首页 > 最新文献

Cancer & Metabolism最新文献

英文 中文
Dexmedetomidine promotes colorectal cancer progression mediated by gamma-aminobutyric acid signaling. 右美托咪定促进γ -氨基丁酸信号介导的结直肠癌进展。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-06-23 DOI: 10.1186/s40170-025-00403-4
Jing Dong, Yuanyuan Wu, Ji Che, Zhiyong He, Jun Zhang
{"title":"Dexmedetomidine promotes colorectal cancer progression mediated by gamma-aminobutyric acid signaling.","authors":"Jing Dong, Yuanyuan Wu, Ji Che, Zhiyong He, Jun Zhang","doi":"10.1186/s40170-025-00403-4","DOIUrl":"10.1186/s40170-025-00403-4","url":null,"abstract":"","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"33"},"PeriodicalIF":6.0,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12186342/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144473976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Obesity and cervical intraepithelial neoplasia: regulation of mitochondrial energy metabolism via the Kisspeptin/GPR54 signaling pathway. 肥胖和宫颈上皮内瘤变:通过Kisspeptin/GPR54信号通路调节线粒体能量代谢
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-06-18 DOI: 10.1186/s40170-025-00398-y
Jiajia Pan, Yuanyuan Chen, Yan Ye, Peipei Li, Feifei Ni, Haizhen He

Background: Obesity exacerbates the severity of cervical intraepithelial neoplasia (CIN), potentially through metabolic alterations. This study investigates how the Kisspeptin/GPR54 signaling pathway mediates mitochondrial energy metabolism in obesity-related CIN.

Methods: A clinical analysis of 980 samples was conducted to assess the correlation between Body Mass Index (BMI) and CIN grade. Transcriptomic analysis identified KISS1R as a key gene. Functional assays in cervical cancer (CC) cell lines, including CCK-8, wound healing, and Transwell assays, were used to evaluate the effects of KISS1 modulation. Mitochondrial function was assessed via oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) assays. A high-fat diet-induced CIN mouse model was used to investigate the in vivo effects.

Results: BMI positively correlated with CIN grade, with elevated KISS1R expression in higher CIN grades. Overexpression of KISS1 enhanced CC cell proliferation and migration by reprogramming mitochondrial energy metabolism. In high-fat environments, KISS1 silencing and mitochondrial activator PQQ modulated CC cell behavior. Activation of Kisspeptin/GPR54 in obese CIN mice exacerbated cervical lesions.

Conclusion: The Kisspeptin/GPR54 signaling pathway enhances mitochondrial energy metabolism, promoting obesity-related CIN grade. These findings provide a potential molecular mechanism linking obesity to CC and suggest new therapeutic targets.

背景:肥胖可能通过代谢改变加重宫颈上皮内瘤变(CIN)的严重程度。本研究探讨Kisspeptin/GPR54信号通路如何介导肥胖相关CIN的线粒体能量代谢。方法:对980例患者进行临床分析,评价身体质量指数(BMI)与CIN分级的相关性。转录组学分析鉴定KISS1R为关键基因。宫颈癌细胞系的功能测定,包括CCK-8、伤口愈合和Transwell测定,用于评估KISS1调节的作用。通过耗氧率(OCR)和细胞外酸化率(ECAR)测定评估线粒体功能。采用高脂饮食诱导的CIN小鼠模型研究其体内效应。结果:BMI与CIN分级呈正相关,较高CIN分级KISS1R表达升高。KISS1过表达通过重编程线粒体能量代谢增强CC细胞增殖和迁移。在高脂肪环境中,KISS1沉默和线粒体激活因子PQQ调节CC细胞的行为。Kisspeptin/GPR54在肥胖CIN小鼠中的激活加重了宫颈病变。结论:Kisspeptin/GPR54信号通路增强线粒体能量代谢,促进肥胖相关CIN分级。这些发现提供了将肥胖与CC联系起来的潜在分子机制,并提出了新的治疗靶点。
{"title":"Obesity and cervical intraepithelial neoplasia: regulation of mitochondrial energy metabolism via the Kisspeptin/GPR54 signaling pathway.","authors":"Jiajia Pan, Yuanyuan Chen, Yan Ye, Peipei Li, Feifei Ni, Haizhen He","doi":"10.1186/s40170-025-00398-y","DOIUrl":"10.1186/s40170-025-00398-y","url":null,"abstract":"<p><strong>Background: </strong>Obesity exacerbates the severity of cervical intraepithelial neoplasia (CIN), potentially through metabolic alterations. This study investigates how the Kisspeptin/GPR54 signaling pathway mediates mitochondrial energy metabolism in obesity-related CIN.</p><p><strong>Methods: </strong>A clinical analysis of 980 samples was conducted to assess the correlation between Body Mass Index (BMI) and CIN grade. Transcriptomic analysis identified KISS1R as a key gene. Functional assays in cervical cancer (CC) cell lines, including CCK-8, wound healing, and Transwell assays, were used to evaluate the effects of KISS1 modulation. Mitochondrial function was assessed via oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) assays. A high-fat diet-induced CIN mouse model was used to investigate the in vivo effects.</p><p><strong>Results: </strong>BMI positively correlated with CIN grade, with elevated KISS1R expression in higher CIN grades. Overexpression of KISS1 enhanced CC cell proliferation and migration by reprogramming mitochondrial energy metabolism. In high-fat environments, KISS1 silencing and mitochondrial activator PQQ modulated CC cell behavior. Activation of Kisspeptin/GPR54 in obese CIN mice exacerbated cervical lesions.</p><p><strong>Conclusion: </strong>The Kisspeptin/GPR54 signaling pathway enhances mitochondrial energy metabolism, promoting obesity-related CIN grade. These findings provide a potential molecular mechanism linking obesity to CC and suggest new therapeutic targets.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"31"},"PeriodicalIF":6.0,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12175464/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144324570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NRF2 maintains redox balance via ME1 and NRF2 inhibitor synergizes with venetoclax in NPM1-mutated acute myeloid leukemia. NRF2通过ME1维持氧化还原平衡,NRF2抑制剂在npm1突变的急性髓性白血病中与venetoclax协同作用。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-06-18 DOI: 10.1186/s40170-025-00401-6
Jiayuan Hu, Zihao Yuan, Yan Shu, Jun Ren, Jing Yang, Lisha Tang, Xingyu Wei, Yongcan Liu, Fangfang Jin, Qiaoling Xiao, Xinyi Chen, Nan Wu, Wen Zhao, Ziwei Li, Ling Zhang

Background: Acute myeloid leukemia (AML) with nucleophosmin 1 (NPM1) mutations represents a distinct subtype of leukemia. Emerging evidence suggests that regulation of redox metabolism contributes to tumorigenesis and reveals a metabolic vulnerability in anti-tumor therapies. However, the role of redox homeostasis between reactive oxygen species (ROS) and antioxidant systems plays in NPM1-mutated AML has not been fully elucidated.

Methods: First, ROS-related metabolic pathways in NPM1-mutated AML were analyzed using RNA-sequencing data. Intracellular and mitochondrial ROS levels in leukemia cells were detected using flow cytometry (FCM). The expression of nuclear factor (erythroid-derived 2)-like 2 (NRF2) was analyzed in public databases and further validated in AML primary blasts and cell lines by quantitative real-time PCR (qRT-PCR), western blotting, and immunofluorescence. Next, the mechanism underlying NRF2 expression was investigated through the RNA immunoprecipitation (RIP), methylated RNA immunoprecipitation (MeRIP) and rescue experiments. Additionally, the downstream target gene of NRF2 was identified by bioinformatics analysis and chromatin immunoprecipitation (ChIP) assays. Furthermore, RNA interference and the NRF2 inhibitor ML385 were applied to explore the role of NRF2 in leukemia. Finally, the anti-leukemic effects of ML385 alone or in combination with the B-cell lymphoma 2 (BCL-2) inhibitor venetoclax on AML cells were investigated using FCM analysis and western blotting, and further explored in cell line-derived xenograft (CDX) mouse models.

Results: In this study, we identified significant ROS accumulation in leukemia cells with NPM1 mutations. Meanwhile, elevated NRF2 expression and its nuclear localization were observed in NPM1-mutated AML cells. The high NRF2 expression levels were at least partially induced by fat mass and obesity-associated protein (FTO) via m6A modification. Functionally, NRF2 exerts its antioxidant effects by transcriptionally upregulating malic enzyme 1 (ME1) expression and enhancing its activity. Targeting NRF2/ME1 axis reduced NADPH/NADP+ ratio, increased ROS levels, impaired leukemia cell viability, and promoted apoptosis. More importantly, NRF2 inhibitor ML385 in combination with venetoclax showed synergistic anti-leukemic activity in vitro and in vivo.

Conclusion: Overall, our findings provide new insight into the therapeutic potential of targeting NRF2 and guide the development of innovative combination therapies in NPM1-mutated AML.

背景:核磷蛋白1 (NPM1)突变的急性髓性白血病(AML)是一种独特的白血病亚型。新出现的证据表明,氧化还原代谢的调节有助于肿瘤的发生,并揭示了抗肿瘤治疗中的代谢脆弱性。然而,活性氧(ROS)和抗氧化系统之间的氧化还原稳态在npm1突变的AML中所起的作用尚未完全阐明。方法:首先,利用rna测序数据分析npm1突变AML中ros相关代谢途径。采用流式细胞术(FCM)检测白血病细胞内及线粒体ROS水平。在公共数据库中分析核因子(红细胞衍生2)样2 (NRF2)的表达,并通过实时荧光定量PCR (qRT-PCR)、western blotting和免疫荧光进一步验证其在AML原代细胞和细胞系中的表达。接下来,我们通过RNA免疫沉淀(RIP)、甲基化RNA免疫沉淀(MeRIP)和抢救实验来研究NRF2表达的机制。此外,通过生物信息学分析和染色质免疫沉淀(ChIP)试验鉴定了NRF2的下游靶基因。此外,我们还利用RNA干扰和NRF2抑制剂ML385来探讨NRF2在白血病中的作用。最后,通过流式细胞术分析和western blotting研究ML385单独或联合b细胞淋巴瘤2 (BCL-2)抑制剂venetoclax对AML细胞的抗白血病作用,并在细胞系来源的异种移植(CDX)小鼠模型中进一步探索。结果:在本研究中,我们在NPM1突变的白血病细胞中发现了明显的ROS积累。同时,在npm1突变的AML细胞中,NRF2的表达和核定位升高。NRF2的高表达水平至少部分是由脂肪量和肥胖相关蛋白(FTO)通过m6A修饰诱导的。在功能上,NRF2通过上调苹果酸酶1 (ME1)的转录表达并增强其活性来发挥抗氧化作用。靶向NRF2/ME1轴可降低NADPH/NADP+比值,提高ROS水平,损害白血病细胞活力,促进细胞凋亡。更重要的是,NRF2抑制剂ML385与venetoclax联合在体外和体内均显示出协同抗白血病活性。结论:总的来说,我们的研究结果为靶向NRF2的治疗潜力提供了新的见解,并指导了npm1突变AML的创新联合治疗的发展。
{"title":"NRF2 maintains redox balance via ME1 and NRF2 inhibitor synergizes with venetoclax in NPM1-mutated acute myeloid leukemia.","authors":"Jiayuan Hu, Zihao Yuan, Yan Shu, Jun Ren, Jing Yang, Lisha Tang, Xingyu Wei, Yongcan Liu, Fangfang Jin, Qiaoling Xiao, Xinyi Chen, Nan Wu, Wen Zhao, Ziwei Li, Ling Zhang","doi":"10.1186/s40170-025-00401-6","DOIUrl":"10.1186/s40170-025-00401-6","url":null,"abstract":"<p><strong>Background: </strong>Acute myeloid leukemia (AML) with nucleophosmin 1 (NPM1) mutations represents a distinct subtype of leukemia. Emerging evidence suggests that regulation of redox metabolism contributes to tumorigenesis and reveals a metabolic vulnerability in anti-tumor therapies. However, the role of redox homeostasis between reactive oxygen species (ROS) and antioxidant systems plays in NPM1-mutated AML has not been fully elucidated.</p><p><strong>Methods: </strong>First, ROS-related metabolic pathways in NPM1-mutated AML were analyzed using RNA-sequencing data. Intracellular and mitochondrial ROS levels in leukemia cells were detected using flow cytometry (FCM). The expression of nuclear factor (erythroid-derived 2)-like 2 (NRF2) was analyzed in public databases and further validated in AML primary blasts and cell lines by quantitative real-time PCR (qRT-PCR), western blotting, and immunofluorescence. Next, the mechanism underlying NRF2 expression was investigated through the RNA immunoprecipitation (RIP), methylated RNA immunoprecipitation (MeRIP) and rescue experiments. Additionally, the downstream target gene of NRF2 was identified by bioinformatics analysis and chromatin immunoprecipitation (ChIP) assays. Furthermore, RNA interference and the NRF2 inhibitor ML385 were applied to explore the role of NRF2 in leukemia. Finally, the anti-leukemic effects of ML385 alone or in combination with the B-cell lymphoma 2 (BCL-2) inhibitor venetoclax on AML cells were investigated using FCM analysis and western blotting, and further explored in cell line-derived xenograft (CDX) mouse models.</p><p><strong>Results: </strong>In this study, we identified significant ROS accumulation in leukemia cells with NPM1 mutations. Meanwhile, elevated NRF2 expression and its nuclear localization were observed in NPM1-mutated AML cells. The high NRF2 expression levels were at least partially induced by fat mass and obesity-associated protein (FTO) via m<sup>6</sup>A modification. Functionally, NRF2 exerts its antioxidant effects by transcriptionally upregulating malic enzyme 1 (ME1) expression and enhancing its activity. Targeting NRF2/ME1 axis reduced NADPH/NADP<sup>+</sup> ratio, increased ROS levels, impaired leukemia cell viability, and promoted apoptosis. More importantly, NRF2 inhibitor ML385 in combination with venetoclax showed synergistic anti-leukemic activity in vitro and in vivo.</p><p><strong>Conclusion: </strong>Overall, our findings provide new insight into the therapeutic potential of targeting NRF2 and guide the development of innovative combination therapies in NPM1-mutated AML.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"32"},"PeriodicalIF":6.0,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177962/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144324569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coordinated histone methylation loss and MYC activation promote translational capacity under amino acid restriction. 协同组蛋白甲基化丢失和MYC激活促进氨基酸限制下的翻译能力。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-06-16 DOI: 10.1186/s40170-025-00399-x
Chen Cheng, Trent Su, Marco Morselli, Siavash K Kurdistani

Background: Cells adapt to nutrient fluctuations through both signaling and epigenetic mechanisms. While amino acid (AA) deprivation is known to suppress protein synthesis via mTORC1 inactivation, the epigenetic pathways that support cellular adaptation and recovery remain poorly understood. We investigated how chromatin and transcriptional changes contribute to maintaining translational capacity during AA restriction and priming cells for growth upon AA repletion.

Methods: Human cells were cultured under amino acid-replete or -depleted conditions, and global histone methylation levels were assessed by Western blotting and ChIP-seq. RNA-seq and chromatin-associated RNA-seq (chromRNA-seq) were used to evaluate gene expression and transcriptional output. Ribosome profiling and [35S]-methionine/cysteine or O-propargyl-puromycin (OPP) incorporation assays measured protein synthesis. Functional contributions of SETD8 and MYC were tested through knockdown and overexpression experiments.

Results: AA deprivation induced a selective, genome-wide loss of H4K20me1, particularly from gene bodies, and led to increased MYC expression and binding at promoter regions. These changes were most pronounced at genes encoding ribosomal proteins and translation initiation factors. Although overall protein synthesis declined during AA restriction, these cells showed increased translational capacity evidenced by accumulation of monomeric ribosomes and enhanced translation upon AA repletion. Loss of H4K20me1 was independent of mTORC1 signaling and partly driven by SETD8 protein downregulation. While MYC overexpression alone was insufficient to upregulate translation-related genes, its combination with SETD8 knockdown in nutrient-rich conditions was both necessary and sufficient to induce expression of these genes and enhance protein synthesis.

Conclusions: Our findings reveal a chromatin-based mechanism by which cells integrate metabolic status with transcriptional regulation to adapt to amino acid limitation. Loss of H4K20me1 and increased MYC activity act in parallel to prime the translational machinery during AA deprivation, enabling rapid recovery of protein synthesis upon nutrient restoration. This mechanism may help explain how cells maintain competitive growth potential under fluctuating nutrient conditions and has implications for understanding MYC-driven cancer progression.

背景:细胞通过信号和表观遗传机制适应营养波动。虽然已知氨基酸(AA)剥夺通过mTORC1失活抑制蛋白质合成,但支持细胞适应和恢复的表观遗传途径仍然知之甚少。我们研究了染色质和转录变化如何在AA限制期间维持翻译能力,以及在AA补充时启动细胞生长。方法:将人细胞在氨基酸充满或缺失的条件下培养,采用Western blotting和ChIP-seq技术检测组蛋白甲基化水平。RNA-seq和染色质相关RNA-seq (chromRNA-seq)用于评估基因表达和转录输出。核糖体分析和[35S]-蛋氨酸/半胱氨酸或o -丙炔-嘌呤霉素(OPP)掺入试验测量蛋白质合成。通过敲低和过表达实验检测SETD8和MYC的功能贡献。结果:AA剥夺导致H4K20me1选择性全基因组缺失,尤其是基因体缺失,并导致MYC在启动子区域的表达和结合增加。这些变化在编码核糖体蛋白和翻译起始因子的基因上最为明显。虽然在AA限制期间整体蛋白质合成下降,但这些细胞的翻译能力增强,这可以通过单体核糖体的积累和AA补充后的翻译能力增强来证明。H4K20me1的缺失独立于mTORC1信号传导,部分由SETD8蛋白下调驱动。虽然MYC过表达不足以上调翻译相关基因,但在营养丰富的条件下,MYC与SETD8敲低的结合是诱导这些基因表达和增强蛋白质合成的必要和充分条件。结论:我们的研究结果揭示了一种基于染色质的机制,通过该机制,细胞将代谢状态与转录调节结合起来,以适应氨基酸的限制。在AA剥夺过程中,H4K20me1的缺失和MYC活性的增加同时启动了翻译机制,使营养恢复后蛋白质合成迅速恢复。这一机制可能有助于解释细胞如何在波动的营养条件下保持竞争性生长潜力,并有助于理解myc驱动的癌症进展。
{"title":"Coordinated histone methylation loss and MYC activation promote translational capacity under amino acid restriction.","authors":"Chen Cheng, Trent Su, Marco Morselli, Siavash K Kurdistani","doi":"10.1186/s40170-025-00399-x","DOIUrl":"10.1186/s40170-025-00399-x","url":null,"abstract":"<p><strong>Background: </strong>Cells adapt to nutrient fluctuations through both signaling and epigenetic mechanisms. While amino acid (AA) deprivation is known to suppress protein synthesis via mTORC1 inactivation, the epigenetic pathways that support cellular adaptation and recovery remain poorly understood. We investigated how chromatin and transcriptional changes contribute to maintaining translational capacity during AA restriction and priming cells for growth upon AA repletion.</p><p><strong>Methods: </strong>Human cells were cultured under amino acid-replete or -depleted conditions, and global histone methylation levels were assessed by Western blotting and ChIP-seq. RNA-seq and chromatin-associated RNA-seq (chromRNA-seq) were used to evaluate gene expression and transcriptional output. Ribosome profiling and [<sup>35</sup>S]-methionine/cysteine or O-propargyl-puromycin (OPP) incorporation assays measured protein synthesis. Functional contributions of SETD8 and MYC were tested through knockdown and overexpression experiments.</p><p><strong>Results: </strong>AA deprivation induced a selective, genome-wide loss of H4K20me1, particularly from gene bodies, and led to increased MYC expression and binding at promoter regions. These changes were most pronounced at genes encoding ribosomal proteins and translation initiation factors. Although overall protein synthesis declined during AA restriction, these cells showed increased translational capacity evidenced by accumulation of monomeric ribosomes and enhanced translation upon AA repletion. Loss of H4K20me1 was independent of mTORC1 signaling and partly driven by SETD8 protein downregulation. While MYC overexpression alone was insufficient to upregulate translation-related genes, its combination with SETD8 knockdown in nutrient-rich conditions was both necessary and sufficient to induce expression of these genes and enhance protein synthesis.</p><p><strong>Conclusions: </strong>Our findings reveal a chromatin-based mechanism by which cells integrate metabolic status with transcriptional regulation to adapt to amino acid limitation. Loss of H4K20me1 and increased MYC activity act in parallel to prime the translational machinery during AA deprivation, enabling rapid recovery of protein synthesis upon nutrient restoration. This mechanism may help explain how cells maintain competitive growth potential under fluctuating nutrient conditions and has implications for understanding MYC-driven cancer progression.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"29"},"PeriodicalIF":6.0,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168343/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144309573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can serum metabolic signatures inform on the relationship between healthy lifestyle and colon cancer risk? 血清代谢特征能告诉我们健康生活方式与结肠癌风险之间的关系吗?
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-06-16 DOI: 10.1186/s40170-025-00388-0
Komodo Matta, Vivian Viallon, Anastasia Chrysovalantou Chatziioannou, Nivonirina Robinot, Roland Wedekind, Christina C Dahm, Agnetha Linn Rostgaard-Hansen, Anne Tjønneland, Therese Truong, Chloé Marques, Pauline Frenoy, Rudolf Kaaks, Renée Turzanski Fortner, Matthias B Schulze, Sabrina Sieri, Mario Fordellone, Rosario Tumino, Fulvio Ricceri, Tonje Braaten, Therese Haugdahl Nøst, Maria-Jose Sánchez, Olatz Mokoroa-Carollo, Sandra Colorado-Yohar, Camino Trobajo-Sanmartín, Keren Papier, Rhea Harewood, Kostas Tsilidis, Salvatore Vaccarella, Mattias Johansson, Elisabete Weiderpass, Cyrille Delpierre, Sebastien Lamy, Kristin Benjaminsen Borch, Pekka Keski-Rahkonen, Elio Riboli, Heinz Freisling, Marc Gunter, Pietro Ferrari

Background: Colon cancer is strongly influenced by lifestyle factors. Sociodemographic factors like sex and socioeconomic position (SEP) might modulate the relationship between lifestyle and colon cancer risk. Metabolomics offers potential to uncover biological mechanisms linking lifestyle and colon cancer.

Methods: Lifestyle and untargeted metabolomic data were available from a nested case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC), including 1,067 colon cancer cases and 1,067 controls matched on age, sex, study centre, and blood collection time. Serum samples were analyzed using liquid chromatography-mass spectrometry. The Healthy Lifestyle Index (HLI) score was derived from smoking habits, alcohol intake, body mass index (BMI), physical activity, and diet. Penalised regression was applied in controls to derive metabolic signatures for the HLI and the lifestyle components. Associations of lifestyle factors and the metabolic signatures with colon cancer risk were estimated in conditional logistic regression models, overall and by sex and SEP.

Results: The HLI score was inversely associated with colon cancer risk, with an odds ratio (OR) per 1-standard deviation (SD) increment equal to 0.79; 95% CI: 0.71, 0.87. The metabolic signature of HLI, comprising 130 features, was moderately correlated with HLI (r = 0.59; 94% CI: 0.56, 0.61), and was inversely associated with colon cancer risk (OR = 0.86; 95% CI: 0.78, 0.95). After adjustment for the HLI score, the association of the metabolic signature of HLI and colon cancer risk was null (OR = 1.00, 95% CI 0.88, 1.13). Associations of lifestyle factors and the metabolic signature with colon cancer risk were consistently stronger for men than for women and did not differ by SEP.

Conclusions: In this study across seven European countries, healthy lifestyle was inversely associated with colon cancer risk, with stronger associations in men than women and no differences across SEP. However, the serum metabolic signatures after adjustment for lifestyle factors were not found to be associated with colon cancer risk, suggesting that lifestyle impacts colon cancer through mechanisms not captured by the signatures.

背景:结肠癌受生活方式因素的强烈影响。性别和社会经济地位(SEP)等社会人口因素可能会调节生活方式与结肠癌风险之间的关系。代谢组学提供了揭示生活方式和结肠癌之间联系的生物学机制的潜力。方法:生活方式和非靶向代谢组学数据来自欧洲癌症与营养前瞻性调查(EPIC)的一项巢式病例对照研究,包括1067例结肠癌病例和1067例年龄、性别、研究中心和采血时间相匹配的对照组。血清样品采用液相色谱-质谱法分析。健康生活方式指数(HLI)评分来源于吸烟习惯、酒精摄入量、身体质量指数(BMI)、身体活动和饮食。在对照组中应用惩罚回归来获得HLI和生活方式成分的代谢特征。生活方式因素和代谢特征与结肠癌风险的关联通过条件logistic回归模型进行估计,包括总体、性别和sep。结果:HLI评分与结肠癌风险呈负相关,每1个标准差(SD)增量的比值比(OR)为0.79;95% ci: 0.71, 0.87。HLI的代谢特征包括130个特征,与HLI中度相关(r = 0.59;94% CI: 0.56, 0.61),且与结肠癌风险呈负相关(OR = 0.86;95% ci: 0.78, 0.95)。调整HLI评分后,HLI代谢特征与结肠癌风险的相关性为零(OR = 1.00, 95% CI 0.88, 1.13)。生活方式因素和代谢特征与结肠癌风险的关联在男性中始终强于女性,且在sep上没有差异。在这项涵盖七个欧洲国家的研究中,健康的生活方式与结肠癌风险呈负相关,男性的相关性强于女性,SEP之间没有差异。然而,调整生活方式因素后的血清代谢特征未发现与结肠癌风险相关,这表明生活方式影响结肠癌的机制未被特征所涵盖。
{"title":"Can serum metabolic signatures inform on the relationship between healthy lifestyle and colon cancer risk?","authors":"Komodo Matta, Vivian Viallon, Anastasia Chrysovalantou Chatziioannou, Nivonirina Robinot, Roland Wedekind, Christina C Dahm, Agnetha Linn Rostgaard-Hansen, Anne Tjønneland, Therese Truong, Chloé Marques, Pauline Frenoy, Rudolf Kaaks, Renée Turzanski Fortner, Matthias B Schulze, Sabrina Sieri, Mario Fordellone, Rosario Tumino, Fulvio Ricceri, Tonje Braaten, Therese Haugdahl Nøst, Maria-Jose Sánchez, Olatz Mokoroa-Carollo, Sandra Colorado-Yohar, Camino Trobajo-Sanmartín, Keren Papier, Rhea Harewood, Kostas Tsilidis, Salvatore Vaccarella, Mattias Johansson, Elisabete Weiderpass, Cyrille Delpierre, Sebastien Lamy, Kristin Benjaminsen Borch, Pekka Keski-Rahkonen, Elio Riboli, Heinz Freisling, Marc Gunter, Pietro Ferrari","doi":"10.1186/s40170-025-00388-0","DOIUrl":"10.1186/s40170-025-00388-0","url":null,"abstract":"<p><strong>Background: </strong>Colon cancer is strongly influenced by lifestyle factors. Sociodemographic factors like sex and socioeconomic position (SEP) might modulate the relationship between lifestyle and colon cancer risk. Metabolomics offers potential to uncover biological mechanisms linking lifestyle and colon cancer.</p><p><strong>Methods: </strong>Lifestyle and untargeted metabolomic data were available from a nested case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC), including 1,067 colon cancer cases and 1,067 controls matched on age, sex, study centre, and blood collection time. Serum samples were analyzed using liquid chromatography-mass spectrometry. The Healthy Lifestyle Index (HLI) score was derived from smoking habits, alcohol intake, body mass index (BMI), physical activity, and diet. Penalised regression was applied in controls to derive metabolic signatures for the HLI and the lifestyle components. Associations of lifestyle factors and the metabolic signatures with colon cancer risk were estimated in conditional logistic regression models, overall and by sex and SEP.</p><p><strong>Results: </strong>The HLI score was inversely associated with colon cancer risk, with an odds ratio (OR) per 1-standard deviation (SD) increment equal to 0.79; 95% CI: 0.71, 0.87. The metabolic signature of HLI, comprising 130 features, was moderately correlated with HLI (r = 0.59; 94% CI: 0.56, 0.61), and was inversely associated with colon cancer risk (OR = 0.86; 95% CI: 0.78, 0.95). After adjustment for the HLI score, the association of the metabolic signature of HLI and colon cancer risk was null (OR = 1.00, 95% CI 0.88, 1.13). Associations of lifestyle factors and the metabolic signature with colon cancer risk were consistently stronger for men than for women and did not differ by SEP.</p><p><strong>Conclusions: </strong>In this study across seven European countries, healthy lifestyle was inversely associated with colon cancer risk, with stronger associations in men than women and no differences across SEP. However, the serum metabolic signatures after adjustment for lifestyle factors were not found to be associated with colon cancer risk, suggesting that lifestyle impacts colon cancer through mechanisms not captured by the signatures.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"30"},"PeriodicalIF":6.0,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168339/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144309571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cancer-associated fibroblasts promote drug resistance in ALK-driven lung adenocarcinoma cells by upregulating lipid biosynthesis. 癌症相关成纤维细胞通过上调脂质生物合成促进alk驱动的肺腺癌细胞的耐药。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-06-16 DOI: 10.1186/s40170-025-00400-7
Ann-Kathrin Daum, Lisa Schlicker, Marc A Schneider, Thomas Muley, Ursula Klingmüller, Almut Schulze, Michael Thomas, Petros Christopoulos, Holger Sültmann

Background: Targeted therapy interventions using tyrosine kinase inhibitors (TKIs) provide encouraging treatment responses in patients with ALK-rearranged lung adenocarcinomas, yet resistance occurs almost inevitably. In addition to tumor cell-intrinsic resistance mechanisms, accumulating evidence suggests that cancer-associated fibroblasts (CAFs) within the tumor microenvironment contribute to therapy resistance. This study aimed to investigate CAF-driven molecular networks that shape the therapeutic susceptibility of ALK-driven lung adenocarcinoma cells.

Methods: Three-dimensional (3D) spheroid co-cultures comprising ALK-rearranged lung adenocarcinoma cells and CAFs were utilized to model the tumor microenvironment. Single-cell RNA sequencing was performed to uncover transcriptional differences between TKI-treated homotypic and heterotypic spheroids. Functional assays assessed the effects of CAF-conditioned medium and CAF-secreted factors on tumor cell survival, proliferation, lipid metabolism, and downstream AKT signaling. The therapeutic potential of targeting metabolic vulnerabilities was evaluated using pharmacological inhibition of lipid metabolism and by ferroptosis induction.

Results: CAFs significantly diminished the apoptotic response of lung tumor cells to ALK inhibitors while simultaneously enhancing their proliferative capacity. Single-cell RNA sequencing identified lipogenesis-associated genes as a key transcriptional difference between TKI-treated homotypic and heterotypic lung tumor spheroids. CAF-conditioned medium and the CAF-secreted factors HGF and NRG1 activated AKT signaling in 3D-cultured ALK-rearranged lung tumor cells, leading to increased de novo lipogenesis and suppression of lipid peroxidation. These metabolic adaptations were critical for promoting tumor cell survival and fostering therapy resistance. Notably, both dual inhibition of ALK and the lipid-regulatory factor SREBP-1, as well as co-treatment with ferroptosis inducers such as erastin or RSL3, effectively disrupted the CAF-driven metabolic-supportive niche and restored sensitivity of resistant lung tumor spheroids to ALK inhibition.

Conclusions: This study highlights a critical role for CAFs in mediating resistance to ALK-TKIs by reprogramming lipid metabolism in ALK-rearranged lung cancer cells. It suggests that targeting these metabolic vulnerabilities, particularly through inhibition of lipid metabolism or induction of ferroptosis, could provide a novel therapeutic approach to overcome resistance and improve patient outcomes.

背景:使用酪氨酸激酶抑制剂(TKIs)的靶向治疗干预为alk重排肺腺癌患者提供了令人鼓舞的治疗反应,但耐药性几乎不可避免地发生。除了肿瘤细胞固有的耐药机制外,越来越多的证据表明,肿瘤微环境中的癌症相关成纤维细胞(CAFs)有助于治疗耐药。本研究旨在研究影响alk驱动肺腺癌细胞治疗易感性的ca驱动分子网络。方法:采用alk重排肺腺癌细胞和CAFs组成的三维球形共培养物模拟肿瘤微环境。单细胞RNA测序揭示了tki处理的同型和异型球体之间的转录差异。功能分析评估了cafc条件培养基和cafc分泌因子对肿瘤细胞存活、增殖、脂质代谢和下游AKT信号传导的影响。通过脂质代谢的药理抑制和铁下垂诱导来评估针对代谢脆弱性的治疗潜力。结果:CAFs可显著降低肺肿瘤细胞对ALK抑制剂的凋亡反应,同时增强其增殖能力。单细胞RNA测序发现脂肪生成相关基因是tki治疗的同型和异型肺肿瘤球体之间的关键转录差异。caf条件培养基和caf分泌因子HGF和NRG1激活3d培养alk重排肺肿瘤细胞的AKT信号,导致新生脂肪生成增加,脂质过氧化抑制。这些代谢适应对于促进肿瘤细胞存活和培养治疗耐药性至关重要。值得注意的是,ALK和脂质调节因子SREBP-1的双重抑制,以及与erastin或RSL3等铁吊诱导剂的联合治疗,都有效地破坏了钙驱动的代谢支持生态位,恢复了耐药肺肿瘤球体对ALK抑制的敏感性。结论:本研究强调了在alk重排肺癌细胞中,CAFs通过重编程脂质代谢介导对ALK-TKIs的耐药的关键作用。这表明,针对这些代谢脆弱性,特别是通过抑制脂质代谢或诱导铁下垂,可以提供一种新的治疗方法来克服耐药性并改善患者的预后。
{"title":"Cancer-associated fibroblasts promote drug resistance in ALK-driven lung adenocarcinoma cells by upregulating lipid biosynthesis.","authors":"Ann-Kathrin Daum, Lisa Schlicker, Marc A Schneider, Thomas Muley, Ursula Klingmüller, Almut Schulze, Michael Thomas, Petros Christopoulos, Holger Sültmann","doi":"10.1186/s40170-025-00400-7","DOIUrl":"10.1186/s40170-025-00400-7","url":null,"abstract":"<p><strong>Background: </strong>Targeted therapy interventions using tyrosine kinase inhibitors (TKIs) provide encouraging treatment responses in patients with ALK-rearranged lung adenocarcinomas, yet resistance occurs almost inevitably. In addition to tumor cell-intrinsic resistance mechanisms, accumulating evidence suggests that cancer-associated fibroblasts (CAFs) within the tumor microenvironment contribute to therapy resistance. This study aimed to investigate CAF-driven molecular networks that shape the therapeutic susceptibility of ALK-driven lung adenocarcinoma cells.</p><p><strong>Methods: </strong>Three-dimensional (3D) spheroid co-cultures comprising ALK-rearranged lung adenocarcinoma cells and CAFs were utilized to model the tumor microenvironment. Single-cell RNA sequencing was performed to uncover transcriptional differences between TKI-treated homotypic and heterotypic spheroids. Functional assays assessed the effects of CAF-conditioned medium and CAF-secreted factors on tumor cell survival, proliferation, lipid metabolism, and downstream AKT signaling. The therapeutic potential of targeting metabolic vulnerabilities was evaluated using pharmacological inhibition of lipid metabolism and by ferroptosis induction.</p><p><strong>Results: </strong>CAFs significantly diminished the apoptotic response of lung tumor cells to ALK inhibitors while simultaneously enhancing their proliferative capacity. Single-cell RNA sequencing identified lipogenesis-associated genes as a key transcriptional difference between TKI-treated homotypic and heterotypic lung tumor spheroids. CAF-conditioned medium and the CAF-secreted factors HGF and NRG1 activated AKT signaling in 3D-cultured ALK-rearranged lung tumor cells, leading to increased de novo lipogenesis and suppression of lipid peroxidation. These metabolic adaptations were critical for promoting tumor cell survival and fostering therapy resistance. Notably, both dual inhibition of ALK and the lipid-regulatory factor SREBP-1, as well as co-treatment with ferroptosis inducers such as erastin or RSL3, effectively disrupted the CAF-driven metabolic-supportive niche and restored sensitivity of resistant lung tumor spheroids to ALK inhibition.</p><p><strong>Conclusions: </strong>This study highlights a critical role for CAFs in mediating resistance to ALK-TKIs by reprogramming lipid metabolism in ALK-rearranged lung cancer cells. It suggests that targeting these metabolic vulnerabilities, particularly through inhibition of lipid metabolism or induction of ferroptosis, could provide a novel therapeutic approach to overcome resistance and improve patient outcomes.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"28"},"PeriodicalIF":6.0,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144309572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A role of arginase-1-expressing myeloid cells in cachexia. 表达精氨酸酶-1的髓细胞在恶病质中的作用。
IF 5.3 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-06-05 DOI: 10.1186/s40170-025-00396-0
Apsana Lamsal, Sonja Benedikte Andersen, Unni Nonstad, Natalie Jayne Kurganovs, Richard Je Skipworth, Geir Bjørkøy, Kristine Pettersen

Background: Despite decades of efforts to find successful treatment approaches, cachexia remains a major unmet medical need. This condition, that affects patients with diverse underlying conditions, is characterized by severe muscle loss and is associated with reduced quality of life and limited survival. Search for underlying mechanisms that may guide cachexia treatment has mainly evolved around potential atrophy-inducing roles of inflammatory mediators, and in cancer patients, tumor-derived factors. Recently, a new paradigm emerged as it is becoming evident that specific immune cells inhabit atrophic muscle tissue. Arginase 1 (Arg1) expression is characteristic of these immune cells. Studies of potential contributions of these immune cells to loss of muscle mass and function is in its infancy, and the contribution of ARG1 to these processes remains elusive.

Methods: Analyses of RNA sequencing data from murine cachexia models and comprehensive, unbiased open approach proteomics analyses of skeletal myotubes was performed. In vitro techniques were employed to evaluate mitochondrial function and capacity in skeletal muscle cells and cardiomyocytes. Functional bioassays were used to measure autophagy activity. ARG1 level in patients' plasma was evaluated using ELISA, and the association between ARG1 level and patient survival, across multiple types of cancer, was examined using the online database Kaplan-Meier plotter.

Results: In line with arginine-degrading activity of ARG1, we found signs of arginine restriction in atrophic muscles. In response to arginine restriction, mitochondrial functions and ATP generation was severely compromised in both skeletal muscle cells and in cardiomyocytes. In skeletal muscle cells, arginine restriction enhanced the expression of autophagic proteins, suggesting autophagic degradation of cellular content. Reduction in mitochondria marker TIMM23 supports selective autophagic degradation of mitochondria (mitophagy). In arginine starved cardiomyocytes, mitochondrial dysfunction is accompanied by both increased bulk autophagy and mitophagy. In cancer patients, we found an association between ARG1 expression and accelerated weight loss and reduced survival, further supporting a role of ARG1-producing cells in cachexia pathogenesis.

Conclusion: Together, our findings point to a mechanism for cachexia which depends on expansion of ARG1-expressing myeloid cells, local restriction of arginine, loss of mitochondrial capacity and induced catabolism in skeletal muscle cells and in the heart.

背景:尽管几十年来一直在努力寻找成功的治疗方法,但恶病质仍然是一个主要的未满足的医疗需求。这种情况会影响具有多种潜在疾病的患者,其特征是严重的肌肉损失,并与生活质量下降和生存期有限有关。对可能指导恶病质治疗的潜在机制的研究主要围绕炎症介质的潜在萎缩诱导作用以及癌症患者的肿瘤源性因素展开。最近,一种新的范式出现了,因为它越来越明显,特异性免疫细胞栖息在萎缩的肌肉组织。精氨酸酶1 (Arg1)的表达是这些免疫细胞的特征。关于这些免疫细胞对肌肉质量和功能丧失的潜在贡献的研究尚处于起步阶段,ARG1对这些过程的贡献仍然难以捉摸。方法:对小鼠恶病质模型的RNA测序数据进行分析,并对骨骼肌管进行全面、公正的开放方法蛋白质组学分析。采用体外技术评价骨骼肌细胞和心肌细胞的线粒体功能和容量。功能生物测定法测定自噬活性。采用ELISA法检测患者血浆中ARG1水平,并利用在线Kaplan-Meier绘图仪检测多种癌症患者血浆中ARG1水平与生存期之间的关系。结果:与ARG1的精氨酸降解活性一致,我们在萎缩肌肉中发现了精氨酸限制的迹象。作为精氨酸限制的反应,骨骼肌细胞和心肌细胞的线粒体功能和ATP生成严重受损。在骨骼肌细胞中,精氨酸限制增强了自噬蛋白的表达,表明细胞内容物发生了自噬降解。线粒体标志物TIMM23的减少支持线粒体的选择性自噬降解(mitophagy)。在精氨酸缺乏的心肌细胞中,线粒体功能障碍伴随着大量自噬和线粒体自噬的增加。在癌症患者中,我们发现ARG1表达与加速体重减轻和降低生存率之间存在关联,进一步支持ARG1产生细胞在恶病质发病机制中的作用。结论:总之,我们的研究结果指出恶病质的机制依赖于表达arg1的髓细胞的扩张、精氨酸的局部限制、线粒体能力的丧失以及骨骼肌细胞和心脏中诱导的分解代谢。
{"title":"A role of arginase-1-expressing myeloid cells in cachexia.","authors":"Apsana Lamsal, Sonja Benedikte Andersen, Unni Nonstad, Natalie Jayne Kurganovs, Richard Je Skipworth, Geir Bjørkøy, Kristine Pettersen","doi":"10.1186/s40170-025-00396-0","DOIUrl":"10.1186/s40170-025-00396-0","url":null,"abstract":"<p><strong>Background: </strong>Despite decades of efforts to find successful treatment approaches, cachexia remains a major unmet medical need. This condition, that affects patients with diverse underlying conditions, is characterized by severe muscle loss and is associated with reduced quality of life and limited survival. Search for underlying mechanisms that may guide cachexia treatment has mainly evolved around potential atrophy-inducing roles of inflammatory mediators, and in cancer patients, tumor-derived factors. Recently, a new paradigm emerged as it is becoming evident that specific immune cells inhabit atrophic muscle tissue. Arginase 1 (Arg1) expression is characteristic of these immune cells. Studies of potential contributions of these immune cells to loss of muscle mass and function is in its infancy, and the contribution of ARG1 to these processes remains elusive.</p><p><strong>Methods: </strong>Analyses of RNA sequencing data from murine cachexia models and comprehensive, unbiased open approach proteomics analyses of skeletal myotubes was performed. In vitro techniques were employed to evaluate mitochondrial function and capacity in skeletal muscle cells and cardiomyocytes. Functional bioassays were used to measure autophagy activity. ARG1 level in patients' plasma was evaluated using ELISA, and the association between ARG1 level and patient survival, across multiple types of cancer, was examined using the online database Kaplan-Meier plotter.</p><p><strong>Results: </strong>In line with arginine-degrading activity of ARG1, we found signs of arginine restriction in atrophic muscles. In response to arginine restriction, mitochondrial functions and ATP generation was severely compromised in both skeletal muscle cells and in cardiomyocytes. In skeletal muscle cells, arginine restriction enhanced the expression of autophagic proteins, suggesting autophagic degradation of cellular content. Reduction in mitochondria marker TIMM23 supports selective autophagic degradation of mitochondria (mitophagy). In arginine starved cardiomyocytes, mitochondrial dysfunction is accompanied by both increased bulk autophagy and mitophagy. In cancer patients, we found an association between ARG1 expression and accelerated weight loss and reduced survival, further supporting a role of ARG1-producing cells in cachexia pathogenesis.</p><p><strong>Conclusion: </strong>Together, our findings point to a mechanism for cachexia which depends on expansion of ARG1-expressing myeloid cells, local restriction of arginine, loss of mitochondrial capacity and induced catabolism in skeletal muscle cells and in the heart.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"27"},"PeriodicalIF":5.3,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12142917/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144233281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oncogenic role of fumarate hydratase in breast cancer: metabolic reprogramming and mechanistic insights. 富马酸水合酶在乳腺癌中的致癌作用:代谢重编程和机制见解。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-05-29 DOI: 10.1186/s40170-025-00397-z
Shyng-Shiou F Yuan, Anupama Vadhan, Hieu D H Nguyen, Pang-Yu Chen, Chih-Huang Tseng, Ching-Hu Wu, Yu-Chieh Chen, Yi-Chia Wu, Stephen Chu-Sung Hu, Steven Lo, Ming-Feng Hou, Yen-Yun Wang

Breast cancer remains the most prevalent malignancy among women globally, with its complexity linked to genetic variations and metabolic alterations within tumor cells. This study investigates the role of fumarate hydratase (FH), a key enzyme in the tricarboxylic acid (TCA) cycle, in breast cancer progression. Our findings reveal that FH mRNA and protein levels are significantly upregulated in breast cancer tissues and correlate with poor patient prognosis and aggressive tumor characteristics. Using in vitro and in vivo models, we demonstrate that FH overexpression enhances breast cancer cell proliferation, migration, and invasion through metabolic reprogramming and by increasing reactive oxygen species (ROS) production. Furthermore, we identify matrix metalloproteinase 1 (MMP1) as a downstream effector of FH, linked to p21 downregulation, elucidating a novel regulatory pathway influencing tumor behavior. Interestingly, unlike its tumor-suppressing role in other cancer types, this study highlights FH's oncogenic potential in breast cancer. Our results suggest that FH enhances cancer cell viability and aggressiveness via both catalytic and non-catalytic mechanisms. This work not only underscores the metabolic adaptations of breast cancer cells but also proposes FH as a potential biomarker and therapeutic target for breast cancer management.

乳腺癌仍然是全球妇女中最常见的恶性肿瘤,其复杂性与肿瘤细胞内的遗传变异和代谢改变有关。本研究探讨富马酸水合酶(FH)在乳腺癌进展中的作用,富马酸水合酶是三羧酸(TCA)循环中的关键酶。我们的研究结果表明,FH mRNA和蛋白水平在乳腺癌组织中显著上调,并与患者预后不良和肿瘤侵袭性特征相关。通过体外和体内模型,我们证明FH过表达通过代谢重编程和增加活性氧(ROS)的产生增强乳腺癌细胞的增殖、迁移和侵袭。此外,我们发现基质金属蛋白酶1 (MMP1)是FH的下游效应物,与p21下调有关,阐明了影响肿瘤行为的新调控途径。有趣的是,与它在其他癌症类型中的肿瘤抑制作用不同,这项研究强调了FH在乳腺癌中的致癌潜力。我们的研究结果表明,FH通过催化和非催化机制增强癌细胞的活力和侵袭性。这项工作不仅强调了乳腺癌细胞的代谢适应性,而且提出了FH作为乳腺癌管理的潜在生物标志物和治疗靶点。
{"title":"Oncogenic role of fumarate hydratase in breast cancer: metabolic reprogramming and mechanistic insights.","authors":"Shyng-Shiou F Yuan, Anupama Vadhan, Hieu D H Nguyen, Pang-Yu Chen, Chih-Huang Tseng, Ching-Hu Wu, Yu-Chieh Chen, Yi-Chia Wu, Stephen Chu-Sung Hu, Steven Lo, Ming-Feng Hou, Yen-Yun Wang","doi":"10.1186/s40170-025-00397-z","DOIUrl":"10.1186/s40170-025-00397-z","url":null,"abstract":"<p><p>Breast cancer remains the most prevalent malignancy among women globally, with its complexity linked to genetic variations and metabolic alterations within tumor cells. This study investigates the role of fumarate hydratase (FH), a key enzyme in the tricarboxylic acid (TCA) cycle, in breast cancer progression. Our findings reveal that FH mRNA and protein levels are significantly upregulated in breast cancer tissues and correlate with poor patient prognosis and aggressive tumor characteristics. Using in vitro and in vivo models, we demonstrate that FH overexpression enhances breast cancer cell proliferation, migration, and invasion through metabolic reprogramming and by increasing reactive oxygen species (ROS) production. Furthermore, we identify matrix metalloproteinase 1 (MMP1) as a downstream effector of FH, linked to p21 downregulation, elucidating a novel regulatory pathway influencing tumor behavior. Interestingly, unlike its tumor-suppressing role in other cancer types, this study highlights FH's oncogenic potential in breast cancer. Our results suggest that FH enhances cancer cell viability and aggressiveness via both catalytic and non-catalytic mechanisms. This work not only underscores the metabolic adaptations of breast cancer cells but also proposes FH as a potential biomarker and therapeutic target for breast cancer management.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"26"},"PeriodicalIF":6.0,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144172535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of physiological media on acute myeloid leukemia bioenergetics and cell proliferation. 生理介质对急性髓细胞白血病生物能量学和细胞增殖的影响。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-05-26 DOI: 10.1186/s40170-025-00395-1
Brett R Chrest, McLane M Montgomery, Raphael T Aruleba, Polina Krassovskaia, Emely A Pacheco, James T Hagen, Kayla J Vandiver, Kang Tung, Molly K Alexander, Nicholas C Williamson, Joshua G Taylor, Riley N Bessetti, Heather A Belcher, Filip Jevtovic, Zoe S Terwilliger, Everett C Minchew, Tonya N Zeczycki, Linda May, Nicholas T Broskey, Christopher B Geyer, Karen Litwa, Espen E Spangenburg, Johanna L Hannan, Jessica M Ellis, Joseph M McClung, P Darrell Neufer, Kelsey H Fisher-Wellman

Increasing emphasis has been placed on improving the physiological relevance of cell culture media with formulations such as Human Plasma-Like Medium (HPLM). Given that shifts in mitochondrial metabolism and nutrient use are emerging as anti-cancer targets, the present study sought to investigate the impact of culture media formulation on mitochondrial bioenergetics and cancer cell growth. To do this, we used acute myeloid leukemia (AML) cells and compared acute and chronic effects of HPLM versus different supraphysiological medias. The AML mitochondrial phenotype was largely unaffected by exposure to either physiological or supraphysiological medias, establishing that the key features of AML mitochondria remain phenotypically stable under diverse nutrient conditions and proliferation rates. Both acute and chronic culturing in HPLM slowed AML cell proliferation. However, merely identifying and supplementing single nutrients that were deficient in HPLM did not improve proliferation and was not sufficient to pinpoint actionable fuel preferences. Transferring cells back to native Iscove's Modified Dulbecco's Medium (IMDM) media immediately restored the proliferative phenotype, suggesting responsiveness to the entirety of the nutrient environment. Supraphysiological culture medias other than IMDM were all characterized by slower proliferation; however, none were associated with changes in cell viability, demonstrating that the native culture medium is optimal if the experimental aim is maximal growth. Despite Dulbecco's Modified Eagle Medium (DMEM) being similar in nutrient composition to IMDM and categorized as supraphysiological, both acute and chronic culturing in DMEM resulted in slower growth, akin to what was observed with HPLM. Altogether, independent of growth, AML mitochondria remain largely unperturbed by changes in the culture media, and rather than specific nutrients or physiological relevance, AML cell proliferation is influenced by the complete nutrient profile.

越来越多的重点放在提高细胞培养基的生理相关性与配方,如人血浆样培养基(HPLM)。鉴于线粒体代谢和营养利用的变化正在成为抗癌靶点,本研究旨在研究培养基配方对线粒体生物能量学和癌细胞生长的影响。为此,我们使用急性髓性白血病(AML)细胞,比较了HPLM对不同超生理介质的急性和慢性影响。AML线粒体表型在很大程度上不受暴露于生理或超生理介质的影响,这表明AML线粒体的关键特征在不同的营养条件和增殖速率下保持表型稳定。急性和慢性HPLM培养均减缓AML细胞增殖。然而,仅仅识别和补充HPLM中缺乏的单一营养素并不能改善增殖,也不足以确定可操作的燃料偏好。将细胞转移回原生Iscove's Modified Dulbecco's Medium (IMDM)培养基,立即恢复了增殖表型,表明对整个营养环境的响应。除IMDM外,超生理培养基均表现为增殖较慢;然而,没有一种与细胞活力的变化有关,这表明如果实验目标是最大生长,则天然培养基是最佳的。尽管Dulbecco的改良Eagle培养基(DMEM)在营养成分上与IMDM相似,并且被归类为超生理培养基,但在DMEM中急性和慢性培养都会导致生长缓慢,与HPLM相似。总之,独立于生长,AML线粒体在很大程度上不受培养基变化的干扰,而不是特定的营养物质或生理相关性,AML细胞增殖受到完整的营养成分的影响。
{"title":"Impact of physiological media on acute myeloid leukemia bioenergetics and cell proliferation.","authors":"Brett R Chrest, McLane M Montgomery, Raphael T Aruleba, Polina Krassovskaia, Emely A Pacheco, James T Hagen, Kayla J Vandiver, Kang Tung, Molly K Alexander, Nicholas C Williamson, Joshua G Taylor, Riley N Bessetti, Heather A Belcher, Filip Jevtovic, Zoe S Terwilliger, Everett C Minchew, Tonya N Zeczycki, Linda May, Nicholas T Broskey, Christopher B Geyer, Karen Litwa, Espen E Spangenburg, Johanna L Hannan, Jessica M Ellis, Joseph M McClung, P Darrell Neufer, Kelsey H Fisher-Wellman","doi":"10.1186/s40170-025-00395-1","DOIUrl":"10.1186/s40170-025-00395-1","url":null,"abstract":"<p><p>Increasing emphasis has been placed on improving the physiological relevance of cell culture media with formulations such as Human Plasma-Like Medium (HPLM). Given that shifts in mitochondrial metabolism and nutrient use are emerging as anti-cancer targets, the present study sought to investigate the impact of culture media formulation on mitochondrial bioenergetics and cancer cell growth. To do this, we used acute myeloid leukemia (AML) cells and compared acute and chronic effects of HPLM versus different supraphysiological medias. The AML mitochondrial phenotype was largely unaffected by exposure to either physiological or supraphysiological medias, establishing that the key features of AML mitochondria remain phenotypically stable under diverse nutrient conditions and proliferation rates. Both acute and chronic culturing in HPLM slowed AML cell proliferation. However, merely identifying and supplementing single nutrients that were deficient in HPLM did not improve proliferation and was not sufficient to pinpoint actionable fuel preferences. Transferring cells back to native Iscove's Modified Dulbecco's Medium (IMDM) media immediately restored the proliferative phenotype, suggesting responsiveness to the entirety of the nutrient environment. Supraphysiological culture medias other than IMDM were all characterized by slower proliferation; however, none were associated with changes in cell viability, demonstrating that the native culture medium is optimal if the experimental aim is maximal growth. Despite Dulbecco's Modified Eagle Medium (DMEM) being similar in nutrient composition to IMDM and categorized as supraphysiological, both acute and chronic culturing in DMEM resulted in slower growth, akin to what was observed with HPLM. Altogether, independent of growth, AML mitochondria remain largely unperturbed by changes in the culture media, and rather than specific nutrients or physiological relevance, AML cell proliferation is influenced by the complete nutrient profile.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"25"},"PeriodicalIF":6.0,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105319/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144149597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved VPS4B O-GlcNAc modification triggers lipid droplets transferring from adipocytes to nasopharyngeal carcinoma cells. 改进的VPS4B O-GlcNAc修饰触发脂滴从脂肪细胞转移到鼻咽癌细胞。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-05-23 DOI: 10.1186/s40170-025-00393-3
Haimeng Yin, Ying Shan, Qin Zhu, Ling Yuan, Feng Ju, Yu Shi, Yumo Han, Rui Wu, Tian Xia, Kaiwen Zhang, Yiwen You, Bo You

Background: The tumor microenvironment (TME) supplies critical metabolites that support cancer cell survival and progression. Adipocytes support tumor progression by secreting free fatty acids (FFAs) and adipokines; however, the role and mechanisms underlying lipid droplet (LD) release from adipocytes remain elusive.

Methods: Using two nasopharyngeal carcinoma (NPC) cell lines and primary human pre-adipocytes (HPA), we evaluate the effect of LDs on cell growth, proliferation, colony formation, and migration. We also assess the roles of LD on the tumor progression in vivo. Using RNA-seq analysis, we elucidate the effect of hypoxic NPC cell-derived exosomes (H-exo) on the gene expression profile of adipocytes. By co-culture system, we investigated the effect of vacuolar protein sorting 4 homolog B (VPS4B)-annexin A5 (ANXA5) interaction on adipocyte LD maturity and release.

Results: Herein, we report that LDs, rather than FFAs, are the primary lipid form transferred from adipocytes to NPC cells, enhancing cancer progression. NPC cells internalize LDs directly via macropinocytosis, while H-exo induces oxidative stress and membrane fluidity in adipocytes, leading to LD release. Transcriptomic and proteomic analyses reveal that VPS4B triggers LD release by interacting with ANXA5, and low LKB1 in H-exo enhances VPS4B O-linked N-acetylglucosamine (O-GlcNAc) modification through the inhibition of serine/threonine kinase 11 (STK11/LKB1)-AMP-activated protein kinase (AMPK) pathway and activation of the hexosamine biosynthesis pathway (HBP) flux.

Conclusions: This study uncovers critical mechanisms of LD transfer in the TME, suggesting new therapeutic avenues in NPC.

背景:肿瘤微环境(tumor microenvironment, TME)提供支持癌细胞生存和进展的关键代谢物。脂肪细胞通过分泌游离脂肪酸(FFAs)和脂肪因子支持肿瘤进展;然而,脂滴(LD)从脂肪细胞释放的作用和机制尚不清楚。方法:采用两种鼻咽癌细胞系和原代人前脂肪细胞(HPA),观察ldds对鼻咽癌细胞生长、增殖、集落形成和迁移的影响。我们还评估了LD在体内肿瘤进展中的作用。利用RNA-seq分析,我们阐明了缺氧鼻咽癌细胞来源的外泌体(H-exo)对脂肪细胞基因表达谱的影响。通过共培养系统,研究了液泡蛋白分选4同源物B (VPS4B)-膜联蛋白A5 (ANXA5)相互作用对脂肪细胞LD成熟和释放的影响。结果:在这里,我们报告了ld,而不是FFAs,是从脂肪细胞转移到鼻咽癌细胞的主要脂质形式,促进了癌症的进展。鼻咽癌细胞通过巨噬作用直接内化LD,而H-exo诱导脂肪细胞氧化应激和膜流动性,导致LD释放。转录组学和蛋白质组学分析表明,VPS4B通过与ANXA5相互作用触发LD释放,h -外显子低LKB1通过抑制丝氨酸/苏氨酸激酶11 (STK11/LKB1)- amp活化蛋白激酶(AMPK)途径和激活己糖胺生物合成途径(HBP)通量,增强VPS4B O-linked n -乙酰氨基葡萄糖胺(O-GlcNAc)修饰。结论:本研究揭示了TME中LD转移的关键机制,为鼻咽癌的治疗提供了新的途径。
{"title":"Improved VPS4B O-GlcNAc modification triggers lipid droplets transferring from adipocytes to nasopharyngeal carcinoma cells.","authors":"Haimeng Yin, Ying Shan, Qin Zhu, Ling Yuan, Feng Ju, Yu Shi, Yumo Han, Rui Wu, Tian Xia, Kaiwen Zhang, Yiwen You, Bo You","doi":"10.1186/s40170-025-00393-3","DOIUrl":"10.1186/s40170-025-00393-3","url":null,"abstract":"<p><strong>Background: </strong>The tumor microenvironment (TME) supplies critical metabolites that support cancer cell survival and progression. Adipocytes support tumor progression by secreting free fatty acids (FFAs) and adipokines; however, the role and mechanisms underlying lipid droplet (LD) release from adipocytes remain elusive.</p><p><strong>Methods: </strong>Using two nasopharyngeal carcinoma (NPC) cell lines and primary human pre-adipocytes (HPA), we evaluate the effect of LDs on cell growth, proliferation, colony formation, and migration. We also assess the roles of LD on the tumor progression in vivo. Using RNA-seq analysis, we elucidate the effect of hypoxic NPC cell-derived exosomes (H-exo) on the gene expression profile of adipocytes. By co-culture system, we investigated the effect of vacuolar protein sorting 4 homolog B (VPS4B)-annexin A5 (ANXA5) interaction on adipocyte LD maturity and release.</p><p><strong>Results: </strong>Herein, we report that LDs, rather than FFAs, are the primary lipid form transferred from adipocytes to NPC cells, enhancing cancer progression. NPC cells internalize LDs directly via macropinocytosis, while H-exo induces oxidative stress and membrane fluidity in adipocytes, leading to LD release. Transcriptomic and proteomic analyses reveal that VPS4B triggers LD release by interacting with ANXA5, and low LKB1 in H-exo enhances VPS4B O-linked N-acetylglucosamine (O-GlcNAc) modification through the inhibition of serine/threonine kinase 11 (STK11/LKB1)-AMP-activated protein kinase (AMPK) pathway and activation of the hexosamine biosynthesis pathway (HBP) flux.</p><p><strong>Conclusions: </strong>This study uncovers critical mechanisms of LD transfer in the TME, suggesting new therapeutic avenues in NPC.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"24"},"PeriodicalIF":6.0,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12100974/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144132179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer & Metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1