Pub Date : 2025-03-04DOI: 10.1186/s40170-025-00381-7
Lourdes Hontecillas-Prieto, Daniel J García-Domínguez, Carlos Jiménez-Cortegana, Esteban Nogales-Fernández, Natalia Palazón-Carrión, Alejandro Martín García-Sancho, Eduardo Ríos-Herranz, Josep Gumà-Padrò, Mariano Provencio-Pulla, Antonio Rueda-Domínguez, Luis de la Cruz-Merino, Víctor Sánchez-Margalet
Background: Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin's lymphoma worldwide and is characterized by its heterogeneity. Although first-line therapy improves survival outcomes for DLBCL patients, approximately one third will relapse, often with a poor prognosis. Among the factors influencing prognosis and response to treatment in cancer patients, including those with lymphoma, overweight and obesity have emerged as significant considerations. However, the role of excess weight in DLBCL remains controversial, with studies reporting both negative and positive effects on cancer outcomes. In this translational substudy of the R2-GDP-GOTEL trial, we have evaluated the impact of excess weight as a predictor of treatment response and survival in patients with relapsed/refractory (R/R) DLBCL, and examining its relationship with immune cell dynamics.
Methods: Of the 79 patients who received the R2-GDP scheme in the phase II trial, weight and height parameters were obtained in 75 patients before starting treatment. Blood samples were analyzed by flow cytometry. Statistical analyses were performed to determine the prognostic value of overweight and obesity at baseline in R/R DLBCL patients.
Results: Our results indicate that overweight (including obese) patients exhibit longer survival compared to patients of ideal weight. This group also demonstrated a reduction of regulatory T cells with supposedly protumor activity and an increase of Natural Killer (NK)-like T cells with supposedly antitumor activity. Additionally, we have found that excess weight correlates with better treatment response, associated with elevated levels of vitamin D and CD8 + NK cells.
Conclusions: Our findings suggest that excess weight does not exacerbate the progression of DLBCL. Instead, it appears to confer a survival advantage and improve treatment response, with the immune system playing a possible pivotal role in mediating these effects.
{"title":"Obesity and overweight in R/R DLBCL patients is associated with a better response to treatment of R2-GDP-GOTEL trial. Potential role of NK CD8 + cells and vitamin D.","authors":"Lourdes Hontecillas-Prieto, Daniel J García-Domínguez, Carlos Jiménez-Cortegana, Esteban Nogales-Fernández, Natalia Palazón-Carrión, Alejandro Martín García-Sancho, Eduardo Ríos-Herranz, Josep Gumà-Padrò, Mariano Provencio-Pulla, Antonio Rueda-Domínguez, Luis de la Cruz-Merino, Víctor Sánchez-Margalet","doi":"10.1186/s40170-025-00381-7","DOIUrl":"10.1186/s40170-025-00381-7","url":null,"abstract":"<p><strong>Background: </strong>Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin's lymphoma worldwide and is characterized by its heterogeneity. Although first-line therapy improves survival outcomes for DLBCL patients, approximately one third will relapse, often with a poor prognosis. Among the factors influencing prognosis and response to treatment in cancer patients, including those with lymphoma, overweight and obesity have emerged as significant considerations. However, the role of excess weight in DLBCL remains controversial, with studies reporting both negative and positive effects on cancer outcomes. In this translational substudy of the R2-GDP-GOTEL trial, we have evaluated the impact of excess weight as a predictor of treatment response and survival in patients with relapsed/refractory (R/R) DLBCL, and examining its relationship with immune cell dynamics.</p><p><strong>Methods: </strong>Of the 79 patients who received the R2-GDP scheme in the phase II trial, weight and height parameters were obtained in 75 patients before starting treatment. Blood samples were analyzed by flow cytometry. Statistical analyses were performed to determine the prognostic value of overweight and obesity at baseline in R/R DLBCL patients.</p><p><strong>Results: </strong>Our results indicate that overweight (including obese) patients exhibit longer survival compared to patients of ideal weight. This group also demonstrated a reduction of regulatory T cells with supposedly protumor activity and an increase of Natural Killer (NK)-like T cells with supposedly antitumor activity. Additionally, we have found that excess weight correlates with better treatment response, associated with elevated levels of vitamin D and CD8 + NK cells.</p><p><strong>Conclusions: </strong>Our findings suggest that excess weight does not exacerbate the progression of DLBCL. Instead, it appears to confer a survival advantage and improve treatment response, with the immune system playing a possible pivotal role in mediating these effects.</p><p><strong>Trial registration: </strong>EudraCT, ID:2014-001620-29.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"12"},"PeriodicalIF":6.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881355/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-25DOI: 10.1186/s40170-025-00380-8
Emily N Devericks, Bennett H Brosnan, Alyssa N Ho, Elaine M Glenny, Hannah M Malian, Dorothy Teegarden, Michael K Wendt, Michael F Coleman, Stephen D Hursting
Introduction: Triple-negative breast cancer (TNBC), which tends to be more advanced when diagnosed and more aggressive than other breast cancer subtypes, is accelerated by obesity. Hypertrophic adipocytes and cancer cells exhibit increased oxidative stress and altered redox homeostasis, influencing therapeutic outcomes. Enzymes implicated in both redox regulation and TNBC include glutathione peroxidase 4 (GPX4; reduces lipid peroxides) and pyruvate carboxylase (PC; essential in oxidative stress protection). Using preclinical models, we characterized interactions between GPX4, PC, and oxidative stress in TNBC cells, and established effects of GPX4 suppression on TNBC progression. In TNBC cells, PC knockdown increased GPX4 expression, while GPX4 knockdown increased PC expression. GPX4 inhibition by erastin or RSL3 enhanced TNBC cell death in vitro, and antioxidants mitigated the cytotoxicity. In obese mice, GPX4 knockdown, versus scramble control: (i) reduced tumor burden following orthotopic transplantation of TNBC cells; and (ii) reduced lung metastasis following tail vein injection of TNBC cells in combination with chemotherapy (carboplatin) but not immunotherapy (anti-CTLA4 plus anti-PD1). We conclude that GPX4 and PC expression are inversely related in TNBC cells, and GPX4 and obesity interact to impact TNBC progression and treatment responses. Moreover, GPX4-mediated redox defense, alone or in combination with chemotherapy, is a targetable vulnerability for treating TNBC, including obesity-related TNBC.
Implication: GPX4 suppression, alone or with current TNBC therapies, impacts outcomes in preclinical TNBC models with or without obesity and offers a new, plausible mechanistic target for TNBC treatment.
{"title":"Glutathione peroxidase 4 (GPX4) and obesity interact to impact tumor progression and treatment response in triple negative breast cancer.","authors":"Emily N Devericks, Bennett H Brosnan, Alyssa N Ho, Elaine M Glenny, Hannah M Malian, Dorothy Teegarden, Michael K Wendt, Michael F Coleman, Stephen D Hursting","doi":"10.1186/s40170-025-00380-8","DOIUrl":"10.1186/s40170-025-00380-8","url":null,"abstract":"<p><strong>Introduction: </strong>Triple-negative breast cancer (TNBC), which tends to be more advanced when diagnosed and more aggressive than other breast cancer subtypes, is accelerated by obesity. Hypertrophic adipocytes and cancer cells exhibit increased oxidative stress and altered redox homeostasis, influencing therapeutic outcomes. Enzymes implicated in both redox regulation and TNBC include glutathione peroxidase 4 (GPX4; reduces lipid peroxides) and pyruvate carboxylase (PC; essential in oxidative stress protection). Using preclinical models, we characterized interactions between GPX4, PC, and oxidative stress in TNBC cells, and established effects of GPX4 suppression on TNBC progression. In TNBC cells, PC knockdown increased GPX4 expression, while GPX4 knockdown increased PC expression. GPX4 inhibition by erastin or RSL3 enhanced TNBC cell death in vitro, and antioxidants mitigated the cytotoxicity. In obese mice, GPX4 knockdown, versus scramble control: (i) reduced tumor burden following orthotopic transplantation of TNBC cells; and (ii) reduced lung metastasis following tail vein injection of TNBC cells in combination with chemotherapy (carboplatin) but not immunotherapy (anti-CTLA4 plus anti-PD1). We conclude that GPX4 and PC expression are inversely related in TNBC cells, and GPX4 and obesity interact to impact TNBC progression and treatment responses. Moreover, GPX4-mediated redox defense, alone or in combination with chemotherapy, is a targetable vulnerability for treating TNBC, including obesity-related TNBC.</p><p><strong>Implication: </strong>GPX4 suppression, alone or with current TNBC therapies, impacts outcomes in preclinical TNBC models with or without obesity and offers a new, plausible mechanistic target for TNBC treatment.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"11"},"PeriodicalIF":6.0,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863593/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143499303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Serine metabolism provides important metabolic intermediates that support the rapid proliferation of tumor cells. However, the role of serine metabolism in esophageal squamous cell carcinoma (ESCC) and the underlying mechanism remains unclear. Here, we show that serine starvation predominantly inhibits ESCC cell proliferation by suppressing purine nucleotides and NADPH synthesis. Mechanistically, serine depletion led to the accumulation of aminoimidazole carboxamide ribonucleoside (AICAR), an intermediate metabolite of de novo purine synthesis, and AMP/ATP ratio. These increases activated 5'-AMP-activated kinase (AMPK), which subsequently inhibited the mTORC1 pathway by phosphorylating Raptor at Ser792. Moreover, serine depletion decreased NADPH level followed by elevated reactive oxygen species (ROS) production and DNA damage, which induced p53-p21 mediated G1 phase cell cycle arrest. Conversely, serine starvation activated transcription factor 4 (ATF4)-mediated robust expression of phosphoserine aminotransferase 1 (PSAT1) which in turn promoted compensatory endogenous serine synthesis, thus maintaining ESCC cell survival under serine-limited conditions. Accordingly, serine deprivation combined with PSAT1 inhibition significantly suppressed ESCC tumor growth both in vitro and in vivo. Taken together, our findings demonstrate that serine starvation suppresses the proliferation of ESCC cells by disturbing the synthesis of purine nucleotides and NADPH, and the combination of serine deprivation and PSAT1 inhibition significantly impairs ESCC tumor growth. Our study provides a theoretical basis for targeting serine metabolism as a potential therapeutic strategy for ESCC.
{"title":"Serine starvation suppresses the progression of esophageal cancer by regulating the synthesis of purine nucleotides and NADPH.","authors":"Hui Jie, Jing Wei, Zhuoling Li, Min Yi, Xinying Qian, Yan Li, Chunqi Liu, Chuan Li, Liang Wang, Pengchi Deng, Lunxu Liu, Xiaobo Cen, Yinglan Zhao","doi":"10.1186/s40170-025-00376-4","DOIUrl":"10.1186/s40170-025-00376-4","url":null,"abstract":"<p><p>Serine metabolism provides important metabolic intermediates that support the rapid proliferation of tumor cells. However, the role of serine metabolism in esophageal squamous cell carcinoma (ESCC) and the underlying mechanism remains unclear. Here, we show that serine starvation predominantly inhibits ESCC cell proliferation by suppressing purine nucleotides and NADPH synthesis. Mechanistically, serine depletion led to the accumulation of aminoimidazole carboxamide ribonucleoside (AICAR), an intermediate metabolite of de novo purine synthesis, and AMP/ATP ratio. These increases activated 5'-AMP-activated kinase (AMPK), which subsequently inhibited the mTORC1 pathway by phosphorylating Raptor at Ser792. Moreover, serine depletion decreased NADPH level followed by elevated reactive oxygen species (ROS) production and DNA damage, which induced p53-p21 mediated G1 phase cell cycle arrest. Conversely, serine starvation activated transcription factor 4 (ATF4)-mediated robust expression of phosphoserine aminotransferase 1 (PSAT1) which in turn promoted compensatory endogenous serine synthesis, thus maintaining ESCC cell survival under serine-limited conditions. Accordingly, serine deprivation combined with PSAT1 inhibition significantly suppressed ESCC tumor growth both in vitro and in vivo. Taken together, our findings demonstrate that serine starvation suppresses the proliferation of ESCC cells by disturbing the synthesis of purine nucleotides and NADPH, and the combination of serine deprivation and PSAT1 inhibition significantly impairs ESCC tumor growth. Our study provides a theoretical basis for targeting serine metabolism as a potential therapeutic strategy for ESCC.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"10"},"PeriodicalIF":6.0,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827256/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143413449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-13DOI: 10.1186/s40170-025-00379-1
Yogesh Chawla, Emilie I Anderson, Matthew Smith, Sonia Jain, Laura A Evans, Jadee Neff, Jin Sung Jang, Isas K Vazquez Rosario, Dragan Jevremovic, Xuan-Mai Petterson, Sinto Sebastian, Rafael Fonseca, Shaji K Kumar, Taro Hitosugi, Wilson I Gonsalves
Introduction: This study aimed to evaluate the metabolic differences between MM cells derived from patients with elevated serum LDH levels and those without elevated serum LDH levels to identify biological differences that could be exploited for therapeutic purposes.
Methods: We performed transcriptome assessments of CD138 + MM cells derived from patients with elevated serum LDH levels compared to those without elevated serum LDH levels and validated the findings in a larger public dataset. Functional metabolic assessments of our findings were performed using a combination of stable isotope resolved metabolomics (SIRM), bioenergetic flux measurement assays, and live cell analysis in human myeloma cell lines and primary MM patient cells.
Results: We identified SLC16A1, responsible for the formation of MCT1, a well-defined bi-directional transporter of lactate in and out of a cell with a predilection to importing extracellular lactate, as differentially expressed between the two groups. This finding was functionally confirmed by higher membranous MCT1 protein expression and SIRM on MM cells derived from patients with elevated serum LDH levels compared to those without elevated serum LDH levels. Finally, disrupting lactate transport in and out of CD138 + MM cells was maximally achievable only with dual inhibition of MCT1 and its partner, MCT4, which was preferentially more cytotoxic in MM cells derived from patients with elevated serum levels of LDH.
Conclusion: MCT1 mRNA and protein expression distinguish MM cells derived from patients with elevated serum LDH levels from those without elevated serum LDH levels. However, only dual inhibition of MCT1 and MCT4 can disrupt lactate transport in multiple myeloma (MM) cells, with preferential cytotoxicity in MM cells from patients with high serum LDH levels.
导言:本研究旨在评估血清LDH水平升高患者的MM细胞与血清LDH水平未升高患者的MM细胞之间的代谢差异,以确定可用于治疗目的的生物学差异:我们对来自血清 LDH 水平升高患者和血清 LDH 水平未升高患者的 CD138 + MM 细胞进行了转录组评估,并在更大的公共数据集中验证了评估结果。我们采用稳定同位素解析代谢组学(SIRM)、生物能通量测量测定和活细胞分析相结合的方法,对人类骨髓瘤细胞系和原发性 MM 患者细胞进行了功能代谢评估:我们发现 SLC16A1 在两组细胞中的表达存在差异,SLC16A1 负责 MCT1 的形成,MCT1 是乳酸进出细胞的一个定义明确的双向转运体,偏向于输入细胞外乳酸。与血清 LDH 水平未升高的患者相比,血清 LDH 水平升高患者的 MM 细胞膜 MCT1 蛋白表达和 SIRM 水平更高,从功能上证实了这一发现。最后,只有对 MCT1 及其伙伴 MCT4 进行双重抑制,才能最大限度地破坏 CD138 + MM 细胞内外的乳酸转运,而 MCT4 在血清 LDH 水平升高患者的 MM 细胞中具有更强的细胞毒性:结论:MCT1 mRNA和蛋白的表达能区分血清LDH水平升高和未升高的MM细胞。然而,只有对 MCT1 和 MCT4 的双重抑制才能破坏多发性骨髓瘤(MM)细胞中的乳酸转运,而来自血清 LDH 水平较高患者的 MM 细胞具有优先的细胞毒性。
{"title":"Lactate metabolism in clonal plasma cells and its therapeutic implications in multiple myeloma patients with elevated serum LDH levels.","authors":"Yogesh Chawla, Emilie I Anderson, Matthew Smith, Sonia Jain, Laura A Evans, Jadee Neff, Jin Sung Jang, Isas K Vazquez Rosario, Dragan Jevremovic, Xuan-Mai Petterson, Sinto Sebastian, Rafael Fonseca, Shaji K Kumar, Taro Hitosugi, Wilson I Gonsalves","doi":"10.1186/s40170-025-00379-1","DOIUrl":"10.1186/s40170-025-00379-1","url":null,"abstract":"<p><strong>Introduction: </strong>This study aimed to evaluate the metabolic differences between MM cells derived from patients with elevated serum LDH levels and those without elevated serum LDH levels to identify biological differences that could be exploited for therapeutic purposes.</p><p><strong>Methods: </strong>We performed transcriptome assessments of CD138 + MM cells derived from patients with elevated serum LDH levels compared to those without elevated serum LDH levels and validated the findings in a larger public dataset. Functional metabolic assessments of our findings were performed using a combination of stable isotope resolved metabolomics (SIRM), bioenergetic flux measurement assays, and live cell analysis in human myeloma cell lines and primary MM patient cells.</p><p><strong>Results: </strong>We identified SLC16A1, responsible for the formation of MCT1, a well-defined bi-directional transporter of lactate in and out of a cell with a predilection to importing extracellular lactate, as differentially expressed between the two groups. This finding was functionally confirmed by higher membranous MCT1 protein expression and SIRM on MM cells derived from patients with elevated serum LDH levels compared to those without elevated serum LDH levels. Finally, disrupting lactate transport in and out of CD138 + MM cells was maximally achievable only with dual inhibition of MCT1 and its partner, MCT4, which was preferentially more cytotoxic in MM cells derived from patients with elevated serum levels of LDH.</p><p><strong>Conclusion: </strong>MCT1 mRNA and protein expression distinguish MM cells derived from patients with elevated serum LDH levels from those without elevated serum LDH levels. However, only dual inhibition of MCT1 and MCT4 can disrupt lactate transport in multiple myeloma (MM) cells, with preferential cytotoxicity in MM cells from patients with high serum LDH levels.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"9"},"PeriodicalIF":6.0,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827136/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143413447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Melanoma is a highly aggressive skin cancer with a poor prognosis. The endocannabinoids 2-arachidonoylgylcerol (2-AG) and anandamide have been linked to melanoma progression, though their roles remain unclear. We hypothesized that the 2-AG-arachidonate-prostaglandin axis could drive aggressive melanoma progression.
Methods: The genetically engineered melanoma mouse model B6-Tyr::CreERT2; BRafCA; PtenloxP was characterized by targeted metabolomics. Functionally expressed serine hydrolases in the tumor tissue were identified by chemoproteomics. Pharmacological inhibition of carboxylesterase 1 (CES1) was achieved through chronic in vivo i.p. treatment with JZL184 (10 mg/kg daily), confirmed by activity-based protein profiling (ABPP) and targeted lipidomics. CES1-mediated 2-AG hydrolysis was further confirmed in radiotracer-based assays using CES1-transfected cell lines.
Results: The diacylglycerol and protein kinase C activator 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG) was significantly elevated in the nodular-like melanoma tissues, along with 2-AG and arachidonic acid (ARA), compared to normal skin. AEA and other N-acylethanolamines were decreased, while, notably, prostaglandin levels remained unchanged. Significant changes in the levels of neuromodulators and neurotransmitters, including serotonin and adenosine, were observed. Pronounced differences between serine hydrolase activity in normal skin and melanoma tissue were identified by ABPP. Intriguingly, CES1 was identified as the only 2-AG-hydrolyzing enzyme in this melanoma tissue, as MAGL and ABHD6/12 were not expressed. The MAGL inhibitor JZL184 also efficiently inhibited CES1 in vitro and in vivo, increasing glycerol esters and reducing tumor progression. Additionally, scRNA-seq data from previous studies revealed divergent MAGL/CES1 expression patterns across different human melanoma subtypes.
Conclusions: A role of CES1 expression in skin is demonstrated for the first time. Our study suggests that 2-AG degradation to arachidonate favors melanoma progression, either reflecting the carcinogenic role of ARA or that monoacylglycerols like 2-AG and/or other CES1 substrates may exert antitumor effects, indicating that CES1 could be a potential therapeutic target. CES1 expression and high SAG, 2-AG, and ARA levels may be a signature of specific BRAF-driven malignant melanoma subtypes which are associated with discrete metabolic adaptations.
背景:黑色素瘤是一种高度侵袭性、预后差的皮肤癌。内源性大麻素2-花生四烯酰基甘油三酯(2-AG)和anandamide与黑色素瘤的进展有关,尽管它们的作用尚不清楚。我们假设2- ag -花生四烯酮-前列腺素轴可以驱动恶性黑色素瘤的进展。方法:基因工程黑色素瘤小鼠模型B6-Tyr::CreERT2;BRafCA;PtenloxP通过靶向代谢组学表征。用化学蛋白质组学方法鉴定了肿瘤组织中功能表达的丝氨酸水解酶。通过JZL184(每天10 mg/kg)的体内慢性i.p.治疗,实现了羧酸酯酶1 (CES1)的药理抑制,并通过基于活性的蛋白质谱分析(ABPP)和靶向脂质组学证实。ces1介导的2-AG水解在以放射性示踪剂为基础的实验中得到进一步证实。结果:与正常皮肤相比,结节样黑色素瘤组织中二酰基甘油和蛋白激酶C激活剂1-硬脂酰-2-花生四烯酰基-sn-甘油(SAG)以及2-AG和花生四烯酸(ARA)显著升高。AEA和其他n -酰基乙醇胺降低,而前列腺素水平保持不变。观察到神经调节剂和神经递质(包括血清素和腺苷)水平的显著变化。正常皮肤和黑色素瘤组织中丝氨酸水解酶活性的显著差异被ABPP发现。有趣的是,CES1被鉴定为该黑色素瘤组织中唯一的2- ag水解酶,而MAGL和ABHD6/12未表达。MAGL抑制剂JZL184在体外和体内也能有效抑制CES1,增加甘油酯,减缓肿瘤进展。此外,来自先前研究的scRNA-seq数据显示,不同人类黑色素瘤亚型的MAGL/CES1表达模式存在差异。结论:首次证实CES1表达在皮肤中的作用。我们的研究表明,2-AG降解为花生四烯酸酯有利于黑色素瘤的进展,这要么反映了ARA的致癌作用,要么反映了单酰基甘油如2-AG和/或其他CES1底物可能具有抗肿瘤作用,表明CES1可能是一个潜在的治疗靶点。CES1表达和高SAG、2-AG和ARA水平可能是与离散代谢适应相关的特定braf驱动的恶性黑色素瘤亚型的特征。
{"title":"Carboxylesterase 1-mediated endocannabinoid metabolism in skin: role in melanoma progression in BRaf<sup>V600E</sup>/Pten<sup>-/-</sup> mice.","authors":"Veronika Morozova, Daniele Pellegata, Roch-Philippe Charles, Jürg Gertsch","doi":"10.1186/s40170-025-00378-2","DOIUrl":"10.1186/s40170-025-00378-2","url":null,"abstract":"<p><strong>Background: </strong>Melanoma is a highly aggressive skin cancer with a poor prognosis. The endocannabinoids 2-arachidonoylgylcerol (2-AG) and anandamide have been linked to melanoma progression, though their roles remain unclear. We hypothesized that the 2-AG-arachidonate-prostaglandin axis could drive aggressive melanoma progression.</p><p><strong>Methods: </strong>The genetically engineered melanoma mouse model B6-Tyr::CreER<sup>T2</sup>; BRaf<sup>CA</sup>; Pten<sup>loxP</sup> was characterized by targeted metabolomics. Functionally expressed serine hydrolases in the tumor tissue were identified by chemoproteomics. Pharmacological inhibition of carboxylesterase 1 (CES1) was achieved through chronic in vivo i.p. treatment with JZL184 (10 mg/kg daily), confirmed by activity-based protein profiling (ABPP) and targeted lipidomics. CES1-mediated 2-AG hydrolysis was further confirmed in radiotracer-based assays using CES1-transfected cell lines.</p><p><strong>Results: </strong>The diacylglycerol and protein kinase C activator 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG) was significantly elevated in the nodular-like melanoma tissues, along with 2-AG and arachidonic acid (ARA), compared to normal skin. AEA and other N-acylethanolamines were decreased, while, notably, prostaglandin levels remained unchanged. Significant changes in the levels of neuromodulators and neurotransmitters, including serotonin and adenosine, were observed. Pronounced differences between serine hydrolase activity in normal skin and melanoma tissue were identified by ABPP. Intriguingly, CES1 was identified as the only 2-AG-hydrolyzing enzyme in this melanoma tissue, as MAGL and ABHD6/12 were not expressed. The MAGL inhibitor JZL184 also efficiently inhibited CES1 in vitro and in vivo, increasing glycerol esters and reducing tumor progression. Additionally, scRNA-seq data from previous studies revealed divergent MAGL/CES1 expression patterns across different human melanoma subtypes.</p><p><strong>Conclusions: </strong>A role of CES1 expression in skin is demonstrated for the first time. Our study suggests that 2-AG degradation to arachidonate favors melanoma progression, either reflecting the carcinogenic role of ARA or that monoacylglycerols like 2-AG and/or other CES1 substrates may exert antitumor effects, indicating that CES1 could be a potential therapeutic target. CES1 expression and high SAG, 2-AG, and ARA levels may be a signature of specific BRAF-driven malignant melanoma subtypes which are associated with discrete metabolic adaptations.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"8"},"PeriodicalIF":6.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-10DOI: 10.1186/s40170-025-00377-3
Tung-Wei Hsu, Wan-Yu Wang, Hsin-An Chen, Tzu-Hsuan Wang, Chih-Ming Su, Po-Hsiang Liao, Alvin Chen, Kuei-Yen Tsai, George Kokotos, Cheng-Chin Kuo, Ching-Feng Chiu, Yen-Hao Su
Background: Lactate dehydrogenase A (LDHA) can regulate tumorigenesis and cancer progression. Nevertheless, whether the regulation of LDHA is involved in the development of gemcitabine resistance in PDAC has not yet been fully elucidated. Increasing studies have shown that cancer acquired drug resistance led to treatment failure is highly attributed to the cancer stem cell (CSC) properties. Therefore, we aim to demonstrate the functions and regulatory mechanisms of LDHA on cancer stem cell (CSC) properties and gemcitabine resistance in PDAC.
Methods: We investigate the metabolite profiles by liquid chromatography-mass spectrometry between gemcitabine-resistant PDAC and parental PDAC cells. Additionally, gain-of-function and loss-of-function experiments were conducted to examine the roles of LDHA on CSC properties and gemcitabine resistance in the gemcitabine-resistant PDAC and parental PDAC cells. To investigate regulators involved in LDHA-mediated gemcitabine resistance and CSC of pancreatic cancer cells, we further used a combination of the miRNA microarray results and software predictions and confirmed that miR-4259 is a direct target of LDHA by luciferase assay. Furthermore, we constructed serial miR-4259 promoter reporters and searched for response elements using the TESS 2.0/TFSEARCH software to find the transcription factor binding site in the promoter region of miR-4259.
Results: We observed that elevated LDHA expression significantly correlates with recurrent pancreatic cancer patients following gemcitabine treatment and with CSC properties. We further identify that FOXO3a-induced miR-4259 directly targets the 3'untranslated region of LDHA and reduced LDHA expression, leading to decreased gemcitabine resistance and a reduction in the CSC phenotypes of pancreatic cancer.
Conclusion: Our results demonstrated that LDHA plays a critical role in cancer stemness and gemcitabine resistance of pancreatic cancer, and indicate that targeting the FOXO3a/miR-4259/LDHA pathway might serve as a new treatment for pancreatic cancer patients with a poor response to gemcitabine chemotherapy.
{"title":"FOXO3a/miR-4259-driven LDHA expression as a key mechanism of gemcitabine sensitivity in pancreatic ductal adenocarcinoma.","authors":"Tung-Wei Hsu, Wan-Yu Wang, Hsin-An Chen, Tzu-Hsuan Wang, Chih-Ming Su, Po-Hsiang Liao, Alvin Chen, Kuei-Yen Tsai, George Kokotos, Cheng-Chin Kuo, Ching-Feng Chiu, Yen-Hao Su","doi":"10.1186/s40170-025-00377-3","DOIUrl":"10.1186/s40170-025-00377-3","url":null,"abstract":"<p><strong>Background: </strong>Lactate dehydrogenase A (LDHA) can regulate tumorigenesis and cancer progression. Nevertheless, whether the regulation of LDHA is involved in the development of gemcitabine resistance in PDAC has not yet been fully elucidated. Increasing studies have shown that cancer acquired drug resistance led to treatment failure is highly attributed to the cancer stem cell (CSC) properties. Therefore, we aim to demonstrate the functions and regulatory mechanisms of LDHA on cancer stem cell (CSC) properties and gemcitabine resistance in PDAC.</p><p><strong>Methods: </strong>We investigate the metabolite profiles by liquid chromatography-mass spectrometry between gemcitabine-resistant PDAC and parental PDAC cells. Additionally, gain-of-function and loss-of-function experiments were conducted to examine the roles of LDHA on CSC properties and gemcitabine resistance in the gemcitabine-resistant PDAC and parental PDAC cells. To investigate regulators involved in LDHA-mediated gemcitabine resistance and CSC of pancreatic cancer cells, we further used a combination of the miRNA microarray results and software predictions and confirmed that miR-4259 is a direct target of LDHA by luciferase assay. Furthermore, we constructed serial miR-4259 promoter reporters and searched for response elements using the TESS 2.0/TFSEARCH software to find the transcription factor binding site in the promoter region of miR-4259.</p><p><strong>Results: </strong>We observed that elevated LDHA expression significantly correlates with recurrent pancreatic cancer patients following gemcitabine treatment and with CSC properties. We further identify that FOXO3a-induced miR-4259 directly targets the 3'untranslated region of LDHA and reduced LDHA expression, leading to decreased gemcitabine resistance and a reduction in the CSC phenotypes of pancreatic cancer.</p><p><strong>Conclusion: </strong>Our results demonstrated that LDHA plays a critical role in cancer stemness and gemcitabine resistance of pancreatic cancer, and indicate that targeting the FOXO3a/miR-4259/LDHA pathway might serve as a new treatment for pancreatic cancer patients with a poor response to gemcitabine chemotherapy.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"7"},"PeriodicalIF":6.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809001/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: HER2-positive patients comprise approximately 20% of breast cancer cases, with HER2-targeted therapy significantly improving progression-free and overall survival. However, subsequent reprogramed tumor progression due to PI3K signaling pathway activation by PIK3CA mutations and/or PTEN-loss cause anti-HER2 resistance. Previously, alpha isoform-specific PI3K inhibitors were shown to potentiate HER2-targeted therapy in breast cancer cells carrying PI3K pathway alterations with less potent effects on PTEN-loss than PIK3CA-mutant cells. Therefore, seeking for alternative combination therapy needs urgent attentions in PTEN-loss anti-HER2 resistant breast cancer.
Methods: Since remodeling of fatty acid (FA) metabolism might contribute to HER-positive breast cancer and is triggered by the PI3K signal pathway, herein, we examined the effects of the inhibition of endogenous FA conversion, SCD-1 or exogenous FA transport, CD36, in combination with PI3K inhibitors (alpelisib and inavolisib) in anti-HER2 resistant PTEN-loss breast cancer cells.
Results: The activated HER2/PI3K/AKT/mTOR signaling pathway positively correlated with SCD-1 and CD36 expression in PTEN-loss breast cancer cells. PI3K inhibition downregulated SCD-1, and accordingly, the addition of the SCD-1 inhibitor did not augment the antiproliferative effects of the PI3K inhibitors. CD36 was upregulated by blocking the PI3K signal pathway or limited serum supplementation, indicating that suppressing CD36 may decrease the excess transport of exogenous FA. The addition of the CD36 inhibitor synergistically enhanced the anti-proliferative effects of the PI3K inhibitors.
Conclusion: Simultaneously targeting the PI3K signaling pathway and exogenous FA uptake could potentially be advantageous for patients with PTEN-loss anti-HER2 resistant breast cancer.
{"title":"CD36 inhibition enhances the anti-proliferative effects of PI3K inhibitors in PTEN-loss anti-HER2 resistant breast cancer cells.","authors":"You-Yu Liu, Wei-Lun Huang, Sin-Tian Wang, Hui-Ping Hsu, Tzu-Ching Kao, Wei-Pang Chung, Kung-Chia Young","doi":"10.1186/s40170-025-00375-5","DOIUrl":"10.1186/s40170-025-00375-5","url":null,"abstract":"<p><strong>Background: </strong>HER2-positive patients comprise approximately 20% of breast cancer cases, with HER2-targeted therapy significantly improving progression-free and overall survival. However, subsequent reprogramed tumor progression due to PI3K signaling pathway activation by PIK3CA mutations and/or PTEN-loss cause anti-HER2 resistance. Previously, alpha isoform-specific PI3K inhibitors were shown to potentiate HER2-targeted therapy in breast cancer cells carrying PI3K pathway alterations with less potent effects on PTEN-loss than PIK3CA-mutant cells. Therefore, seeking for alternative combination therapy needs urgent attentions in PTEN-loss anti-HER2 resistant breast cancer.</p><p><strong>Methods: </strong>Since remodeling of fatty acid (FA) metabolism might contribute to HER-positive breast cancer and is triggered by the PI3K signal pathway, herein, we examined the effects of the inhibition of endogenous FA conversion, SCD-1 or exogenous FA transport, CD36, in combination with PI3K inhibitors (alpelisib and inavolisib) in anti-HER2 resistant PTEN-loss breast cancer cells.</p><p><strong>Results: </strong>The activated HER2/PI3K/AKT/mTOR signaling pathway positively correlated with SCD-1 and CD36 expression in PTEN-loss breast cancer cells. PI3K inhibition downregulated SCD-1, and accordingly, the addition of the SCD-1 inhibitor did not augment the antiproliferative effects of the PI3K inhibitors. CD36 was upregulated by blocking the PI3K signal pathway or limited serum supplementation, indicating that suppressing CD36 may decrease the excess transport of exogenous FA. The addition of the CD36 inhibitor synergistically enhanced the anti-proliferative effects of the PI3K inhibitors.</p><p><strong>Conclusion: </strong>Simultaneously targeting the PI3K signaling pathway and exogenous FA uptake could potentially be advantageous for patients with PTEN-loss anti-HER2 resistant breast cancer.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"6"},"PeriodicalIF":6.0,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806886/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1186/s40170-025-00374-6
Johannes Hoffmann, Julia Schüler, Bianca Dietsch, Sina Wietje Kürschner-Zacharias, Carsten Sticht, Felix A Trogisch, Maren Schreitmüller, Tinja Baljkas, Kai Schledzewski, Manuel Reinhart, Sebastian A Wohlfeil, Manuel Winkler, Christian David Schmid, Joerg Heineke, Cyrill Géraud, Sergij Goerdt, Philipp-Sebastian Reiners-Koch, Victor Olsavszky
Background: In malignant melanoma, liver metastases significantly reduce survival, even despite highly effective new therapies. Given the increase in metabolic liver diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), this study investigated the impact of liver sinusoidal endothelial cell (LSEC)-specific alterations in MASLD/MASH on hepatic melanoma metastasis.
Methods: Mice were fed a choline-deficient L-amino acid-defined (CDAA) diet for ten weeks to induce MASH-associated liver fibrosis, or a CDAA diet or a high fat diet (HFD) for shorter periods of time to induce early steatosis-associated alterations. Liver metastasis formation was assessed using melanoma cell lines B16F10Luc2 and Wt31. LSEC-specific GATA4 knockout mice (Gata4LSEC-KO/BL) developing MASH-like liver fibrosis without steatosis via a pathogenic angiocrine switch were included to compare the impact of liver fibrosis versus hepatic steatosis on hepatic melanoma metastasis. Bulk RNA-Seq of isolated LSECs from CDAA-fed and control mice was performed. Levels of adhesion molecules (VCAM1, ICAM1, E-selectin) were monitored, and ICAM1 and VCAM1 antibody therapy was employed.
Results: Feeding a CDAA diet, in contrast to a HFD, led to increased metastasis before the development of liver fibrosis. Gata4LSEC-KO/BL mice characterized by vascular changes ensuing perisinusoidal liver fibrosis without steatosis also exhibited increased metastasis. Early molecular alterations in the hepatic vascular niche, rather than fibrosis or steatosis, correlated with metastasis, as shown by LSEC dedifferentiation and upregulation of endothelial adhesion molecules. The metastatic process in CDAA-fed mice was also dependent on the respective melanoma cell lines used and on the route of their metastatic spread. ICAM1 inhibition, but not VCAM1 inhibition reduced melanoma cell retention.
Conclusion: We discovered that the hepatic vascular niche acts as a delicate sensor to even short-term nutritional alterations during the development of MASLD/MASH. The dynamic adaptations to the metabolic challenges of developing MASLD/MASH caused an early shift from the normal hepatic vascular niche to a pre-metastatic vascular niche that promoted hepatic melanoma metastasis in the context of cell-autonomous and acquired melanoma cell features. Altogether, our findings provide a potential avenue for angiotargeted therapies to prevent hepatic melanoma metastasis.
{"title":"Steatohepatitis-induced vascular niche alterations promote melanoma metastasis.","authors":"Johannes Hoffmann, Julia Schüler, Bianca Dietsch, Sina Wietje Kürschner-Zacharias, Carsten Sticht, Felix A Trogisch, Maren Schreitmüller, Tinja Baljkas, Kai Schledzewski, Manuel Reinhart, Sebastian A Wohlfeil, Manuel Winkler, Christian David Schmid, Joerg Heineke, Cyrill Géraud, Sergij Goerdt, Philipp-Sebastian Reiners-Koch, Victor Olsavszky","doi":"10.1186/s40170-025-00374-6","DOIUrl":"10.1186/s40170-025-00374-6","url":null,"abstract":"<p><strong>Background: </strong>In malignant melanoma, liver metastases significantly reduce survival, even despite highly effective new therapies. Given the increase in metabolic liver diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), this study investigated the impact of liver sinusoidal endothelial cell (LSEC)-specific alterations in MASLD/MASH on hepatic melanoma metastasis.</p><p><strong>Methods: </strong>Mice were fed a choline-deficient L-amino acid-defined (CDAA) diet for ten weeks to induce MASH-associated liver fibrosis, or a CDAA diet or a high fat diet (HFD) for shorter periods of time to induce early steatosis-associated alterations. Liver metastasis formation was assessed using melanoma cell lines B16F10Luc2 and Wt31. LSEC-specific GATA4 knockout mice (Gata4<sup>LSEC-KO/BL</sup>) developing MASH-like liver fibrosis without steatosis via a pathogenic angiocrine switch were included to compare the impact of liver fibrosis versus hepatic steatosis on hepatic melanoma metastasis. Bulk RNA-Seq of isolated LSECs from CDAA-fed and control mice was performed. Levels of adhesion molecules (VCAM1, ICAM1, E-selectin) were monitored, and ICAM1 and VCAM1 antibody therapy was employed.</p><p><strong>Results: </strong>Feeding a CDAA diet, in contrast to a HFD, led to increased metastasis before the development of liver fibrosis. Gata4<sup>LSEC-KO/BL</sup> mice characterized by vascular changes ensuing perisinusoidal liver fibrosis without steatosis also exhibited increased metastasis. Early molecular alterations in the hepatic vascular niche, rather than fibrosis or steatosis, correlated with metastasis, as shown by LSEC dedifferentiation and upregulation of endothelial adhesion molecules. The metastatic process in CDAA-fed mice was also dependent on the respective melanoma cell lines used and on the route of their metastatic spread. ICAM1 inhibition, but not VCAM1 inhibition reduced melanoma cell retention.</p><p><strong>Conclusion: </strong>We discovered that the hepatic vascular niche acts as a delicate sensor to even short-term nutritional alterations during the development of MASLD/MASH. The dynamic adaptations to the metabolic challenges of developing MASLD/MASH caused an early shift from the normal hepatic vascular niche to a pre-metastatic vascular niche that promoted hepatic melanoma metastasis in the context of cell-autonomous and acquired melanoma cell features. Altogether, our findings provide a potential avenue for angiotargeted therapies to prevent hepatic melanoma metastasis.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"5"},"PeriodicalIF":6.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776123/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1186/s40170-024-00371-1
Ceren Yalaz, Esther Bridges, Nasullah K Alham, Christos E Zois, Jianzhou Chen, Karim Bensaad, Ana Miar, Elisabete Pires, Ruth J Muschel, James S O McCullagh, Adrian L Harris
{"title":"Correction to: Cone photoreceptor phosphodiesterase PDE6H inhibition regulates cancer cell growth and metabolism, replicating the dark retina response.","authors":"Ceren Yalaz, Esther Bridges, Nasullah K Alham, Christos E Zois, Jianzhou Chen, Karim Bensaad, Ana Miar, Elisabete Pires, Ruth J Muschel, James S O McCullagh, Adrian L Harris","doi":"10.1186/s40170-024-00371-1","DOIUrl":"10.1186/s40170-024-00371-1","url":null,"abstract":"","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"4"},"PeriodicalIF":6.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}