0,"publicationDate":"2015-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73297482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-11-16DOI: 10.18632/ONCOSCIENCE.264
J. Cedervall, A. Olsson
A large proportion of cancer-related deaths are caused by thrombosis and general organ failure. Although the awareness of tumor-induced systemic effects has increased significantly in recent years, current knowledge is still mainly restricted to metastatic sites. Surprisingly little is known about the situation in organs that are not targets for metastasis or directly affected by the primary tumor. We therefore decided to look deeper into this relatively unexplored field of cancer research. For obvious reasons human biopsy material from tissues not affected by tumor cells, in an individual with cancer, are rare and mouse models therefore become important tools for such investigations. Using two different orthotopic and spontaneously metastasizing tumor models - the RIP1-Tag2 model for insulinoma with metastasis to the liver and the MMTV-PyMT model for mammary carcinoma with lung metastasis - we analyzed the presence of hematopoietic cells in organs which do not represent sites for primary tumor growth. There was a significant increase in the number of neutrophils in heart and kidneys of tumor-bearing mice compared to healthy individuals [1]. In mice with cancer, peripheral organs displayed systemic inflammation and impaired vascular function, which was restored upon neutrophil depletion. Platelet/neutrophil complexes, indicative of neutrophil extracellular traps (NETs), were found in kidney and heart from tumor-bearing mice, while these complexes were completely absent in the corresponding tissues from healthy mice. Indeed, analysis of peripheral blood confirmed the presence of neutrophils with extracellular DNA-tails in tumor-bearing mice.
{"title":"NETosis in cancer","authors":"J. Cedervall, A. Olsson","doi":"10.18632/ONCOSCIENCE.264","DOIUrl":"https://doi.org/10.18632/ONCOSCIENCE.264","url":null,"abstract":"A large proportion of cancer-related deaths are caused by thrombosis and general organ failure. Although the awareness of tumor-induced systemic effects has increased significantly in recent years, current knowledge is still mainly restricted to metastatic sites. Surprisingly little is known about the situation in organs that are not targets for metastasis or directly affected by the primary tumor. We therefore decided to look deeper into this relatively unexplored field of cancer research. For obvious reasons human biopsy material from tissues not affected by tumor cells, in an individual with cancer, are rare and mouse models therefore become important tools for such investigations. Using two different orthotopic and spontaneously metastasizing tumor models - the RIP1-Tag2 model for insulinoma with metastasis to the liver and the MMTV-PyMT model for mammary carcinoma with lung metastasis - we analyzed the presence of hematopoietic cells in organs which do not represent sites for primary tumor growth. There was a significant increase in the number of neutrophils in heart and kidneys of tumor-bearing mice compared to healthy individuals [1]. In mice with cancer, peripheral organs displayed systemic inflammation and impaired vascular function, which was restored upon neutrophil depletion. Platelet/neutrophil complexes, indicative of neutrophil extracellular traps (NETs), were found in kidney and heart from tumor-bearing mice, while these complexes were completely absent in the corresponding tissues from healthy mice. Indeed, analysis of peripheral blood confirmed the presence of neutrophils with extracellular DNA-tails in tumor-bearing mice.","PeriodicalId":94164,"journal":{"name":"Oncoscience","volume":"4 1","pages":"900 - 901"},"PeriodicalIF":0.0,"publicationDate":"2015-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90189648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-11-15DOI: 10.18632/ONCOSCIENCE.263
Kideok Jin, S. Sukumar
HOXB7 is a homeodomain containing transcription factor which plays a pivotal role in tamoxifen resistant breast cancer. Our work has shown that overexpression of HOXB7 renders cells tamoxifen resistant by mobilizing a number of receptor tyrosine kinase pathways. EGFR expression is upregulated by direct binding of HOXB7 to the EGFR promoter, while HOXB7 functions as a cofactor with ERα to cause overexpression of multiple ER-target genes, including HER2, in tamoxifen resistant breast cancer cells. Probing the pathway further, we found that miR-196a and MYC are upstream regulators of HOXB7 expression. Mechanistically, HOXB7 and ERα jointly upregulate HER2 which phosphorylates MYC. Thus stabilized, MYC in turn suppresses miR-196a. Loss of miR-196a results lifts the quelling influence of miR-196a on HOXB7 expression. Besides shedding light on the intricate interplay of events occurring in tamoxifen resistant breast cancer, the work identifies a number of new therapeutic targets capable of restoring sensitivity of breast cancer cells to tamoxifen.
{"title":"A pivotal role for HOXB7 protein in endocrine resistant breast cancer","authors":"Kideok Jin, S. Sukumar","doi":"10.18632/ONCOSCIENCE.263","DOIUrl":"https://doi.org/10.18632/ONCOSCIENCE.263","url":null,"abstract":"HOXB7 is a homeodomain containing transcription factor which plays a pivotal role in tamoxifen resistant breast cancer. Our work has shown that overexpression of HOXB7 renders cells tamoxifen resistant by mobilizing a number of receptor tyrosine kinase pathways. EGFR expression is upregulated by direct binding of HOXB7 to the EGFR promoter, while HOXB7 functions as a cofactor with ERα to cause overexpression of multiple ER-target genes, including HER2, in tamoxifen resistant breast cancer cells. Probing the pathway further, we found that miR-196a and MYC are upstream regulators of HOXB7 expression. Mechanistically, HOXB7 and ERα jointly upregulate HER2 which phosphorylates MYC. Thus stabilized, MYC in turn suppresses miR-196a. Loss of miR-196a results lifts the quelling influence of miR-196a on HOXB7 expression. Besides shedding light on the intricate interplay of events occurring in tamoxifen resistant breast cancer, the work identifies a number of new therapeutic targets capable of restoring sensitivity of breast cancer cells to tamoxifen.","PeriodicalId":94164,"journal":{"name":"Oncoscience","volume":"1 1","pages":"917 - 919"},"PeriodicalIF":0.0,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89546764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-11-11DOI: 10.18632/ONCOSCIENCE.260
C. Panuzzo, G. Volpe, E. C. Rocchietti, C. Casnici, K. Crotta, S. Crivellaro, Giovanna Carrá, Roberta Lorenzatti, Barbara Peracino, Davide Torti, A. Morotti, M. P. Camacho-Leal, P. Defilippi, O. Marelli, G. Saglio
In Chronic Myeloid Leukemia 80% of patients present alternative splice variants involving BCR exons 1, 13 or 14 and ABL exon 4, with a consequent impairment in the reading frame of the ABL gene. Therefore BCR/ABL fusion proteins (BCR/ABL-OOF) are characterized by an in-frame BCR portion followed by an amino acids sequence arising from the out of frame (OOF) reading of the ABL gene. The product of this new transcript contains the characteristic BCR domains while lacking the COOH-terminal Rho GTPase GAP domain. The present work aims to characterize the protein functionality in terms of cytoskeleton (re-)modelling, adhesion and activation of canonical oncogenic signalling pathways. Here, we show that BCR/ABL-OOF has a peculiar endosomal localization which affects EGF receptor activation and turnover. Moreover, we demonstrate that BCR/ABL-OOF expression leads to aberrant cellular adhesion due to the activation of Rac GTPase, increase in cellular proliferation, migration and survival. When overexpressed in a BCR/ABL positive cell line, BCR/ABL-OOF induces hyperactivation of Rac signaling axis offering a therapeutic window for Rac-targeted therapy. Our data support a critical role of BCR/ABL-OOF in leukemogenesis and identify a subset of patients that may benefit from Rac-targeted therapies.
{"title":"New alternative splicing BCR/ABL-OOF shows an oncogenic role by lack of inhibition of BCR GTPase activity and an increased of persistence of Rac activation in chronic myeloid leukemia","authors":"C. Panuzzo, G. Volpe, E. C. Rocchietti, C. Casnici, K. Crotta, S. Crivellaro, Giovanna Carrá, Roberta Lorenzatti, Barbara Peracino, Davide Torti, A. Morotti, M. P. Camacho-Leal, P. Defilippi, O. Marelli, G. Saglio","doi":"10.18632/ONCOSCIENCE.260","DOIUrl":"https://doi.org/10.18632/ONCOSCIENCE.260","url":null,"abstract":"In Chronic Myeloid Leukemia 80% of patients present alternative splice variants involving BCR exons 1, 13 or 14 and ABL exon 4, with a consequent impairment in the reading frame of the ABL gene. Therefore BCR/ABL fusion proteins (BCR/ABL-OOF) are characterized by an in-frame BCR portion followed by an amino acids sequence arising from the out of frame (OOF) reading of the ABL gene. The product of this new transcript contains the characteristic BCR domains while lacking the COOH-terminal Rho GTPase GAP domain. The present work aims to characterize the protein functionality in terms of cytoskeleton (re-)modelling, adhesion and activation of canonical oncogenic signalling pathways. Here, we show that BCR/ABL-OOF has a peculiar endosomal localization which affects EGF receptor activation and turnover. Moreover, we demonstrate that BCR/ABL-OOF expression leads to aberrant cellular adhesion due to the activation of Rac GTPase, increase in cellular proliferation, migration and survival. When overexpressed in a BCR/ABL positive cell line, BCR/ABL-OOF induces hyperactivation of Rac signaling axis offering a therapeutic window for Rac-targeted therapy. Our data support a critical role of BCR/ABL-OOF in leukemogenesis and identify a subset of patients that may benefit from Rac-targeted therapies.","PeriodicalId":94164,"journal":{"name":"Oncoscience","volume":"124 1","pages":"880 - 891"},"PeriodicalIF":0.0,"publicationDate":"2015-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76223000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-11-11DOI: 10.18632/ONCOSCIENCE.261
W. Arancio, S. Genovese, L. Bongiovanni, C. Tripodo
In genomic deletions, gene haploinsufficiency might directly configure a specific disease phenotype. Nevertheless, in some cases no functional association can be identified between haploinsufficient genes and the deletion-associated phenotype. Transcripts can act as microRNA sponges. The reduction of transcripts from the hemizygous region may increase the availability of specific microRNAs, which in turn may exert in-trans regulation of target genes outside the deleted region, eventually contributing to the phenotype. Here we prospect a competing endogenous RNA (ceRNA) approach for the identification of candidate genes target of epigenetic regulation in deletion syndromes. As a model, we analyzed the 5q- myelodysplastic syndrome. Genes in haploinsufficiency within the common 5q deleted region in CD34+ blasts were identified in silico. Using the miRWalk 2.0 platform, we predicted microRNAs whose availability, and thus activity, could be enhanced by the deletion, and performed a genomewide analysis of the genes outside the 5q deleted region that could be targeted by the predicted miRNAs. The analysis pointed to two genes with altered expression in 5q- transcriptome, which have never been related with 5q- before. The prospected approach allows investigating the global transcriptional effect of genomic deletions, possibly prompting discovery of unsuspected contributors in the deletion-associated phenotype. Moreover, it may help in functionally characterizing previously reported unexpected interactions.
{"title":"A ceRNA approach may unveil unexpected contributors to deletion syndromes, the model of 5q- syndrome","authors":"W. Arancio, S. Genovese, L. Bongiovanni, C. Tripodo","doi":"10.18632/ONCOSCIENCE.261","DOIUrl":"https://doi.org/10.18632/ONCOSCIENCE.261","url":null,"abstract":"In genomic deletions, gene haploinsufficiency might directly configure a specific disease phenotype. Nevertheless, in some cases no functional association can be identified between haploinsufficient genes and the deletion-associated phenotype. Transcripts can act as microRNA sponges. The reduction of transcripts from the hemizygous region may increase the availability of specific microRNAs, which in turn may exert in-trans regulation of target genes outside the deleted region, eventually contributing to the phenotype. Here we prospect a competing endogenous RNA (ceRNA) approach for the identification of candidate genes target of epigenetic regulation in deletion syndromes. As a model, we analyzed the 5q- myelodysplastic syndrome. Genes in haploinsufficiency within the common 5q deleted region in CD34+ blasts were identified in silico. Using the miRWalk 2.0 platform, we predicted microRNAs whose availability, and thus activity, could be enhanced by the deletion, and performed a genomewide analysis of the genes outside the 5q deleted region that could be targeted by the predicted miRNAs. The analysis pointed to two genes with altered expression in 5q- transcriptome, which have never been related with 5q- before. The prospected approach allows investigating the global transcriptional effect of genomic deletions, possibly prompting discovery of unsuspected contributors in the deletion-associated phenotype. Moreover, it may help in functionally characterizing previously reported unexpected interactions.","PeriodicalId":94164,"journal":{"name":"Oncoscience","volume":"129 1","pages":"872 - 879"},"PeriodicalIF":0.0,"publicationDate":"2015-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76938055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-11-10DOI: 10.18632/ONCOSCIENCE.258
M. López-Lázaro
Metastasis will continue to be an incurable disease for most patients until we develop highly selective anticancer therapies. The development of these therapies requires finding and exploiting major differences between cancer cells and normal cells. Although the sum of the many DNA alterations of cancer cells makes up such a major difference, there is currently no way of exploiting these alterations as a whole. Here I propose a non-pharmacological strategy to selectively kill any type of cancer cell, including cancer stem cells, by exploiting their complete set of DNA alterations. It is based on creating challenging environmental conditions that only cells with undamaged DNAs can overcome. Cell survival requires continuous protein synthesis, which in turn requires adequate levels of 20 amino acids (AAs). If we temporarily restrict specific AAs and keep high levels of others whose deficit triggers proteolysis, we will force cells to activate a variety of genetic programs to obtain adequate levels of each of the 20 proteinogenic AAs. Because cancer cells have an extremely altered DNA that has evolved under particular environmental conditions, they may be unable to activate the genetic programs required to adapt to and survive the new environment. Cancer patients may be successfully treated with a protein-free artificial diet in which the levels of specific AAs are manipulated. Practical considerations for testing and implementing this cheap and universal anticancer strategy are discussed.
{"title":"Selective amino acid restriction therapy (SAART): a non-pharmacological strategy against all types of cancer cells","authors":"M. López-Lázaro","doi":"10.18632/ONCOSCIENCE.258","DOIUrl":"https://doi.org/10.18632/ONCOSCIENCE.258","url":null,"abstract":"Metastasis will continue to be an incurable disease for most patients until we develop highly selective anticancer therapies. The development of these therapies requires finding and exploiting major differences between cancer cells and normal cells. Although the sum of the many DNA alterations of cancer cells makes up such a major difference, there is currently no way of exploiting these alterations as a whole. Here I propose a non-pharmacological strategy to selectively kill any type of cancer cell, including cancer stem cells, by exploiting their complete set of DNA alterations. It is based on creating challenging environmental conditions that only cells with undamaged DNAs can overcome. Cell survival requires continuous protein synthesis, which in turn requires adequate levels of 20 amino acids (AAs). If we temporarily restrict specific AAs and keep high levels of others whose deficit triggers proteolysis, we will force cells to activate a variety of genetic programs to obtain adequate levels of each of the 20 proteinogenic AAs. Because cancer cells have an extremely altered DNA that has evolved under particular environmental conditions, they may be unable to activate the genetic programs required to adapt to and survive the new environment. Cancer patients may be successfully treated with a protein-free artificial diet in which the levels of specific AAs are manipulated. Practical considerations for testing and implementing this cheap and universal anticancer strategy are discussed.","PeriodicalId":94164,"journal":{"name":"Oncoscience","volume":"33 1","pages":"857 - 866"},"PeriodicalIF":0.0,"publicationDate":"2015-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86821104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-11-10DOI: 10.18632/ONCOSCIENCE.259
J. Rennhack, E. Andrechek
To improve breast cancer patient outcome work must be done to understand and block tumor metastasis. This study leverages bioinformatics techniques and traditional genetic screens to create a novel method of discovering potential contributors of tumor progression with a focus on tumor metastasis. A database of 1172 of expression data from a variety of mouse models of breast cancer was assembled and queried using previously defined oncogenic activity signatures. This analysis revealed high activity of the E2F family of transcription factors in the MMTV-Neu mouse model. A genetic cross of MMTV-Neu mice into an E2F1 null, E2F2 null, or E2F3 heterozygous background revealed significant changes in tumor progression specifically reductions in tumor latency and metastasis with E2F1 or E2F2 loss. These findings were found to be conserved in human HER2 positive patients. Patients with high E2F1 activity were shown to have worse outcomes such as relapse free survival and distant metastasis free survival. This study shows conserved mechanisms of tumor progression in human breast cancer subtypes and analogous mouse models and underlies the importance of increased research into the characterization of and comparisons between mouse and human tumors to identify which mouse models resemble each subtype of human breast cancer.
{"title":"Conserved E2F mediated metastasis in mouse models of breast cancer and HER2 positive patients","authors":"J. Rennhack, E. Andrechek","doi":"10.18632/ONCOSCIENCE.259","DOIUrl":"https://doi.org/10.18632/ONCOSCIENCE.259","url":null,"abstract":"To improve breast cancer patient outcome work must be done to understand and block tumor metastasis. This study leverages bioinformatics techniques and traditional genetic screens to create a novel method of discovering potential contributors of tumor progression with a focus on tumor metastasis. A database of 1172 of expression data from a variety of mouse models of breast cancer was assembled and queried using previously defined oncogenic activity signatures. This analysis revealed high activity of the E2F family of transcription factors in the MMTV-Neu mouse model. A genetic cross of MMTV-Neu mice into an E2F1 null, E2F2 null, or E2F3 heterozygous background revealed significant changes in tumor progression specifically reductions in tumor latency and metastasis with E2F1 or E2F2 loss. These findings were found to be conserved in human HER2 positive patients. Patients with high E2F1 activity were shown to have worse outcomes such as relapse free survival and distant metastasis free survival. This study shows conserved mechanisms of tumor progression in human breast cancer subtypes and analogous mouse models and underlies the importance of increased research into the characterization of and comparisons between mouse and human tumors to identify which mouse models resemble each subtype of human breast cancer.","PeriodicalId":94164,"journal":{"name":"Oncoscience","volume":"246 1","pages":"867 - 871"},"PeriodicalIF":0.0,"publicationDate":"2015-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72759541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-11-10DOI: 10.18632/ONCOSCIENCE.257
M. López-Lázaro
Cancer is, in essence, a stem cell disease. The main biological cause of cancer is that stem cells acquire DNA alterations during cell division. The more stem cell divisions a tissue accumulates over a lifetime, the higher is the risk of cancer in that tissue. This explains why cancer is diagnosed millions of times more often in some tissues than in others, and why cancer incidence increases so dramatically with age. It may also explain why taking a daily low-dose aspirin for several years reduces the risk of developing and dying from cancer. Since aspirin use reduces PGE2 levels and PGE2 fuels stem cell proliferation, aspirin may prevent cancer by restricting the division rates of stem cells. The stem cell division model of cancer may also explain why regular consumption of very hot foods and beverages increases the risk of developing esophageal cancer. Given that tissue injury activates stem cell division for repair, the thermal injury associated with this dietary habit will increase esophageal cancer risk by inducing the accumulation of stem cell divisions in the esophagus. Using these two examples, here I propose that controlling the division rates of stem cells is an essential approach to preventing cancer.
{"title":"Understanding why aspirin prevents cancer and why consuming very hot beverages and foods increases esophageal cancer risk. Controlling the division rates of stem cells is an important strategy to prevent cancer","authors":"M. López-Lázaro","doi":"10.18632/ONCOSCIENCE.257","DOIUrl":"https://doi.org/10.18632/ONCOSCIENCE.257","url":null,"abstract":"Cancer is, in essence, a stem cell disease. The main biological cause of cancer is that stem cells acquire DNA alterations during cell division. The more stem cell divisions a tissue accumulates over a lifetime, the higher is the risk of cancer in that tissue. This explains why cancer is diagnosed millions of times more often in some tissues than in others, and why cancer incidence increases so dramatically with age. It may also explain why taking a daily low-dose aspirin for several years reduces the risk of developing and dying from cancer. Since aspirin use reduces PGE2 levels and PGE2 fuels stem cell proliferation, aspirin may prevent cancer by restricting the division rates of stem cells. The stem cell division model of cancer may also explain why regular consumption of very hot foods and beverages increases the risk of developing esophageal cancer. Given that tissue injury activates stem cell division for repair, the thermal injury associated with this dietary habit will increase esophageal cancer risk by inducing the accumulation of stem cell divisions in the esophagus. Using these two examples, here I propose that controlling the division rates of stem cells is an essential approach to preventing cancer.","PeriodicalId":94164,"journal":{"name":"Oncoscience","volume":"28 1","pages":"849 - 856"},"PeriodicalIF":0.0,"publicationDate":"2015-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85203408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-10-20DOI: 10.18632/ONCOSCIENCE.256
A. Yoshida, J. Diehl
The CDK4 and CDK6 kinases (CDK4/6) are the first cyclin dependent kinases to be activated and initiate transition through G1 phase of the cell cycle. In response to mitogenic growth factors, the CDK4/6 kinase together with one of three D-type cyclins (D1, D2, D3) initiates G1 progression by virtue of its capacity to phosphorylate the retinoblastoma protein (RB), a bona fide tumor suppressor and Gate Keeper of cell division. Phosphorylation of RB in turn results in de-repression of E2F transcription factors thereby triggering expression of genes whose products drive S-phase entry and progression (1). Cyclin D1 dysregulation occurs in a majority of human cancers, a direct result of gene amplification or mutations that disrupt its protein degradation. CDK4 amplification or activating point mutations are also observed in select malignancies. The end result of such aberrations is elevated CDK4 catalytic function, increased cell division and decreased dependence on extracellular mitogenic growth factors for cell proliferation. These observations have contributed to significant efforts to develop selective small molecule CDK4/6 inhibitors with the hope that such entities would have significant anti-cancer benefit. PD0332991 (Palbociclib), a highly selective inhibitor of CDK4 (IC50: 0.011 μM) and CDK6 (IC50: 0.016 μM), has been shown to be highly efficacious in a variety of cell culture models with regard to its capacity to suppress cell cycle progression through inhibition of CDK4/6 kinase activity in an RB-dependent manner and it is currently being tested in clinical trials for malignancies such as mantle cell lymphoma, breast cancer, and colorectal cancer (2). While acute inhibition of CDK4/6 is associated with reversible cell cycle withdraw or quiescence, some recent investigations have provided provocative evidence that Palbociclib treatment can in fact trigger irreversible withdraw, a state referred to as senescence (3, 4, 5). However the mechanisms that determine whether Palbociclib evokes quiescence versus senescence are yet to be established. In work described by Kovatcheva et al a new molecular mechanism wherein MDM2 and ATRX determine cell fate following CDK4/6 inhibition in cancer cells derived from several distinct cancer etiologies such as well-differentiated and dedifferentiated liposarcoma (WD/DDLS), lung cancer, and glioma (6). In this work, WD/DDLS cell lines were classified based upon cell fate following Palbociclib exposure: quiescence (non-responders) versus senescence (responders). While both groups had the expected reduction in RB phosphorylation, the responders also exhibited a significant decrease in MDM2 levels after prolonged CDK4 inhibition. Importantly, the phenotype is RB dependent, but is p53 and p16INK4a-independent. The capacity of MDM2 knock down to trigger senescence from quiescent phase in a combination with Palbociclib in non-responders, provides evidence that the reduction of MDM2 is in fact causative in the respo
{"title":"CDK4/6 inhibitor: from quiescence to senescence","authors":"A. Yoshida, J. Diehl","doi":"10.18632/ONCOSCIENCE.256","DOIUrl":"https://doi.org/10.18632/ONCOSCIENCE.256","url":null,"abstract":"The CDK4 and CDK6 kinases (CDK4/6) are the first cyclin dependent kinases to be activated and initiate transition through G1 phase of the cell cycle. In response to mitogenic growth factors, the CDK4/6 kinase together with one of three D-type cyclins (D1, D2, D3) initiates G1 progression by virtue of its capacity to phosphorylate the retinoblastoma protein (RB), a bona fide tumor suppressor and Gate Keeper of cell division. Phosphorylation of RB in turn results in de-repression of E2F transcription factors thereby triggering expression of genes whose products drive S-phase entry and progression (1). Cyclin D1 dysregulation occurs in a majority of human cancers, a direct result of gene amplification or mutations that disrupt its protein degradation. CDK4 amplification or activating point mutations are also observed in select malignancies. The end result of such aberrations is elevated CDK4 catalytic function, increased cell division and decreased dependence on extracellular mitogenic growth factors for cell proliferation. These observations have contributed to significant efforts to develop selective small molecule CDK4/6 inhibitors with the hope that such entities would have significant anti-cancer benefit. PD0332991 (Palbociclib), a highly selective inhibitor of CDK4 (IC50: 0.011 μM) and CDK6 (IC50: 0.016 μM), has been shown to be highly efficacious in a variety of cell culture models with regard to its capacity to suppress cell cycle progression through inhibition of CDK4/6 kinase activity in an RB-dependent manner and it is currently being tested in clinical trials for malignancies such as mantle cell lymphoma, breast cancer, and colorectal cancer (2). \u0000 \u0000While acute inhibition of CDK4/6 is associated with reversible cell cycle withdraw or quiescence, some recent investigations have provided provocative evidence that Palbociclib treatment can in fact trigger irreversible withdraw, a state referred to as senescence (3, 4, 5). However the mechanisms that determine whether Palbociclib evokes quiescence versus senescence are yet to be established. In work described by Kovatcheva et al a new molecular mechanism wherein MDM2 and ATRX determine cell fate following CDK4/6 inhibition in cancer cells derived from several distinct cancer etiologies such as well-differentiated and dedifferentiated liposarcoma (WD/DDLS), lung cancer, and glioma (6). In this work, WD/DDLS cell lines were classified based upon cell fate following Palbociclib exposure: quiescence (non-responders) versus senescence (responders). While both groups had the expected reduction in RB phosphorylation, the responders also exhibited a significant decrease in MDM2 levels after prolonged CDK4 inhibition. Importantly, the phenotype is RB dependent, but is p53 and p16INK4a-independent. The capacity of MDM2 knock down to trigger senescence from quiescent phase in a combination with Palbociclib in non-responders, provides evidence that the reduction of MDM2 is in fact causative in the respo","PeriodicalId":94164,"journal":{"name":"Oncoscience","volume":"11 1","pages":"896 - 897"},"PeriodicalIF":0.0,"publicationDate":"2015-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89915379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}