首页 > 最新文献

Plant signaling & behavior最新文献

英文 中文
Robotic mechanical wounding is sufficient to induce phenylacetaldoxime accumulation in Tococa quadrialata. 机械伤足以诱导 Tococa quadrialata 中的苯乙醛肟积累。
Pub Date : 2024-12-31 Epub Date: 2024-05-30 DOI: 10.1080/15592324.2024.2360298
Kilian Lucas Ossetek, Andrea Teresa Müller, Axel Mithöfer

This study investigated the accumulation of phenlyacetaldoxime (PAOx) and PAOx-Glc in Tococa quadrialata leaves in response to herbivore infestation and mechanical wounding. Results show that PAOx levels peaked at 24 h post-infestation, while PAOx-Glc remained present for several days. The accumulation of PAOx began as early as 3 h after herbivory, with PAOx-Glc significantly increased after 6 h. Mechanical wounding induced similar responses in PAOx and PAOx-Glc accumulation as herbivory, suggesting that continuous tissue damage triggers the production of these compounds. Interestingly, SpitWorm-treated leaves showed the highest levels of both PAOx and PAOx-Glc, indicating that herbivore-derived oral secretions (OS) play a role in the induction of these compounds. Additionally, JA-independent PAOx production was found to be associated with tissue damage rather than specific known signaling compounds. Emission of benzyl cyanide and 2-phenylethanol, PAOx-derived plant volatiles, was observed in response to herbivory and SpitWorm treatment providing plant-derived OS, further highlighting the role of herbivore cues in plant defense responses.

本研究调查了 Tococa quadrialata 叶子中的苯乙醛肟(PAOx)和 PAOx-Glc 在食草动物侵扰和机械伤害下的积累情况。结果表明,PAOx 的含量在侵染后 24 小时达到峰值,而 PAOx-Glc 的含量则持续数天。机械伤害引起的 PAOx 和 PAOx-Glc 积累反应与食草动物相似,表明持续的组织损伤会引发这些化合物的产生。有趣的是,吐丝虫处理的叶片显示出最高水平的 PAOx 和 PAOx-Glc,表明食草动物衍生的口腔分泌物(OS)在这些化合物的诱导过程中发挥了作用。此外,还发现独立于 JA 的 PAOx 产生与组织损伤有关,而不是与特定的已知信号化合物有关。观察到苄基氰化物和 2-苯基乙醇(源自 PAOx 的植物挥发性物质)的释放是对食草动物和提供植物源 OS 的吐丝蝇处理的反应,这进一步突出了食草动物线索在植物防御反应中的作用。
{"title":"Robotic mechanical wounding is sufficient to induce phenylacetaldoxime accumulation in <i>Tococa quadrialata</i>.","authors":"Kilian Lucas Ossetek, Andrea Teresa Müller, Axel Mithöfer","doi":"10.1080/15592324.2024.2360298","DOIUrl":"10.1080/15592324.2024.2360298","url":null,"abstract":"<p><p>This study investigated the accumulation of phenlyacetaldoxime (PAOx) and PAOx-Glc in <i>Tococa quadrialata</i> leaves in response to herbivore infestation and mechanical wounding. Results show that PAOx levels peaked at 24 h post-infestation, while PAOx-Glc remained present for several days. The accumulation of PAOx began as early as 3 h after herbivory, with PAOx-Glc significantly increased after 6 h. Mechanical wounding induced similar responses in PAOx and PAOx-Glc accumulation as herbivory, suggesting that continuous tissue damage triggers the production of these compounds. Interestingly, SpitWorm-treated leaves showed the highest levels of both PAOx and PAOx-Glc, indicating that herbivore-derived oral secretions (OS) play a role in the induction of these compounds. Additionally, JA-independent PAOx production was found to be associated with tissue damage rather than specific known signaling compounds. Emission of benzyl cyanide and 2-phenylethanol, PAOx-derived plant volatiles, was observed in response to herbivory and SpitWorm treatment providing plant-derived OS, further highlighting the role of herbivore cues in plant defense responses.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2360298"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141477/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Induced resistance to herbivory and the intelligent plant. 诱导抗食草动物和智能植物。
Pub Date : 2024-12-31 Epub Date: 2024-04-30 DOI: 10.1080/15592324.2024.2345985
André Kessler, Michael B Mueller

Plant induced responses to environmental stressors are increasingly studied in a behavioral ecology context. This is particularly true for plant induced responses to herbivory that mediate direct and indirect defenses, and tolerance. These seemingly adaptive alterations of plant defense phenotypes in the context of other environmental conditions have led to the discussion of such responses as intelligent behavior. Here we consider the concept of plant intelligence and some of its predictions for chemical information transfer in plant interaction with other organisms. Within this framework, the flow, perception, integration, and storage of environmental information are considered tunable dials that allow plants to respond adaptively to attacking herbivores while integrating past experiences and environmental cues that are predictive of future conditions. The predictive value of environmental information and the costs of acting on false information are important drivers of the evolution of plant responses to herbivory. We identify integrative priming of defense responses as a mechanism that allows plants to mitigate potential costs associated with acting on false information. The priming mechanisms provide short- and long-term memory that facilitates the integration of environmental cues without imposing significant costs. Finally, we discuss the ecological and evolutionary prediction of the plant intelligence hypothesis.

在行为生态学背景下,植物对环境压力源的诱导反应研究日益增多。尤其是植物对食草动物的诱导反应,这种反应介导直接和间接防御以及耐受性。植物防御表型在其他环境条件下发生的这些看似适应性的改变,引发了人们对此类反应是否为智能行为的讨论。在此,我们将探讨植物智能的概念及其对植物与其他生物交互过程中化学信息传递的一些预测。在这一框架内,环境信息的流动、感知、整合和存储被认为是可调表盘,可使植物对攻击性食草动物做出适应性反应,同时整合过去的经验和可预测未来条件的环境线索。环境信息的预测价值和根据错误信息采取行动的成本是植物对食草动物反应进化的重要驱动力。我们发现,防御反应的综合启动机制可使植物减轻根据错误信息采取行动的潜在成本。引诱机制提供了短期和长期记忆,有助于整合环境线索,而不会造成重大损失。最后,我们讨论了植物智能假说的生态和进化预测。
{"title":"Induced resistance to herbivory and the intelligent plant.","authors":"André Kessler, Michael B Mueller","doi":"10.1080/15592324.2024.2345985","DOIUrl":"10.1080/15592324.2024.2345985","url":null,"abstract":"<p><p>Plant induced responses to environmental stressors are increasingly studied in a behavioral ecology context. This is particularly true for plant induced responses to herbivory that mediate direct and indirect defenses, and tolerance. These seemingly adaptive alterations of plant defense phenotypes in the context of other environmental conditions have led to the discussion of such responses as intelligent behavior. Here we consider the concept of plant intelligence and some of its predictions for chemical information transfer in plant interaction with other organisms. Within this framework, the flow, perception, integration, and storage of environmental information are considered tunable dials that allow plants to respond adaptively to attacking herbivores while integrating past experiences and environmental cues that are predictive of future conditions. The predictive value of environmental information and the costs of acting on false information are important drivers of the evolution of plant responses to herbivory. We identify integrative priming of defense responses as a mechanism that allows plants to mitigate potential costs associated with acting on false information. The priming mechanisms provide short- and long-term memory that facilitates the integration of environmental cues without imposing significant costs. Finally, we discuss the ecological and evolutionary prediction of the plant intelligence hypothesis.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2345985"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062368/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140854549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maize's origin to be revisited. 玉米的起源有待重新研究。
Pub Date : 2024-12-31 Epub Date: 2024-03-21 DOI: 10.1080/15592324.2024.2332017
Khaled Moustafa
{"title":"Maize's origin to be revisited.","authors":"Khaled Moustafa","doi":"10.1080/15592324.2024.2332017","DOIUrl":"10.1080/15592324.2024.2332017","url":null,"abstract":"","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2332017"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10962592/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of geotypic variations in the proteome of Nostoc commune. 对 Nostoc commune 蛋白质组地理变异的比较分析。
Pub Date : 2024-12-31 Epub Date: 2024-06-24 DOI: 10.1080/15592324.2024.2370719
Deepti Routray, Arindam Ghatak, Palak Chaturvedi, Linda Petijová, Wolfram Weckwerth, Dajana Ručová, Martin Bačkor, Ingeborg Lang, Michal Goga

Cyanobacterium Nostoc commune is a filamentous terrestrial prokaryotic organism widely distributed, which suggest its high adaptive potential to environmental or abiotic stress. Physiological parameters and proteomic analysis were performed in two accession of N. commune with the aim to elucidate the differences of physiological trails between distant geotypes, namely Antarctic (AN) and central European (CE). The result obtained clearly showed that the AN geotype demonstrates elevated levels of total phenols, flavonoids, carotenoids, and phycobiliproteins, indicative of its adaptation to environmental stress as referred by comparison to CE sample. Additionally, we employed LC-MS analysis to investigate the proteomes of N. commune from AN and CE geotypes. In total, 1147 proteins were identified, among which 646 proteins expressed significant (up-regulation) changes in both accessions. In the AN geotype, 83 exclusive proteins were identified compared to 25 in the CE geotype. Functional classification of the significant proteins showed a large fraction involved in photosynthesis, amino acid metabolism, carbohydrate metabolism and protein biosynthesis. Further analysis revealed some defense-related proteins such as, superoxide dismutase (SOD) and glutathione reductase, which are rather explicitly expressed in the AN N. commune. The last two proteins suggest a more stressful condition in AN N. commune. In summary, our findings highlight biochemical processes that safeguard the AN geotype of N. commune from extreme environmental challenges, not recorded in CE accession, probably due to less stressful environment in Europe. This study brings the first ever proteomic analysis of N. commune, emphasizing the need for additional investigations into the climate adaptation of this species with rather plastic genome.

蓝藻 Nostoc commune 是一种广泛分布的丝状陆生原核生物,这表明它对环境或非生物压力具有很高的适应潜力。研究人员对两株共生草履虫进行了生理参数和蛋白质组分析,旨在阐明南极(AN)和中欧(CE)这两个不同地理型之间生理径迹的差异。研究结果清楚地表明,与中欧样本相比,南极(AN)地理模式的总酚、类黄酮、类胡萝卜素和藻蓝蛋白水平较高,表明其对环境压力的适应性较强。此外,我们还采用 LC-MS 分析方法研究了 AN 和 CE 地理样型中的蒲公英蛋白质组。共鉴定出 1147 个蛋白质,其中 646 个蛋白质在两个品种中均有显著变化(上调)。在 AN 地理样型中,共鉴定出 83 个独有蛋白质,而在 CE 地理样型中只有 25 个。对重要蛋白质的功能分类显示,大部分蛋白质参与光合作用、氨基酸代谢、碳水化合物代谢和蛋白质的生物合成。进一步的分析表明,一些与防御有关的蛋白质,如超氧化物歧化酶(SOD)和谷胱甘肽还原酶,在 AN N. commune 中的表达相当明确。后两种蛋白质表明芒柄苣苔的应激条件更强。总之,我们的研究结果突显了保护赤桉树 AN 地理单元免受极端环境挑战的生化过程,这可能是由于欧洲的环境压力较小,CE 单元中并没有记录。这项研究首次对胭脂虫进行了蛋白质组学分析,强调了对这种基因组具有相当可塑性的物种的气候适应性进行更多研究的必要性。
{"title":"Comparative analysis of geotypic variations in the proteome of <i>Nostoc commune</i>.","authors":"Deepti Routray, Arindam Ghatak, Palak Chaturvedi, Linda Petijová, Wolfram Weckwerth, Dajana Ručová, Martin Bačkor, Ingeborg Lang, Michal Goga","doi":"10.1080/15592324.2024.2370719","DOIUrl":"10.1080/15592324.2024.2370719","url":null,"abstract":"<p><p>Cyanobacterium <i>Nostoc commune</i> is a filamentous terrestrial prokaryotic organism widely distributed, which suggest its high adaptive potential to environmental or abiotic stress. Physiological parameters and proteomic analysis were performed in two accession of <i>N. commune</i> with the aim to elucidate the differences of physiological trails between distant geotypes, namely Antarctic (AN) and central European (CE). The result obtained clearly showed that the AN geotype demonstrates elevated levels of total phenols, flavonoids, carotenoids, and phycobiliproteins, indicative of its adaptation to environmental stress as referred by comparison to CE sample. Additionally, we employed LC-MS analysis to investigate the proteomes of <i>N. commune</i> from AN and CE geotypes. In total, 1147 proteins were identified, among which 646 proteins expressed significant (up-regulation) changes in both accessions. In the AN geotype, 83 exclusive proteins were identified compared to 25 in the CE geotype. Functional classification of the significant proteins showed a large fraction involved in photosynthesis, amino acid metabolism, carbohydrate metabolism and protein biosynthesis. Further analysis revealed some defense-related proteins such as, superoxide dismutase (SOD) and glutathione reductase, which are rather explicitly expressed in the AN <i>N. commune</i>. The last two proteins suggest a more stressful condition in AN <i>N. commune</i>. In summary, our findings highlight biochemical processes that safeguard the AN geotype of <i>N. commune</i> from extreme environmental challenges, not recorded in CE accession, probably due to less stressful environment in Europe. This study brings the first ever proteomic analysis of <i>N. commune</i>, emphasizing the need for additional investigations into the climate adaptation of this species with rather plastic genome.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2370719"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197914/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MAPK3-MYB36-ARF1 module regulates the tanshinone formation in Salvia miltiorrhiza. MAPK3-MYB36-ARF1 模块调控丹参中丹参酮的形成。
Pub Date : 2024-12-31 Epub Date: 2024-08-15 DOI: 10.1080/15592324.2024.2391659
Yongfeng Xie, Hao Liu

Salvia miltiorrhiza, known as Danshen, is a traditional Chinese medicinal plant with significant cardiovascular benefits, attributed to its secondary metabolites, particularly tanshinones. Despite their medicinal value, tanshinones occur in low natural abundance, necessitating research to increase their content. This study explores the role of the ARF transcription factor (SmARF1) in tanshinone accumulation in Danshen. Overexpressing SmARF1 in hairy roots significantly increased tanshinone levels. EMSA and Dual-LUC assays revealed that SmMYB36, a transcription factor interacting with SmMAPK3, binds to and regulates the SmARF1 promoter. SmMYB36 alone inhibited the expression of SmARF1 gene, while its interaction with SmMAPK3 enhanced SmARF1 promoter activity. This MAPK3-MYB36-ARF1 module elucidates a complex regulatory mechanism for tanshinone biosynthesis, offering insights for targeted enhancement of tanshinone content through advanced biotechnological approaches.

丹参,又名丹参,是一种传统的中药植物,对心血管有显著疗效,这归功于它的次生代谢产物,尤其是丹参酮。尽管丹参酮具有药用价值,但其天然含量较低,因此有必要进行研究以提高其含量。本研究探讨了 ARF 转录因子(SmARF1)在丹参酮积累中的作用。在毛根中过表达 SmARF1 能显著提高丹参酮的含量。EMSA 和 Dual-LUC 分析表明,与 SmMAPK3 相互作用的转录因子 SmMYB36 与 SmARF1 启动子结合并对其进行调控。单独使用 SmMYB36 可抑制 SmARF1 基因的表达,而与 SmMAPK3 相互作用则可增强 SmARF1 启动子的活性。这一 MAPK3-MYB36-ARF1 模块阐明了丹参酮生物合成的复杂调控机制,为通过先进的生物技术方法有针对性地提高丹参酮含量提供了启示。
{"title":"MAPK3-MYB36-ARF1 module regulates the tanshinone formation in <i>Salvia miltiorrhiza</i>.","authors":"Yongfeng Xie, Hao Liu","doi":"10.1080/15592324.2024.2391659","DOIUrl":"10.1080/15592324.2024.2391659","url":null,"abstract":"<p><p><i>Salvia miltiorrhiza</i>, known as Danshen, is a traditional Chinese medicinal plant with significant cardiovascular benefits, attributed to its secondary metabolites, particularly tanshinones. Despite their medicinal value, tanshinones occur in low natural abundance, necessitating research to increase their content. This study explores the role of the ARF transcription factor (SmARF1) in tanshinone accumulation in Danshen. Overexpressing <i>SmARF1</i> in hairy roots significantly increased tanshinone levels. EMSA and Dual-LUC assays revealed that SmMYB36, a transcription factor interacting with SmMAPK3, binds to and regulates the <i>SmARF1</i> promoter. SmMYB36 alone inhibited the expression of <i>SmARF1</i> gene, while its interaction with SmMAPK3 enhanced <i>SmARF1</i> promoter activity. This MAPK3-MYB36-ARF1 module elucidates a complex regulatory mechanism for tanshinone biosynthesis, offering insights for targeted enhancement of tanshinone content through advanced biotechnological approaches.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2391659"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328878/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective synergistic effects of oxalic acid and salicylic acid in enhancing amino acid levels and alleviating lead stress in Zea mays L. 草酸和水杨酸在提高玉米氨基酸水平和缓解铅胁迫方面的选择性协同效应
Pub Date : 2024-12-31 Epub Date: 2024-09-05 DOI: 10.1080/15592324.2024.2400451
Minoti Gupta, Swatantar Kumar, Vinay Dwivedi, Dikshat Gopal Gupta, Daoud Ali, Saud Alarifi, Ashish Patel, Virendra Kumar Yadav

Lead is one of the major environmental pollutants which is highly toxic to plants and living beings. The current investigation thoroughly evaluated the synergistic effects of oxalic acid (OA) and salicylic acid (SA) on Zea mays L. plants subjected to varying durations (15, 30, 30, and 45 days) of lead (Pb) stress. Besides, the effects of oxalic acid (OA) combined with salicylic acid (SA) for different amino acids at various periods of Pb stress were also investigated on Zea mays L. The soil was treated with lead nitrate Pb (NO3)2 (0.5 mM) to induce Pb stress while the stressed plants were further treated using oxalic acid (25 mg/L), salicylic acid (25 mg/L), and their combination OA + SA (25 mg/L each). Measurements of protein content, malondialdehyde (MDA) levels, guaiacol peroxidase (GPOX) activity, catalase (CAT) activity, GSH content, and Pb concentration in maize leaves were done during this study. MDA levels increased by 71% under Pb stress, while protein content decreased by 56%, GSH content by 35%, and CAT activity by 46%. After treatment with SA, OA, and OA+SA, there was a significant reversal of these damages, with the OA+SA combination showing the highest improvement. Specifically, OA+SA treatment led to a 45% increase in protein content and a 39% reduction in MDA levels compared to Pb treatment alone. Moreover, amino acid concentrations increased by 68% under the Pb+OA+SA treatment, reflecting the most significant recovery (p < 0.0001).

铅是主要的环境污染物之一,对植物和生物有剧毒。目前的研究全面评估了草酸(OA)和水杨酸(SA)对受到不同持续时间(15、30、30 和 45 天)铅(Pb)胁迫的玉米植株的协同效应。用硝酸铅 Pb(NO3)2(0.5 mM)处理土壤以诱导铅胁迫,然后用草酸(25 mg/L)、水杨酸(25 mg/L)以及草酸+水杨酸组合(各 25 mg/L)进一步处理受胁迫的植物。本研究测量了玉米叶片中的蛋白质含量、丙二醛(MDA)水平、愈创木酚过氧化物酶(GPOX)活性、过氧化氢酶(CAT)活性、GSH 含量和铅浓度。在铅胁迫下,MDA 含量增加了 71%,蛋白质含量降低了 56%,GSH 含量降低了 35%,CAT 活性降低了 46%。经 SA、OA 和 OA+SA 处理后,这些损害得到明显逆转,其中 OA+SA 组合的改善程度最高。具体来说,与单独使用铅处理相比,OA+SA 处理使蛋白质含量增加了 45%,MDA 水平降低了 39%。此外,在 Pb+OA+SA 处理下,氨基酸浓度增加了 68%,反映了最显著的恢复(p
{"title":"Selective synergistic effects of oxalic acid and salicylic acid in enhancing amino acid levels and alleviating lead stress in <i>Zea mays</i> L.","authors":"Minoti Gupta, Swatantar Kumar, Vinay Dwivedi, Dikshat Gopal Gupta, Daoud Ali, Saud Alarifi, Ashish Patel, Virendra Kumar Yadav","doi":"10.1080/15592324.2024.2400451","DOIUrl":"10.1080/15592324.2024.2400451","url":null,"abstract":"<p><p>Lead is one of the major environmental pollutants which is highly toxic to plants and living beings. The current investigation thoroughly evaluated the synergistic effects of oxalic acid (OA) and salicylic acid (SA) on <i>Zea mays L</i>. plants subjected to varying durations (15, 30, 30, and 45 days) of lead (Pb) stress. Besides, the effects of oxalic acid (OA) combined with salicylic acid (SA) for different amino acids at various periods of Pb stress were also investigated on <i>Zea mays</i> L. The soil was treated with lead nitrate Pb (NO<sub>3</sub>)<sub>2</sub> (0.5 mM) to induce Pb stress while the stressed plants were further treated using oxalic acid (25 mg/L), salicylic acid (25 mg/L), and their combination OA + SA (25 mg/L each). Measurements of protein content, malondialdehyde (MDA) levels, guaiacol peroxidase (GPOX) activity, catalase (CAT) activity, GSH content, and Pb concentration in maize leaves were done during this study. MDA levels increased by 71% under Pb stress, while protein content decreased by 56%, GSH content by 35%, and CAT activity by 46%. After treatment with SA, OA, and OA+SA, there was a significant reversal of these damages, with the OA+SA combination showing the highest improvement. Specifically, OA+SA treatment led to a 45% increase in protein content and a 39% reduction in MDA levels compared to Pb treatment alone. Moreover, amino acid concentrations increased by 68% under the Pb+OA+SA treatment, reflecting the most significant recovery (<i>p</i> < 0.0001).</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2400451"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382712/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial and biological supports are different for pea plants. 对于豌豆植物来说,人工和生物支架是不同的。
Pub Date : 2024-12-31 Epub Date: 2024-06-05 DOI: 10.1080/15592324.2024.2355739
Bianca Bonato, Valentina Simonetti, Silvia Guerra, Umberto Castiello

Previous studies on the kinematics of pea plants' ascent and attach behavior have demonstrated that the signature of their movement varies depending on the kind of support. So far, these studies have been confined to artificial supports (e.g. wooden sticks). Little is known regarding the conditions under which pea plants could rely on biological supports (e.g. neighboring plants) for climbing toward the light. In this study, we capitalize on the 3D kinematic analysis of movement to ascertain whether pea plants scale their kinematics differently depending on whether they aim for artificial or biological support. Results suggest that biological support determines a smoother and more accurate behavior than that elicited by the artificial one. These results shed light on pea plants' ability to detect and classify the properties of objects and implement a movement plan attuned to the very nature of the support. We contend that such differences depend on the augmented multisensory experience elicited by the biological support.

以前对豌豆植物上升和附着行为的运动学研究表明,其运动特征因支撑物的种类而异。迄今为止,这些研究仅限于人工支撑物(如木棍)。至于豌豆植物在何种条件下可以依靠生物支撑物(如邻近植物)爬向光源,目前还知之甚少。在这项研究中,我们利用运动的三维运动学分析来确定豌豆植物是否会根据它们的目标是人工支撑还是生物支撑而对其运动学进行不同程度的调整。结果表明,与人工支撑相比,生物支撑决定了豌豆植物更平滑、更精确的行为。这些结果揭示了豌豆植物检测和分类物体特性的能力,以及根据支撑物的性质实施运动计划的能力。我们认为,这种差异取决于生物支架所引发的增强型多感官体验。
{"title":"Artificial and biological supports are different for pea plants.","authors":"Bianca Bonato, Valentina Simonetti, Silvia Guerra, Umberto Castiello","doi":"10.1080/15592324.2024.2355739","DOIUrl":"10.1080/15592324.2024.2355739","url":null,"abstract":"<p><p>Previous studies on the kinematics of pea plants' ascent and attach behavior have demonstrated that the signature of their movement varies depending on the kind of support. So far, these studies have been confined to artificial supports (e.g. wooden sticks). Little is known regarding the conditions under which pea plants could rely on biological supports (e.g. neighboring plants) for climbing toward the light. In this study, we capitalize on the 3D kinematic analysis of movement to ascertain whether pea plants scale their kinematics differently depending on whether they aim for artificial or biological support. Results suggest that biological support determines a smoother and more accurate behavior than that elicited by the artificial one. These results shed light on pea plants' ability to detect and classify the properties of objects and implement a movement plan attuned to the very nature of the support. We contend that such differences depend on the augmented multisensory experience elicited by the biological support.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2355739"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141249271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights on the enhancement of chilling tolerance in Rice through over-expression and knock-out studies of OsRBCS3. 通过 OsRBCS3 的过表达和基因敲除研究提高水稻耐寒性的启示。
Pub Date : 2024-12-31 Epub Date: 2024-02-20 DOI: 10.1080/15592324.2024.2318514
Yueting Hu, Chongbing Tian, Shiyu Song, Rongtian Li

Chilling stress is an important environmental factor that affects rice (Oryza sativa L.) growth and yield, and the booting stage is the most sensitive stage of rice to chilling stress. In this study, we focused on OsRBCS3, a rice gene related to chilling tolerance at the booting stage, which encodes the key enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit in photosynthesis. The aim of this study was to elucidate the role and mechanism of OsRBCS3 in rice chilling tolerance at the booting stage. The expression levels of OsRBCS3 under chilling stress were compared in two japonica rice cultivars with different chilling tolerances: Kongyu131 (KY131) and Longjing11 (LJ11). A positive correlation was found between OsRBCS3 expression and chilling tolerance. Over-expression (OE) and knock-out (KO) lines of OsRBCS3 were constructed using over-expression and CRISPR/Cas9 technology, respectively, and their chilling tolerance was evaluated at the seedling and booting stages. The results showed that OE lines exhibited higher chilling tolerance than wild-type (WT) lines at both seedling and booting stages, while KO lines showed lower chilling tolerance than WT lines. Furthermore, the antioxidant enzyme activities, malondialdehyde (MDA) content and Rubisco activity of four rice lines under chilling stress were measured, and it was found that OE lines had stronger antioxidant and photosynthetic capacities, while KO lines had the opposite effects. This study validated that OsRBCS3 plays an important role in rice chilling tolerance at the booting stage, providing new molecular tools and a theoretical basis for rice chilling tolerance breeding.

寒冷胁迫是影响水稻(Oryza sativa L.)生长和产量的重要环境因素,而水稻的拔节期是对寒冷胁迫最敏感的阶段。本研究重点研究了与水稻抽穗期耐寒性相关的基因 OsRBCS3,该基因编码光合作用中的关键酶核酮糖-1,5-二磷酸羧化酶/氧化酶(Rubisco)小亚基。本研究旨在阐明 OsRBCS3 在水稻抽穗期耐寒性中的作用和机制。研究比较了两个耐寒性不同的粳稻品种在寒冷胁迫下 OsRBCS3 的表达水平:KY131)和龙井11(LJ11)。结果发现 OsRBCS3 的表达与耐寒性之间存在正相关。利用过表达和CRISPR/Cas9技术分别构建了OsRBCS3的过表达(OE)和基因敲除(KO)株系,并在幼苗期和出苗期对其耐寒性进行了评估。结果表明,在幼苗期和发芽期,OE 株系都比野生型(WT)株系表现出更高的耐寒性,而 KO 株系则比 WT 株系表现出更低的耐寒性。此外,还测定了四个水稻品系在寒冷胁迫下的抗氧化酶活性、丙二醛(MDA)含量和Rubisco活性,结果发现OE品系具有更强的抗氧化能力和光合能力,而KO品系则相反。该研究验证了OsRBCS3在水稻拔节期耐寒性中的重要作用,为水稻耐寒性育种提供了新的分子工具和理论依据。
{"title":"Insights on the enhancement of chilling tolerance in Rice through over-expression and knock-out studies of OsRBCS3.","authors":"Yueting Hu, Chongbing Tian, Shiyu Song, Rongtian Li","doi":"10.1080/15592324.2024.2318514","DOIUrl":"10.1080/15592324.2024.2318514","url":null,"abstract":"<p><p>Chilling stress is an important environmental factor that affects rice (<i>Oryza sativa</i> L.) growth and yield, and the booting stage is the most sensitive stage of rice to chilling stress. In this study, we focused on <i>OsRBCS3</i>, a rice gene related to chilling tolerance at the booting stage, which encodes the key enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit in photosynthesis. The aim of this study was to elucidate the role and mechanism of <i>OsRBCS3</i> in rice chilling tolerance at the booting stage. The expression levels of <i>OsRBCS3</i> under chilling stress were compared in two <i>japonica</i> rice cultivars with different chilling tolerances: Kongyu131 (KY131) and Longjing11 (LJ11). A positive correlation was found between <i>OsRBCS3</i> expression and chilling tolerance. Over-expression (OE) and knock-out (KO) lines of <i>OsRBCS3</i> were constructed using over-expression and CRISPR/Cas9 technology, respectively, and their chilling tolerance was evaluated at the seedling and booting stages. The results showed that OE lines exhibited higher chilling tolerance than wild-type (WT) lines at both seedling and booting stages, while KO lines showed lower chilling tolerance than WT lines. Furthermore, the antioxidant enzyme activities, malondialdehyde (MDA) content and Rubisco activity of four rice lines under chilling stress were measured, and it was found that OE lines had stronger antioxidant and photosynthetic capacities, while KO lines had the opposite effects. This study validated that <i>OsRBCS3</i> plays an important role in rice chilling tolerance at the booting stage, providing new molecular tools and a theoretical basis for rice chilling tolerance breeding.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2318514"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139907227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinct interactions of ericoid mycorrhizae and plant growth-promoting bacteria: impacts on blueberry growth and heat resilience. 麦角菌根和植物生长促进菌的不同相互作用:对蓝莓生长和抗热能力的影响。
Pub Date : 2024-12-31 Epub Date: 2024-03-17 DOI: 10.1080/15592324.2024.2329842
Kaleb Fransgo, Lei-Chen Lin, Hyungmin Rho

Blueberries confront substantial challenges from climate change, such as rising temperatures and extreme heat, necessitating urgent solutions to ensure productivity. We hypothesized that ericoid mycorrhizal fungi (ErM) and plant growth-promoting bacteria (PGPB) would establish symbiotic relationships and increase heat stress tolerance in blueberries. A growth chamber study was designed with low (25/20°C) and high temperature (35/30°C) conditions with micropropagated blueberry plantlets inoculated with ErM, PGPB, and both. Gas exchange and chlorophyll fluorescence properties of the leaves were monitored throughout the growth. At harvest, biochemical assays and biomass analysis were performed to evaluate potential oxidative stress induced by elevated temperatures. ErM application boosted root biomass under 25/20°C conditions but did not impact photosynthetic efficiency. In contrast, PGPB demonstrated a dual role: enhancing photosynthetic capacity and reducing stomatal conductance notably under 35/30°C conditions. Moreover, PGPB showcased conflicting effects, reducing oxidative damage under 25/20°C conditions while intensifying it during 47°C heat shock. A significant highlight lies in the opposing effects of ErM and PGPB on root growth and stomatal conductance, signifying their reciprocal influence on blueberry plant behavior, which may lead to increased water uptake or reduced water use. Understanding these complex interactions holds promise for refining sustainable strategies to overcome climate challenges.

蓝莓面临着气候变化带来的巨大挑战,如气温升高和极端高温,因此需要迫切的解决方案来确保其生产力。我们假设,麦角菌根真菌(ErM)和植物生长促进细菌(PGPB)将建立共生关系,并提高蓝莓对热应力的耐受力。我们设计了一项生长室研究,在低温(25/20°C)和高温(35/30°C)条件下,将微繁殖蓝莓植株接种 ErM、PGPB 或两者。在整个生长过程中监测叶片的气体交换和叶绿素荧光特性。收获时,进行生化测定和生物量分析,以评估高温诱导的潜在氧化胁迫。在 25/20°C 的条件下,施用 ErM 提高了根的生物量,但对光合效率没有影响。相比之下,PGPB 表现出了双重作用:在 35/30°C 条件下显著提高光合能力并降低气孔导度。此外,PGPB 还表现出相互矛盾的作用,在 25/20°C 条件下,PGPB 可减少氧化损伤,而在 47°C 热冲击条件下,PGPB 则会加剧氧化损伤。一个重要的亮点在于 ErM 和 PGPB 对根系生长和气孔导度的相反作用,这表明它们对蓝莓植物行为的相互影响,可能会导致吸水增加或用水减少。了解这些复杂的相互作用为完善克服气候挑战的可持续战略带来了希望。
{"title":"Distinct interactions of ericoid mycorrhizae and plant growth-promoting bacteria: impacts on blueberry growth and heat resilience.","authors":"Kaleb Fransgo, Lei-Chen Lin, Hyungmin Rho","doi":"10.1080/15592324.2024.2329842","DOIUrl":"10.1080/15592324.2024.2329842","url":null,"abstract":"<p><p>Blueberries confront substantial challenges from climate change, such as rising temperatures and extreme heat, necessitating urgent solutions to ensure productivity. We hypothesized that ericoid mycorrhizal fungi (ErM) and plant growth-promoting bacteria (PGPB) would establish symbiotic relationships and increase heat stress tolerance in blueberries. A growth chamber study was designed with low (25/20°C) and high temperature (35/30°C) conditions with micropropagated blueberry plantlets inoculated with ErM, PGPB, and both. Gas exchange and chlorophyll fluorescence properties of the leaves were monitored throughout the growth. At harvest, biochemical assays and biomass analysis were performed to evaluate potential oxidative stress induced by elevated temperatures. ErM application boosted root biomass under 25/20°C conditions but did not impact photosynthetic efficiency. In contrast, PGPB demonstrated a dual role: enhancing photosynthetic capacity and reducing stomatal conductance notably under 35/30°C conditions. Moreover, PGPB showcased conflicting effects, reducing oxidative damage under 25/20°C conditions while intensifying it during 47°C heat shock. A significant highlight lies in the opposing effects of ErM and PGPB on root growth and stomatal conductance, signifying their reciprocal influence on blueberry plant behavior, which may lead to increased water uptake or reduced water use. Understanding these complex interactions holds promise for refining sustainable strategies to overcome climate challenges.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2329842"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950280/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal-tolerant morganella morganii isolates can potentially mediate nickel stress tolerance in Arabidopsis by upregulating antioxidative enzyme activities. 耐金属的摩根菌分离物可能通过上调抗氧化酶活性来介导拟南芥对镍胁迫的耐受性。
Pub Date : 2024-12-31 Epub Date: 2024-03-25 DOI: 10.1080/15592324.2024.2318513
Tahir Naqqash, Aeman Aziz, Muhammad Baber, Muhammad Shahid, Muhammad Sajid, Radicetti Emanuele, Abdel-Rhman Z Gaafar, Mohamed S Hodhod, Ghulam Haider

Plant growth-promoting rhizobacteria (PGPRs) have been utilized to immobilize heavy metals, limiting their translocation in metal contaminated settings. However, studies on the mechanisms and interactions that elucidate how PGPRs mediate Nickel (Ni) tolerance in plants are rare. Thus, in this study we investigated how two pre-characterized heavy metal tolerant isolates of Morganella morganii (ABT9 and ABT3) improve Ni stress tolerance in Arabidopsis while enhancing its growth and yield. Arabidopsis seedlings were grown for five weeks in control/Ni contaminated (control, 1.5 mM and 2.5 mM) potted soil, in the presence or absence of PGPRs. Plant growth characteristics, quantum yield, and antioxidative enzymatic activities were analyzed to assess the influence of PGPRs on plant physiology. Oxidative stress tolerance was quantified by measuring MDA accumulation in Arabidopsis plants. As expected, Ni stress substantially reduced plant growth (shoot and root fresh weight by 53.25% and 58.77%, dry weight by 49.80% and 57.41% and length by 47.16% and 64.63% over control), chlorophyll content and quantum yield (by 40.21% and 54.37% over control). It also increased MDA content by 84.28% at higher (2.5 mM) Ni concentrations. In contrast, inoculation with M. morganii led to significant improvements in leaf chlorophyll, quantum yield, and Arabidopsis biomass production. The mitigation of adverse effects of Ni stress on biomass observed in M. morganii-inoculated plants was attributed to the enhancement of antioxidative enzyme activities compared to Ni-treated plants. This upregulation of the antioxidative defense mechanism mitigated Ni-induced oxidative stress, leading to improved performance of the photosynthetic machinery, which, in turn, enhanced chlorophyll content and quantum yield. Understanding the underlying mechanisms of these tolerance-inducing processes will help to complete the picture of PGPRs-mediated defense signaling. Thus, it suggests that M. morganii PGPRs candidate can potentially be utilized for plant growth promotion by reducing oxidative stress via upregulating antioxidant defense systems in Ni-contaminated soils and reducing Ni metal uptake.

植物生长促进根瘤菌(PGPRs)被用来固定重金属,限制重金属在金属污染环境中的转移。然而,有关植物生长促进根瘤菌如何介导植物耐受镍(Ni)的机制和相互作用的研究却很少见。因此,在本研究中,我们调查了摩根氏摩根菌(ABT9 和 ABT3)的两种预先定性的重金属耐受分离物如何改善拟南芥对镍胁迫的耐受性,同时提高其生长和产量。拟南芥幼苗在对照/镍污染(对照、1.5 毫摩尔和 2.5 毫摩尔)的盆栽土壤中生长了五周,无论是否存在 PGPRs。分析了植物生长特性、量子产量和抗氧化酶活性,以评估 PGPRs 对植物生理的影响。通过测量拟南芥植物体内 MDA 的积累,对其氧化胁迫耐受性进行了量化。正如预期的那样,镍胁迫大大降低了植物的生长(与对照相比,芽和根的鲜重分别减少了 53.25% 和 58.77%,干重分别减少了 49.80% 和 57.41%,长度分别减少了 47.16% 和 64.63%)、叶绿素含量和量子产量(与对照相比,分别减少了 40.21% 和 54.37%)。在镍浓度较高(2.5 mM)时,MDA 含量也增加了 84.28%。与此相反,接种摩根菌可显著提高叶片叶绿素、量子产量和拟南芥生物量产量。与镍处理植物相比,接种摩根菌的植物减轻了镍胁迫对生物量的不利影响,这归因于抗氧化酶活性的增强。这种抗氧化防御机制的上调减轻了镍引起的氧化应激,从而提高了光合机械的性能,进而提高了叶绿素含量和量子产量。了解这些耐受性诱导过程的基本机制将有助于全面了解 PGPRs 介导的防御信号转导。因此,这表明 M. morganii PGPRs 候选者有可能通过上调镍污染土壤中的抗氧化防御系统和减少镍金属吸收来降低氧化胁迫,从而促进植物生长。
{"title":"Metal-tolerant <i>morganella morganii</i> isolates can potentially mediate nickel stress tolerance in Arabidopsis by upregulating antioxidative enzyme activities.","authors":"Tahir Naqqash, Aeman Aziz, Muhammad Baber, Muhammad Shahid, Muhammad Sajid, Radicetti Emanuele, Abdel-Rhman Z Gaafar, Mohamed S Hodhod, Ghulam Haider","doi":"10.1080/15592324.2024.2318513","DOIUrl":"10.1080/15592324.2024.2318513","url":null,"abstract":"<p><p>Plant growth-promoting rhizobacteria (PGPRs) have been utilized to immobilize heavy metals, limiting their translocation in metal contaminated settings. However, studies on the mechanisms and interactions that elucidate how PGPRs mediate Nickel (Ni) tolerance in plants are rare. Thus, in this study we investigated how two pre-characterized heavy metal tolerant isolates of <i>Morganella morganii</i> (ABT9 and ABT3) improve Ni stress tolerance in Arabidopsis while enhancing its growth and yield. Arabidopsis seedlings were grown for five weeks in control/Ni contaminated (control, 1.5 mM and 2.5 mM) potted soil, in the presence or absence of PGPRs. Plant growth characteristics, quantum yield, and antioxidative enzymatic activities were analyzed to assess the influence of PGPRs on plant physiology. Oxidative stress tolerance was quantified by measuring MDA accumulation in Arabidopsis plants. As expected, Ni stress substantially reduced plant growth (shoot and root fresh weight by 53.25% and 58.77%, dry weight by 49.80% and 57.41% and length by 47.16% and 64.63% over control), chlorophyll content and quantum yield (by 40.21% and 54.37% over control). It also increased MDA content by 84.28% at higher (2.5 mM) Ni concentrations. In contrast, inoculation with <i>M. morganii</i> led to significant improvements in leaf chlorophyll, quantum yield, and Arabidopsis biomass production. The mitigation of adverse effects of Ni stress on biomass observed in <i>M. morganii</i>-inoculated plants was attributed to the enhancement of antioxidative enzyme activities compared to Ni-treated plants. This upregulation of the antioxidative defense mechanism mitigated Ni-induced oxidative stress, leading to improved performance of the photosynthetic machinery, which, in turn, enhanced chlorophyll content and quantum yield. Understanding the underlying mechanisms of these tolerance-inducing processes will help to complete the picture of PGPRs-mediated defense signaling. Thus, it suggests that <i>M. morganii</i> PGPRs candidate can potentially be utilized for plant growth promotion by reducing oxidative stress via upregulating antioxidant defense systems in Ni-contaminated soils and reducing Ni metal uptake.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2318513"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965111/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140208750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant signaling & behavior
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1