首页 > 最新文献

Cancer & Metabolism最新文献

英文 中文
Can serum metabolic signatures inform on the relationship between healthy lifestyle and colon cancer risk? 血清代谢特征能告诉我们健康生活方式与结肠癌风险之间的关系吗?
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-06-16 DOI: 10.1186/s40170-025-00388-0
Komodo Matta, Vivian Viallon, Anastasia Chrysovalantou Chatziioannou, Nivonirina Robinot, Roland Wedekind, Christina C Dahm, Agnetha Linn Rostgaard-Hansen, Anne Tjønneland, Therese Truong, Chloé Marques, Pauline Frenoy, Rudolf Kaaks, Renée Turzanski Fortner, Matthias B Schulze, Sabrina Sieri, Mario Fordellone, Rosario Tumino, Fulvio Ricceri, Tonje Braaten, Therese Haugdahl Nøst, Maria-Jose Sánchez, Olatz Mokoroa-Carollo, Sandra Colorado-Yohar, Camino Trobajo-Sanmartín, Keren Papier, Rhea Harewood, Kostas Tsilidis, Salvatore Vaccarella, Mattias Johansson, Elisabete Weiderpass, Cyrille Delpierre, Sebastien Lamy, Kristin Benjaminsen Borch, Pekka Keski-Rahkonen, Elio Riboli, Heinz Freisling, Marc Gunter, Pietro Ferrari

Background: Colon cancer is strongly influenced by lifestyle factors. Sociodemographic factors like sex and socioeconomic position (SEP) might modulate the relationship between lifestyle and colon cancer risk. Metabolomics offers potential to uncover biological mechanisms linking lifestyle and colon cancer.

Methods: Lifestyle and untargeted metabolomic data were available from a nested case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC), including 1,067 colon cancer cases and 1,067 controls matched on age, sex, study centre, and blood collection time. Serum samples were analyzed using liquid chromatography-mass spectrometry. The Healthy Lifestyle Index (HLI) score was derived from smoking habits, alcohol intake, body mass index (BMI), physical activity, and diet. Penalised regression was applied in controls to derive metabolic signatures for the HLI and the lifestyle components. Associations of lifestyle factors and the metabolic signatures with colon cancer risk were estimated in conditional logistic regression models, overall and by sex and SEP.

Results: The HLI score was inversely associated with colon cancer risk, with an odds ratio (OR) per 1-standard deviation (SD) increment equal to 0.79; 95% CI: 0.71, 0.87. The metabolic signature of HLI, comprising 130 features, was moderately correlated with HLI (r = 0.59; 94% CI: 0.56, 0.61), and was inversely associated with colon cancer risk (OR = 0.86; 95% CI: 0.78, 0.95). After adjustment for the HLI score, the association of the metabolic signature of HLI and colon cancer risk was null (OR = 1.00, 95% CI 0.88, 1.13). Associations of lifestyle factors and the metabolic signature with colon cancer risk were consistently stronger for men than for women and did not differ by SEP.

Conclusions: In this study across seven European countries, healthy lifestyle was inversely associated with colon cancer risk, with stronger associations in men than women and no differences across SEP. However, the serum metabolic signatures after adjustment for lifestyle factors were not found to be associated with colon cancer risk, suggesting that lifestyle impacts colon cancer through mechanisms not captured by the signatures.

背景:结肠癌受生活方式因素的强烈影响。性别和社会经济地位(SEP)等社会人口因素可能会调节生活方式与结肠癌风险之间的关系。代谢组学提供了揭示生活方式和结肠癌之间联系的生物学机制的潜力。方法:生活方式和非靶向代谢组学数据来自欧洲癌症与营养前瞻性调查(EPIC)的一项巢式病例对照研究,包括1067例结肠癌病例和1067例年龄、性别、研究中心和采血时间相匹配的对照组。血清样品采用液相色谱-质谱法分析。健康生活方式指数(HLI)评分来源于吸烟习惯、酒精摄入量、身体质量指数(BMI)、身体活动和饮食。在对照组中应用惩罚回归来获得HLI和生活方式成分的代谢特征。生活方式因素和代谢特征与结肠癌风险的关联通过条件logistic回归模型进行估计,包括总体、性别和sep。结果:HLI评分与结肠癌风险呈负相关,每1个标准差(SD)增量的比值比(OR)为0.79;95% ci: 0.71, 0.87。HLI的代谢特征包括130个特征,与HLI中度相关(r = 0.59;94% CI: 0.56, 0.61),且与结肠癌风险呈负相关(OR = 0.86;95% ci: 0.78, 0.95)。调整HLI评分后,HLI代谢特征与结肠癌风险的相关性为零(OR = 1.00, 95% CI 0.88, 1.13)。生活方式因素和代谢特征与结肠癌风险的关联在男性中始终强于女性,且在sep上没有差异。在这项涵盖七个欧洲国家的研究中,健康的生活方式与结肠癌风险呈负相关,男性的相关性强于女性,SEP之间没有差异。然而,调整生活方式因素后的血清代谢特征未发现与结肠癌风险相关,这表明生活方式影响结肠癌的机制未被特征所涵盖。
{"title":"Can serum metabolic signatures inform on the relationship between healthy lifestyle and colon cancer risk?","authors":"Komodo Matta, Vivian Viallon, Anastasia Chrysovalantou Chatziioannou, Nivonirina Robinot, Roland Wedekind, Christina C Dahm, Agnetha Linn Rostgaard-Hansen, Anne Tjønneland, Therese Truong, Chloé Marques, Pauline Frenoy, Rudolf Kaaks, Renée Turzanski Fortner, Matthias B Schulze, Sabrina Sieri, Mario Fordellone, Rosario Tumino, Fulvio Ricceri, Tonje Braaten, Therese Haugdahl Nøst, Maria-Jose Sánchez, Olatz Mokoroa-Carollo, Sandra Colorado-Yohar, Camino Trobajo-Sanmartín, Keren Papier, Rhea Harewood, Kostas Tsilidis, Salvatore Vaccarella, Mattias Johansson, Elisabete Weiderpass, Cyrille Delpierre, Sebastien Lamy, Kristin Benjaminsen Borch, Pekka Keski-Rahkonen, Elio Riboli, Heinz Freisling, Marc Gunter, Pietro Ferrari","doi":"10.1186/s40170-025-00388-0","DOIUrl":"10.1186/s40170-025-00388-0","url":null,"abstract":"<p><strong>Background: </strong>Colon cancer is strongly influenced by lifestyle factors. Sociodemographic factors like sex and socioeconomic position (SEP) might modulate the relationship between lifestyle and colon cancer risk. Metabolomics offers potential to uncover biological mechanisms linking lifestyle and colon cancer.</p><p><strong>Methods: </strong>Lifestyle and untargeted metabolomic data were available from a nested case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC), including 1,067 colon cancer cases and 1,067 controls matched on age, sex, study centre, and blood collection time. Serum samples were analyzed using liquid chromatography-mass spectrometry. The Healthy Lifestyle Index (HLI) score was derived from smoking habits, alcohol intake, body mass index (BMI), physical activity, and diet. Penalised regression was applied in controls to derive metabolic signatures for the HLI and the lifestyle components. Associations of lifestyle factors and the metabolic signatures with colon cancer risk were estimated in conditional logistic regression models, overall and by sex and SEP.</p><p><strong>Results: </strong>The HLI score was inversely associated with colon cancer risk, with an odds ratio (OR) per 1-standard deviation (SD) increment equal to 0.79; 95% CI: 0.71, 0.87. The metabolic signature of HLI, comprising 130 features, was moderately correlated with HLI (r = 0.59; 94% CI: 0.56, 0.61), and was inversely associated with colon cancer risk (OR = 0.86; 95% CI: 0.78, 0.95). After adjustment for the HLI score, the association of the metabolic signature of HLI and colon cancer risk was null (OR = 1.00, 95% CI 0.88, 1.13). Associations of lifestyle factors and the metabolic signature with colon cancer risk were consistently stronger for men than for women and did not differ by SEP.</p><p><strong>Conclusions: </strong>In this study across seven European countries, healthy lifestyle was inversely associated with colon cancer risk, with stronger associations in men than women and no differences across SEP. However, the serum metabolic signatures after adjustment for lifestyle factors were not found to be associated with colon cancer risk, suggesting that lifestyle impacts colon cancer through mechanisms not captured by the signatures.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"30"},"PeriodicalIF":6.0,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168339/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144309571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cancer-associated fibroblasts promote drug resistance in ALK-driven lung adenocarcinoma cells by upregulating lipid biosynthesis. 癌症相关成纤维细胞通过上调脂质生物合成促进alk驱动的肺腺癌细胞的耐药。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-06-16 DOI: 10.1186/s40170-025-00400-7
Ann-Kathrin Daum, Lisa Schlicker, Marc A Schneider, Thomas Muley, Ursula Klingmüller, Almut Schulze, Michael Thomas, Petros Christopoulos, Holger Sültmann

Background: Targeted therapy interventions using tyrosine kinase inhibitors (TKIs) provide encouraging treatment responses in patients with ALK-rearranged lung adenocarcinomas, yet resistance occurs almost inevitably. In addition to tumor cell-intrinsic resistance mechanisms, accumulating evidence suggests that cancer-associated fibroblasts (CAFs) within the tumor microenvironment contribute to therapy resistance. This study aimed to investigate CAF-driven molecular networks that shape the therapeutic susceptibility of ALK-driven lung adenocarcinoma cells.

Methods: Three-dimensional (3D) spheroid co-cultures comprising ALK-rearranged lung adenocarcinoma cells and CAFs were utilized to model the tumor microenvironment. Single-cell RNA sequencing was performed to uncover transcriptional differences between TKI-treated homotypic and heterotypic spheroids. Functional assays assessed the effects of CAF-conditioned medium and CAF-secreted factors on tumor cell survival, proliferation, lipid metabolism, and downstream AKT signaling. The therapeutic potential of targeting metabolic vulnerabilities was evaluated using pharmacological inhibition of lipid metabolism and by ferroptosis induction.

Results: CAFs significantly diminished the apoptotic response of lung tumor cells to ALK inhibitors while simultaneously enhancing their proliferative capacity. Single-cell RNA sequencing identified lipogenesis-associated genes as a key transcriptional difference between TKI-treated homotypic and heterotypic lung tumor spheroids. CAF-conditioned medium and the CAF-secreted factors HGF and NRG1 activated AKT signaling in 3D-cultured ALK-rearranged lung tumor cells, leading to increased de novo lipogenesis and suppression of lipid peroxidation. These metabolic adaptations were critical for promoting tumor cell survival and fostering therapy resistance. Notably, both dual inhibition of ALK and the lipid-regulatory factor SREBP-1, as well as co-treatment with ferroptosis inducers such as erastin or RSL3, effectively disrupted the CAF-driven metabolic-supportive niche and restored sensitivity of resistant lung tumor spheroids to ALK inhibition.

Conclusions: This study highlights a critical role for CAFs in mediating resistance to ALK-TKIs by reprogramming lipid metabolism in ALK-rearranged lung cancer cells. It suggests that targeting these metabolic vulnerabilities, particularly through inhibition of lipid metabolism or induction of ferroptosis, could provide a novel therapeutic approach to overcome resistance and improve patient outcomes.

背景:使用酪氨酸激酶抑制剂(TKIs)的靶向治疗干预为alk重排肺腺癌患者提供了令人鼓舞的治疗反应,但耐药性几乎不可避免地发生。除了肿瘤细胞固有的耐药机制外,越来越多的证据表明,肿瘤微环境中的癌症相关成纤维细胞(CAFs)有助于治疗耐药。本研究旨在研究影响alk驱动肺腺癌细胞治疗易感性的ca驱动分子网络。方法:采用alk重排肺腺癌细胞和CAFs组成的三维球形共培养物模拟肿瘤微环境。单细胞RNA测序揭示了tki处理的同型和异型球体之间的转录差异。功能分析评估了cafc条件培养基和cafc分泌因子对肿瘤细胞存活、增殖、脂质代谢和下游AKT信号传导的影响。通过脂质代谢的药理抑制和铁下垂诱导来评估针对代谢脆弱性的治疗潜力。结果:CAFs可显著降低肺肿瘤细胞对ALK抑制剂的凋亡反应,同时增强其增殖能力。单细胞RNA测序发现脂肪生成相关基因是tki治疗的同型和异型肺肿瘤球体之间的关键转录差异。caf条件培养基和caf分泌因子HGF和NRG1激活3d培养alk重排肺肿瘤细胞的AKT信号,导致新生脂肪生成增加,脂质过氧化抑制。这些代谢适应对于促进肿瘤细胞存活和培养治疗耐药性至关重要。值得注意的是,ALK和脂质调节因子SREBP-1的双重抑制,以及与erastin或RSL3等铁吊诱导剂的联合治疗,都有效地破坏了钙驱动的代谢支持生态位,恢复了耐药肺肿瘤球体对ALK抑制的敏感性。结论:本研究强调了在alk重排肺癌细胞中,CAFs通过重编程脂质代谢介导对ALK-TKIs的耐药的关键作用。这表明,针对这些代谢脆弱性,特别是通过抑制脂质代谢或诱导铁下垂,可以提供一种新的治疗方法来克服耐药性并改善患者的预后。
{"title":"Cancer-associated fibroblasts promote drug resistance in ALK-driven lung adenocarcinoma cells by upregulating lipid biosynthesis.","authors":"Ann-Kathrin Daum, Lisa Schlicker, Marc A Schneider, Thomas Muley, Ursula Klingmüller, Almut Schulze, Michael Thomas, Petros Christopoulos, Holger Sültmann","doi":"10.1186/s40170-025-00400-7","DOIUrl":"10.1186/s40170-025-00400-7","url":null,"abstract":"<p><strong>Background: </strong>Targeted therapy interventions using tyrosine kinase inhibitors (TKIs) provide encouraging treatment responses in patients with ALK-rearranged lung adenocarcinomas, yet resistance occurs almost inevitably. In addition to tumor cell-intrinsic resistance mechanisms, accumulating evidence suggests that cancer-associated fibroblasts (CAFs) within the tumor microenvironment contribute to therapy resistance. This study aimed to investigate CAF-driven molecular networks that shape the therapeutic susceptibility of ALK-driven lung adenocarcinoma cells.</p><p><strong>Methods: </strong>Three-dimensional (3D) spheroid co-cultures comprising ALK-rearranged lung adenocarcinoma cells and CAFs were utilized to model the tumor microenvironment. Single-cell RNA sequencing was performed to uncover transcriptional differences between TKI-treated homotypic and heterotypic spheroids. Functional assays assessed the effects of CAF-conditioned medium and CAF-secreted factors on tumor cell survival, proliferation, lipid metabolism, and downstream AKT signaling. The therapeutic potential of targeting metabolic vulnerabilities was evaluated using pharmacological inhibition of lipid metabolism and by ferroptosis induction.</p><p><strong>Results: </strong>CAFs significantly diminished the apoptotic response of lung tumor cells to ALK inhibitors while simultaneously enhancing their proliferative capacity. Single-cell RNA sequencing identified lipogenesis-associated genes as a key transcriptional difference between TKI-treated homotypic and heterotypic lung tumor spheroids. CAF-conditioned medium and the CAF-secreted factors HGF and NRG1 activated AKT signaling in 3D-cultured ALK-rearranged lung tumor cells, leading to increased de novo lipogenesis and suppression of lipid peroxidation. These metabolic adaptations were critical for promoting tumor cell survival and fostering therapy resistance. Notably, both dual inhibition of ALK and the lipid-regulatory factor SREBP-1, as well as co-treatment with ferroptosis inducers such as erastin or RSL3, effectively disrupted the CAF-driven metabolic-supportive niche and restored sensitivity of resistant lung tumor spheroids to ALK inhibition.</p><p><strong>Conclusions: </strong>This study highlights a critical role for CAFs in mediating resistance to ALK-TKIs by reprogramming lipid metabolism in ALK-rearranged lung cancer cells. It suggests that targeting these metabolic vulnerabilities, particularly through inhibition of lipid metabolism or induction of ferroptosis, could provide a novel therapeutic approach to overcome resistance and improve patient outcomes.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"28"},"PeriodicalIF":6.0,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144309572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A role of arginase-1-expressing myeloid cells in cachexia. 表达精氨酸酶-1的髓细胞在恶病质中的作用。
IF 5.3 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-06-05 DOI: 10.1186/s40170-025-00396-0
Apsana Lamsal, Sonja Benedikte Andersen, Unni Nonstad, Natalie Jayne Kurganovs, Richard Je Skipworth, Geir Bjørkøy, Kristine Pettersen

Background: Despite decades of efforts to find successful treatment approaches, cachexia remains a major unmet medical need. This condition, that affects patients with diverse underlying conditions, is characterized by severe muscle loss and is associated with reduced quality of life and limited survival. Search for underlying mechanisms that may guide cachexia treatment has mainly evolved around potential atrophy-inducing roles of inflammatory mediators, and in cancer patients, tumor-derived factors. Recently, a new paradigm emerged as it is becoming evident that specific immune cells inhabit atrophic muscle tissue. Arginase 1 (Arg1) expression is characteristic of these immune cells. Studies of potential contributions of these immune cells to loss of muscle mass and function is in its infancy, and the contribution of ARG1 to these processes remains elusive.

Methods: Analyses of RNA sequencing data from murine cachexia models and comprehensive, unbiased open approach proteomics analyses of skeletal myotubes was performed. In vitro techniques were employed to evaluate mitochondrial function and capacity in skeletal muscle cells and cardiomyocytes. Functional bioassays were used to measure autophagy activity. ARG1 level in patients' plasma was evaluated using ELISA, and the association between ARG1 level and patient survival, across multiple types of cancer, was examined using the online database Kaplan-Meier plotter.

Results: In line with arginine-degrading activity of ARG1, we found signs of arginine restriction in atrophic muscles. In response to arginine restriction, mitochondrial functions and ATP generation was severely compromised in both skeletal muscle cells and in cardiomyocytes. In skeletal muscle cells, arginine restriction enhanced the expression of autophagic proteins, suggesting autophagic degradation of cellular content. Reduction in mitochondria marker TIMM23 supports selective autophagic degradation of mitochondria (mitophagy). In arginine starved cardiomyocytes, mitochondrial dysfunction is accompanied by both increased bulk autophagy and mitophagy. In cancer patients, we found an association between ARG1 expression and accelerated weight loss and reduced survival, further supporting a role of ARG1-producing cells in cachexia pathogenesis.

Conclusion: Together, our findings point to a mechanism for cachexia which depends on expansion of ARG1-expressing myeloid cells, local restriction of arginine, loss of mitochondrial capacity and induced catabolism in skeletal muscle cells and in the heart.

背景:尽管几十年来一直在努力寻找成功的治疗方法,但恶病质仍然是一个主要的未满足的医疗需求。这种情况会影响具有多种潜在疾病的患者,其特征是严重的肌肉损失,并与生活质量下降和生存期有限有关。对可能指导恶病质治疗的潜在机制的研究主要围绕炎症介质的潜在萎缩诱导作用以及癌症患者的肿瘤源性因素展开。最近,一种新的范式出现了,因为它越来越明显,特异性免疫细胞栖息在萎缩的肌肉组织。精氨酸酶1 (Arg1)的表达是这些免疫细胞的特征。关于这些免疫细胞对肌肉质量和功能丧失的潜在贡献的研究尚处于起步阶段,ARG1对这些过程的贡献仍然难以捉摸。方法:对小鼠恶病质模型的RNA测序数据进行分析,并对骨骼肌管进行全面、公正的开放方法蛋白质组学分析。采用体外技术评价骨骼肌细胞和心肌细胞的线粒体功能和容量。功能生物测定法测定自噬活性。采用ELISA法检测患者血浆中ARG1水平,并利用在线Kaplan-Meier绘图仪检测多种癌症患者血浆中ARG1水平与生存期之间的关系。结果:与ARG1的精氨酸降解活性一致,我们在萎缩肌肉中发现了精氨酸限制的迹象。作为精氨酸限制的反应,骨骼肌细胞和心肌细胞的线粒体功能和ATP生成严重受损。在骨骼肌细胞中,精氨酸限制增强了自噬蛋白的表达,表明细胞内容物发生了自噬降解。线粒体标志物TIMM23的减少支持线粒体的选择性自噬降解(mitophagy)。在精氨酸缺乏的心肌细胞中,线粒体功能障碍伴随着大量自噬和线粒体自噬的增加。在癌症患者中,我们发现ARG1表达与加速体重减轻和降低生存率之间存在关联,进一步支持ARG1产生细胞在恶病质发病机制中的作用。结论:总之,我们的研究结果指出恶病质的机制依赖于表达arg1的髓细胞的扩张、精氨酸的局部限制、线粒体能力的丧失以及骨骼肌细胞和心脏中诱导的分解代谢。
{"title":"A role of arginase-1-expressing myeloid cells in cachexia.","authors":"Apsana Lamsal, Sonja Benedikte Andersen, Unni Nonstad, Natalie Jayne Kurganovs, Richard Je Skipworth, Geir Bjørkøy, Kristine Pettersen","doi":"10.1186/s40170-025-00396-0","DOIUrl":"10.1186/s40170-025-00396-0","url":null,"abstract":"<p><strong>Background: </strong>Despite decades of efforts to find successful treatment approaches, cachexia remains a major unmet medical need. This condition, that affects patients with diverse underlying conditions, is characterized by severe muscle loss and is associated with reduced quality of life and limited survival. Search for underlying mechanisms that may guide cachexia treatment has mainly evolved around potential atrophy-inducing roles of inflammatory mediators, and in cancer patients, tumor-derived factors. Recently, a new paradigm emerged as it is becoming evident that specific immune cells inhabit atrophic muscle tissue. Arginase 1 (Arg1) expression is characteristic of these immune cells. Studies of potential contributions of these immune cells to loss of muscle mass and function is in its infancy, and the contribution of ARG1 to these processes remains elusive.</p><p><strong>Methods: </strong>Analyses of RNA sequencing data from murine cachexia models and comprehensive, unbiased open approach proteomics analyses of skeletal myotubes was performed. In vitro techniques were employed to evaluate mitochondrial function and capacity in skeletal muscle cells and cardiomyocytes. Functional bioassays were used to measure autophagy activity. ARG1 level in patients' plasma was evaluated using ELISA, and the association between ARG1 level and patient survival, across multiple types of cancer, was examined using the online database Kaplan-Meier plotter.</p><p><strong>Results: </strong>In line with arginine-degrading activity of ARG1, we found signs of arginine restriction in atrophic muscles. In response to arginine restriction, mitochondrial functions and ATP generation was severely compromised in both skeletal muscle cells and in cardiomyocytes. In skeletal muscle cells, arginine restriction enhanced the expression of autophagic proteins, suggesting autophagic degradation of cellular content. Reduction in mitochondria marker TIMM23 supports selective autophagic degradation of mitochondria (mitophagy). In arginine starved cardiomyocytes, mitochondrial dysfunction is accompanied by both increased bulk autophagy and mitophagy. In cancer patients, we found an association between ARG1 expression and accelerated weight loss and reduced survival, further supporting a role of ARG1-producing cells in cachexia pathogenesis.</p><p><strong>Conclusion: </strong>Together, our findings point to a mechanism for cachexia which depends on expansion of ARG1-expressing myeloid cells, local restriction of arginine, loss of mitochondrial capacity and induced catabolism in skeletal muscle cells and in the heart.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"27"},"PeriodicalIF":5.3,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12142917/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144233281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oncogenic role of fumarate hydratase in breast cancer: metabolic reprogramming and mechanistic insights. 富马酸水合酶在乳腺癌中的致癌作用:代谢重编程和机制见解。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-05-29 DOI: 10.1186/s40170-025-00397-z
Shyng-Shiou F Yuan, Anupama Vadhan, Hieu D H Nguyen, Pang-Yu Chen, Chih-Huang Tseng, Ching-Hu Wu, Yu-Chieh Chen, Yi-Chia Wu, Stephen Chu-Sung Hu, Steven Lo, Ming-Feng Hou, Yen-Yun Wang

Breast cancer remains the most prevalent malignancy among women globally, with its complexity linked to genetic variations and metabolic alterations within tumor cells. This study investigates the role of fumarate hydratase (FH), a key enzyme in the tricarboxylic acid (TCA) cycle, in breast cancer progression. Our findings reveal that FH mRNA and protein levels are significantly upregulated in breast cancer tissues and correlate with poor patient prognosis and aggressive tumor characteristics. Using in vitro and in vivo models, we demonstrate that FH overexpression enhances breast cancer cell proliferation, migration, and invasion through metabolic reprogramming and by increasing reactive oxygen species (ROS) production. Furthermore, we identify matrix metalloproteinase 1 (MMP1) as a downstream effector of FH, linked to p21 downregulation, elucidating a novel regulatory pathway influencing tumor behavior. Interestingly, unlike its tumor-suppressing role in other cancer types, this study highlights FH's oncogenic potential in breast cancer. Our results suggest that FH enhances cancer cell viability and aggressiveness via both catalytic and non-catalytic mechanisms. This work not only underscores the metabolic adaptations of breast cancer cells but also proposes FH as a potential biomarker and therapeutic target for breast cancer management.

乳腺癌仍然是全球妇女中最常见的恶性肿瘤,其复杂性与肿瘤细胞内的遗传变异和代谢改变有关。本研究探讨富马酸水合酶(FH)在乳腺癌进展中的作用,富马酸水合酶是三羧酸(TCA)循环中的关键酶。我们的研究结果表明,FH mRNA和蛋白水平在乳腺癌组织中显著上调,并与患者预后不良和肿瘤侵袭性特征相关。通过体外和体内模型,我们证明FH过表达通过代谢重编程和增加活性氧(ROS)的产生增强乳腺癌细胞的增殖、迁移和侵袭。此外,我们发现基质金属蛋白酶1 (MMP1)是FH的下游效应物,与p21下调有关,阐明了影响肿瘤行为的新调控途径。有趣的是,与它在其他癌症类型中的肿瘤抑制作用不同,这项研究强调了FH在乳腺癌中的致癌潜力。我们的研究结果表明,FH通过催化和非催化机制增强癌细胞的活力和侵袭性。这项工作不仅强调了乳腺癌细胞的代谢适应性,而且提出了FH作为乳腺癌管理的潜在生物标志物和治疗靶点。
{"title":"Oncogenic role of fumarate hydratase in breast cancer: metabolic reprogramming and mechanistic insights.","authors":"Shyng-Shiou F Yuan, Anupama Vadhan, Hieu D H Nguyen, Pang-Yu Chen, Chih-Huang Tseng, Ching-Hu Wu, Yu-Chieh Chen, Yi-Chia Wu, Stephen Chu-Sung Hu, Steven Lo, Ming-Feng Hou, Yen-Yun Wang","doi":"10.1186/s40170-025-00397-z","DOIUrl":"10.1186/s40170-025-00397-z","url":null,"abstract":"<p><p>Breast cancer remains the most prevalent malignancy among women globally, with its complexity linked to genetic variations and metabolic alterations within tumor cells. This study investigates the role of fumarate hydratase (FH), a key enzyme in the tricarboxylic acid (TCA) cycle, in breast cancer progression. Our findings reveal that FH mRNA and protein levels are significantly upregulated in breast cancer tissues and correlate with poor patient prognosis and aggressive tumor characteristics. Using in vitro and in vivo models, we demonstrate that FH overexpression enhances breast cancer cell proliferation, migration, and invasion through metabolic reprogramming and by increasing reactive oxygen species (ROS) production. Furthermore, we identify matrix metalloproteinase 1 (MMP1) as a downstream effector of FH, linked to p21 downregulation, elucidating a novel regulatory pathway influencing tumor behavior. Interestingly, unlike its tumor-suppressing role in other cancer types, this study highlights FH's oncogenic potential in breast cancer. Our results suggest that FH enhances cancer cell viability and aggressiveness via both catalytic and non-catalytic mechanisms. This work not only underscores the metabolic adaptations of breast cancer cells but also proposes FH as a potential biomarker and therapeutic target for breast cancer management.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"26"},"PeriodicalIF":6.0,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144172535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of physiological media on acute myeloid leukemia bioenergetics and cell proliferation. 生理介质对急性髓细胞白血病生物能量学和细胞增殖的影响。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-05-26 DOI: 10.1186/s40170-025-00395-1
Brett R Chrest, McLane M Montgomery, Raphael T Aruleba, Polina Krassovskaia, Emely A Pacheco, James T Hagen, Kayla J Vandiver, Kang Tung, Molly K Alexander, Nicholas C Williamson, Joshua G Taylor, Riley N Bessetti, Heather A Belcher, Filip Jevtovic, Zoe S Terwilliger, Everett C Minchew, Tonya N Zeczycki, Linda May, Nicholas T Broskey, Christopher B Geyer, Karen Litwa, Espen E Spangenburg, Johanna L Hannan, Jessica M Ellis, Joseph M McClung, P Darrell Neufer, Kelsey H Fisher-Wellman

Increasing emphasis has been placed on improving the physiological relevance of cell culture media with formulations such as Human Plasma-Like Medium (HPLM). Given that shifts in mitochondrial metabolism and nutrient use are emerging as anti-cancer targets, the present study sought to investigate the impact of culture media formulation on mitochondrial bioenergetics and cancer cell growth. To do this, we used acute myeloid leukemia (AML) cells and compared acute and chronic effects of HPLM versus different supraphysiological medias. The AML mitochondrial phenotype was largely unaffected by exposure to either physiological or supraphysiological medias, establishing that the key features of AML mitochondria remain phenotypically stable under diverse nutrient conditions and proliferation rates. Both acute and chronic culturing in HPLM slowed AML cell proliferation. However, merely identifying and supplementing single nutrients that were deficient in HPLM did not improve proliferation and was not sufficient to pinpoint actionable fuel preferences. Transferring cells back to native Iscove's Modified Dulbecco's Medium (IMDM) media immediately restored the proliferative phenotype, suggesting responsiveness to the entirety of the nutrient environment. Supraphysiological culture medias other than IMDM were all characterized by slower proliferation; however, none were associated with changes in cell viability, demonstrating that the native culture medium is optimal if the experimental aim is maximal growth. Despite Dulbecco's Modified Eagle Medium (DMEM) being similar in nutrient composition to IMDM and categorized as supraphysiological, both acute and chronic culturing in DMEM resulted in slower growth, akin to what was observed with HPLM. Altogether, independent of growth, AML mitochondria remain largely unperturbed by changes in the culture media, and rather than specific nutrients or physiological relevance, AML cell proliferation is influenced by the complete nutrient profile.

越来越多的重点放在提高细胞培养基的生理相关性与配方,如人血浆样培养基(HPLM)。鉴于线粒体代谢和营养利用的变化正在成为抗癌靶点,本研究旨在研究培养基配方对线粒体生物能量学和癌细胞生长的影响。为此,我们使用急性髓性白血病(AML)细胞,比较了HPLM对不同超生理介质的急性和慢性影响。AML线粒体表型在很大程度上不受暴露于生理或超生理介质的影响,这表明AML线粒体的关键特征在不同的营养条件和增殖速率下保持表型稳定。急性和慢性HPLM培养均减缓AML细胞增殖。然而,仅仅识别和补充HPLM中缺乏的单一营养素并不能改善增殖,也不足以确定可操作的燃料偏好。将细胞转移回原生Iscove's Modified Dulbecco's Medium (IMDM)培养基,立即恢复了增殖表型,表明对整个营养环境的响应。除IMDM外,超生理培养基均表现为增殖较慢;然而,没有一种与细胞活力的变化有关,这表明如果实验目标是最大生长,则天然培养基是最佳的。尽管Dulbecco的改良Eagle培养基(DMEM)在营养成分上与IMDM相似,并且被归类为超生理培养基,但在DMEM中急性和慢性培养都会导致生长缓慢,与HPLM相似。总之,独立于生长,AML线粒体在很大程度上不受培养基变化的干扰,而不是特定的营养物质或生理相关性,AML细胞增殖受到完整的营养成分的影响。
{"title":"Impact of physiological media on acute myeloid leukemia bioenergetics and cell proliferation.","authors":"Brett R Chrest, McLane M Montgomery, Raphael T Aruleba, Polina Krassovskaia, Emely A Pacheco, James T Hagen, Kayla J Vandiver, Kang Tung, Molly K Alexander, Nicholas C Williamson, Joshua G Taylor, Riley N Bessetti, Heather A Belcher, Filip Jevtovic, Zoe S Terwilliger, Everett C Minchew, Tonya N Zeczycki, Linda May, Nicholas T Broskey, Christopher B Geyer, Karen Litwa, Espen E Spangenburg, Johanna L Hannan, Jessica M Ellis, Joseph M McClung, P Darrell Neufer, Kelsey H Fisher-Wellman","doi":"10.1186/s40170-025-00395-1","DOIUrl":"10.1186/s40170-025-00395-1","url":null,"abstract":"<p><p>Increasing emphasis has been placed on improving the physiological relevance of cell culture media with formulations such as Human Plasma-Like Medium (HPLM). Given that shifts in mitochondrial metabolism and nutrient use are emerging as anti-cancer targets, the present study sought to investigate the impact of culture media formulation on mitochondrial bioenergetics and cancer cell growth. To do this, we used acute myeloid leukemia (AML) cells and compared acute and chronic effects of HPLM versus different supraphysiological medias. The AML mitochondrial phenotype was largely unaffected by exposure to either physiological or supraphysiological medias, establishing that the key features of AML mitochondria remain phenotypically stable under diverse nutrient conditions and proliferation rates. Both acute and chronic culturing in HPLM slowed AML cell proliferation. However, merely identifying and supplementing single nutrients that were deficient in HPLM did not improve proliferation and was not sufficient to pinpoint actionable fuel preferences. Transferring cells back to native Iscove's Modified Dulbecco's Medium (IMDM) media immediately restored the proliferative phenotype, suggesting responsiveness to the entirety of the nutrient environment. Supraphysiological culture medias other than IMDM were all characterized by slower proliferation; however, none were associated with changes in cell viability, demonstrating that the native culture medium is optimal if the experimental aim is maximal growth. Despite Dulbecco's Modified Eagle Medium (DMEM) being similar in nutrient composition to IMDM and categorized as supraphysiological, both acute and chronic culturing in DMEM resulted in slower growth, akin to what was observed with HPLM. Altogether, independent of growth, AML mitochondria remain largely unperturbed by changes in the culture media, and rather than specific nutrients or physiological relevance, AML cell proliferation is influenced by the complete nutrient profile.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"25"},"PeriodicalIF":6.0,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105319/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144149597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved VPS4B O-GlcNAc modification triggers lipid droplets transferring from adipocytes to nasopharyngeal carcinoma cells. 改进的VPS4B O-GlcNAc修饰触发脂滴从脂肪细胞转移到鼻咽癌细胞。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-05-23 DOI: 10.1186/s40170-025-00393-3
Haimeng Yin, Ying Shan, Qin Zhu, Ling Yuan, Feng Ju, Yu Shi, Yumo Han, Rui Wu, Tian Xia, Kaiwen Zhang, Yiwen You, Bo You

Background: The tumor microenvironment (TME) supplies critical metabolites that support cancer cell survival and progression. Adipocytes support tumor progression by secreting free fatty acids (FFAs) and adipokines; however, the role and mechanisms underlying lipid droplet (LD) release from adipocytes remain elusive.

Methods: Using two nasopharyngeal carcinoma (NPC) cell lines and primary human pre-adipocytes (HPA), we evaluate the effect of LDs on cell growth, proliferation, colony formation, and migration. We also assess the roles of LD on the tumor progression in vivo. Using RNA-seq analysis, we elucidate the effect of hypoxic NPC cell-derived exosomes (H-exo) on the gene expression profile of adipocytes. By co-culture system, we investigated the effect of vacuolar protein sorting 4 homolog B (VPS4B)-annexin A5 (ANXA5) interaction on adipocyte LD maturity and release.

Results: Herein, we report that LDs, rather than FFAs, are the primary lipid form transferred from adipocytes to NPC cells, enhancing cancer progression. NPC cells internalize LDs directly via macropinocytosis, while H-exo induces oxidative stress and membrane fluidity in adipocytes, leading to LD release. Transcriptomic and proteomic analyses reveal that VPS4B triggers LD release by interacting with ANXA5, and low LKB1 in H-exo enhances VPS4B O-linked N-acetylglucosamine (O-GlcNAc) modification through the inhibition of serine/threonine kinase 11 (STK11/LKB1)-AMP-activated protein kinase (AMPK) pathway and activation of the hexosamine biosynthesis pathway (HBP) flux.

Conclusions: This study uncovers critical mechanisms of LD transfer in the TME, suggesting new therapeutic avenues in NPC.

背景:肿瘤微环境(tumor microenvironment, TME)提供支持癌细胞生存和进展的关键代谢物。脂肪细胞通过分泌游离脂肪酸(FFAs)和脂肪因子支持肿瘤进展;然而,脂滴(LD)从脂肪细胞释放的作用和机制尚不清楚。方法:采用两种鼻咽癌细胞系和原代人前脂肪细胞(HPA),观察ldds对鼻咽癌细胞生长、增殖、集落形成和迁移的影响。我们还评估了LD在体内肿瘤进展中的作用。利用RNA-seq分析,我们阐明了缺氧鼻咽癌细胞来源的外泌体(H-exo)对脂肪细胞基因表达谱的影响。通过共培养系统,研究了液泡蛋白分选4同源物B (VPS4B)-膜联蛋白A5 (ANXA5)相互作用对脂肪细胞LD成熟和释放的影响。结果:在这里,我们报告了ld,而不是FFAs,是从脂肪细胞转移到鼻咽癌细胞的主要脂质形式,促进了癌症的进展。鼻咽癌细胞通过巨噬作用直接内化LD,而H-exo诱导脂肪细胞氧化应激和膜流动性,导致LD释放。转录组学和蛋白质组学分析表明,VPS4B通过与ANXA5相互作用触发LD释放,h -外显子低LKB1通过抑制丝氨酸/苏氨酸激酶11 (STK11/LKB1)- amp活化蛋白激酶(AMPK)途径和激活己糖胺生物合成途径(HBP)通量,增强VPS4B O-linked n -乙酰氨基葡萄糖胺(O-GlcNAc)修饰。结论:本研究揭示了TME中LD转移的关键机制,为鼻咽癌的治疗提供了新的途径。
{"title":"Improved VPS4B O-GlcNAc modification triggers lipid droplets transferring from adipocytes to nasopharyngeal carcinoma cells.","authors":"Haimeng Yin, Ying Shan, Qin Zhu, Ling Yuan, Feng Ju, Yu Shi, Yumo Han, Rui Wu, Tian Xia, Kaiwen Zhang, Yiwen You, Bo You","doi":"10.1186/s40170-025-00393-3","DOIUrl":"10.1186/s40170-025-00393-3","url":null,"abstract":"<p><strong>Background: </strong>The tumor microenvironment (TME) supplies critical metabolites that support cancer cell survival and progression. Adipocytes support tumor progression by secreting free fatty acids (FFAs) and adipokines; however, the role and mechanisms underlying lipid droplet (LD) release from adipocytes remain elusive.</p><p><strong>Methods: </strong>Using two nasopharyngeal carcinoma (NPC) cell lines and primary human pre-adipocytes (HPA), we evaluate the effect of LDs on cell growth, proliferation, colony formation, and migration. We also assess the roles of LD on the tumor progression in vivo. Using RNA-seq analysis, we elucidate the effect of hypoxic NPC cell-derived exosomes (H-exo) on the gene expression profile of adipocytes. By co-culture system, we investigated the effect of vacuolar protein sorting 4 homolog B (VPS4B)-annexin A5 (ANXA5) interaction on adipocyte LD maturity and release.</p><p><strong>Results: </strong>Herein, we report that LDs, rather than FFAs, are the primary lipid form transferred from adipocytes to NPC cells, enhancing cancer progression. NPC cells internalize LDs directly via macropinocytosis, while H-exo induces oxidative stress and membrane fluidity in adipocytes, leading to LD release. Transcriptomic and proteomic analyses reveal that VPS4B triggers LD release by interacting with ANXA5, and low LKB1 in H-exo enhances VPS4B O-linked N-acetylglucosamine (O-GlcNAc) modification through the inhibition of serine/threonine kinase 11 (STK11/LKB1)-AMP-activated protein kinase (AMPK) pathway and activation of the hexosamine biosynthesis pathway (HBP) flux.</p><p><strong>Conclusions: </strong>This study uncovers critical mechanisms of LD transfer in the TME, suggesting new therapeutic avenues in NPC.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"24"},"PeriodicalIF":6.0,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12100974/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144132179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lactate dehydrogenase A-coupled NAD+ regeneration is critical for acute myeloid leukemia cell survival. 乳酸脱氢酶a偶联NAD+再生是急性髓系白血病细胞存活的关键。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-05-19 DOI: 10.1186/s40170-025-00392-4
Ayşegül Erdem, Séléna Kaye, Francesco Caligiore, Manuel Johanns, Fleur Leguay, Jan Jacob Schuringa, Keisuke Ito, Guido Bommer, Nick van Gastel

Background: Enhanced glycolysis plays a pivotal role in fueling the aberrant proliferation, survival and therapy resistance of acute myeloid leukemia (AML) cells. Here, we aimed to elucidate the extent of glycolysis dependence in AML by focusing on the role of lactate dehydrogenase A (LDHA), a key glycolytic enzyme converting pyruvate to lactate coupled with the recycling of NAD+.

Methods: We compared the glycolytic activity of primary AML patient samples to protein levels of metabolic enzymes involved in central carbon metabolism including glycolysis, glutaminolysis and the tricarboxylic acid cycle. To evaluate the therapeutic potential of targeting glycolysis in AML, we treated AML primary patient samples and cell lines with pharmacological inhibitors of LDHA and monitored cell viability. Glycolytic activity and mitochondrial oxygen consumption were analyzed in AML patient samples and cell lines post-LDHA inhibition. Perturbations in global metabolite levels and redox balance upon LDHA inhibition in AML cells were determined by mass spectrometry, and ROS levels were measured by flow cytometry.

Results: Among metabolic enzymes, we found that LDHA protein levels had the strongest positive correlation with glycolysis in AML patient cells. Blocking LDHA activity resulted in a strong growth inhibition and cell death induction in AML cell lines and primary patient samples, while healthy hematopoietic stem and progenitor cells remained unaffected. Investigation of the underlying mechanisms showed that LDHA inhibition reduces glycolytic activity, lowers levels of glycolytic intermediates, decreases the cellular NAD+ pool, boosts OXPHOS activity and increases ROS levels. This increase in ROS levels was however not linked to the observed AML cell death. Instead, we found that LDHA is essential to maintain a correct NAD+/NADH ratio in AML cells. Continuous intracellular NAD+ supplementation via overexpression of water-forming NADH oxidase from Lactobacillus brevis in AML cells effectively increased viable cell counts and prevented cell death upon LDHA inhibition.

Conclusions: Collectively, our results demonstrate that AML cells critically depend on LDHA to maintain an adequate NAD+/NADH balance in support of their abnormal glycolytic activity and biosynthetic demands, which cannot be compensated for by other cellular NAD+ recycling systems. These findings also highlight LDHA inhibition as a promising metabolic strategy to eradicate leukemic cells.

背景:糖酵解的增强在急性髓性白血病(AML)细胞的异常增殖、存活和治疗抵抗中起着关键作用。在这里,我们旨在通过关注乳酸脱氢酶A (LDHA)的作用来阐明AML中糖酵解依赖的程度,乳酸脱氢酶A是一种关键的糖酵解酶,可将丙酮酸转化为乳酸,并结合NAD+的再循环。方法:我们将原发性AML患者样本的糖酵解活性与参与中枢碳代谢(包括糖酵解、谷氨酰胺解和三羧酸循环)的代谢酶的蛋白质水平进行比较。为了评估靶向糖酵解在AML中的治疗潜力,我们用LDHA药理学抑制剂治疗AML原发性患者样本和细胞系,并监测细胞活力。分析了ldha抑制后AML患者样本和细胞系的糖酵解活性和线粒体耗氧量。用质谱法测定LDHA抑制对AML细胞整体代谢物水平和氧化还原平衡的影响,用流式细胞术测定ROS水平。结果:在代谢酶中,我们发现LDHA蛋白水平与AML患者细胞糖酵解具有最强的正相关。阻断LDHA活性在AML细胞系和原代患者样本中导致强烈的生长抑制和细胞死亡诱导,而健康的造血干细胞和祖细胞不受影响。对潜在机制的研究表明,LDHA抑制可降低糖酵解活性,降低糖酵解中间体水平,减少细胞NAD+池,提高OXPHOS活性并增加ROS水平。然而,ROS水平的增加与观察到的AML细胞死亡无关。相反,我们发现LDHA对于维持AML细胞中正确的NAD+/NADH比例至关重要。在AML细胞中,通过短乳杆菌过表达形成水的NADH氧化酶,在细胞内持续补充NAD+,有效地增加了活细胞计数,并防止了LDHA抑制下的细胞死亡。结论:总的来说,我们的研究结果表明,AML细胞严重依赖于LDHA来维持足够的NAD+/NADH平衡,以支持其异常的糖酵解活性和生物合成需求,这是其他细胞NAD+循环系统无法补偿的。这些发现也强调了LDHA抑制是一种有希望的根除白血病细胞的代谢策略。
{"title":"Lactate dehydrogenase A-coupled NAD<sup>+</sup> regeneration is critical for acute myeloid leukemia cell survival.","authors":"Ayşegül Erdem, Séléna Kaye, Francesco Caligiore, Manuel Johanns, Fleur Leguay, Jan Jacob Schuringa, Keisuke Ito, Guido Bommer, Nick van Gastel","doi":"10.1186/s40170-025-00392-4","DOIUrl":"10.1186/s40170-025-00392-4","url":null,"abstract":"<p><strong>Background: </strong>Enhanced glycolysis plays a pivotal role in fueling the aberrant proliferation, survival and therapy resistance of acute myeloid leukemia (AML) cells. Here, we aimed to elucidate the extent of glycolysis dependence in AML by focusing on the role of lactate dehydrogenase A (LDHA), a key glycolytic enzyme converting pyruvate to lactate coupled with the recycling of NAD<sup>+</sup>.</p><p><strong>Methods: </strong>We compared the glycolytic activity of primary AML patient samples to protein levels of metabolic enzymes involved in central carbon metabolism including glycolysis, glutaminolysis and the tricarboxylic acid cycle. To evaluate the therapeutic potential of targeting glycolysis in AML, we treated AML primary patient samples and cell lines with pharmacological inhibitors of LDHA and monitored cell viability. Glycolytic activity and mitochondrial oxygen consumption were analyzed in AML patient samples and cell lines post-LDHA inhibition. Perturbations in global metabolite levels and redox balance upon LDHA inhibition in AML cells were determined by mass spectrometry, and ROS levels were measured by flow cytometry.</p><p><strong>Results: </strong>Among metabolic enzymes, we found that LDHA protein levels had the strongest positive correlation with glycolysis in AML patient cells. Blocking LDHA activity resulted in a strong growth inhibition and cell death induction in AML cell lines and primary patient samples, while healthy hematopoietic stem and progenitor cells remained unaffected. Investigation of the underlying mechanisms showed that LDHA inhibition reduces glycolytic activity, lowers levels of glycolytic intermediates, decreases the cellular NAD<sup>+</sup> pool, boosts OXPHOS activity and increases ROS levels. This increase in ROS levels was however not linked to the observed AML cell death. Instead, we found that LDHA is essential to maintain a correct NAD<sup>+</sup>/NADH ratio in AML cells. Continuous intracellular NAD<sup>+</sup> supplementation via overexpression of water-forming NADH oxidase from Lactobacillus brevis in AML cells effectively increased viable cell counts and prevented cell death upon LDHA inhibition.</p><p><strong>Conclusions: </strong>Collectively, our results demonstrate that AML cells critically depend on LDHA to maintain an adequate NAD<sup>+</sup>/NADH balance in support of their abnormal glycolytic activity and biosynthetic demands, which cannot be compensated for by other cellular NAD<sup>+</sup> recycling systems. These findings also highlight LDHA inhibition as a promising metabolic strategy to eradicate leukemic cells.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"22"},"PeriodicalIF":6.0,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090514/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144101395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
S-adenosylmethionine metabolism shapes CD8+ T cell functions in colorectal cancer. s -腺苷蛋氨酸代谢影响CD8+ T细胞在结直肠癌中的功能
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-05-19 DOI: 10.1186/s40170-025-00394-2
Xiaohua Yang, Tianzhang Kou, Hongmiao Wang, Ji Zhu, Zheng-Jiang Zhu, Yuping Cai

Metabolite nutrients within the tumor microenvironment shape both tumor progression and immune cell functionality. It remains elusive how the metabolic interaction between T cells and tumor cells results in different anti-cancer immunotherapeutic responses. Here, we use untargeted metabolomics to investigate the metabolic heterogeneity in patients with colorectal cancer (CRC). Our analysis reveals enhanced S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) metabolism in microsatellite stable (MSS) CRC, a subtype known for its resistance to immunotherapy. Functional studies reveal that SAM and SAH enhance the initial activation and effector functions of CD8+ T cells. Instead, cancer cells outcompete CD8+ T cells for SAM and SAH availability to impair T cell survival. In vivo, SAM supplementation promotes T cell proliferation and reduces exhaustion of the tumor-infiltrating CD8+ T cells, thus suppressing tumor growth in tumor-bearing mice. This study uncovers the metabolic crosstalk between T cells and tumor cells, which drives the development of tumors resistant to immunotherapy.

肿瘤微环境中的代谢物营养物质影响肿瘤进展和免疫细胞功能。T细胞和肿瘤细胞之间的代谢相互作用如何导致不同的抗癌免疫治疗反应仍然是难以捉摸的。在这里,我们使用非靶向代谢组学研究结直肠癌(CRC)患者的代谢异质性。我们的分析显示,微卫星稳定型(MSS) CRC中s -腺苷蛋氨酸(SAM)和s -腺苷同型半胱氨酸(SAH)代谢增强,这是一种以免疫治疗耐药而闻名的亚型。功能研究表明,SAM和SAH增强了CD8+ T细胞的初始活化和效应功能。相反,癌细胞与CD8+ T细胞竞争SAM和SAH,从而损害T细胞的存活。在体内,补充SAM可促进T细胞增殖,减少肿瘤浸润的CD8+ T细胞的衰竭,从而抑制荷瘤小鼠的肿瘤生长。这项研究揭示了T细胞和肿瘤细胞之间的代谢串扰,这推动了肿瘤对免疫治疗的发展。
{"title":"S-adenosylmethionine metabolism shapes CD8<sup>+</sup> T cell functions in colorectal cancer.","authors":"Xiaohua Yang, Tianzhang Kou, Hongmiao Wang, Ji Zhu, Zheng-Jiang Zhu, Yuping Cai","doi":"10.1186/s40170-025-00394-2","DOIUrl":"10.1186/s40170-025-00394-2","url":null,"abstract":"<p><p>Metabolite nutrients within the tumor microenvironment shape both tumor progression and immune cell functionality. It remains elusive how the metabolic interaction between T cells and tumor cells results in different anti-cancer immunotherapeutic responses. Here, we use untargeted metabolomics to investigate the metabolic heterogeneity in patients with colorectal cancer (CRC). Our analysis reveals enhanced S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) metabolism in microsatellite stable (MSS) CRC, a subtype known for its resistance to immunotherapy. Functional studies reveal that SAM and SAH enhance the initial activation and effector functions of CD8<sup>+</sup> T cells. Instead, cancer cells outcompete CD8<sup>+</sup> T cells for SAM and SAH availability to impair T cell survival. In vivo, SAM supplementation promotes T cell proliferation and reduces exhaustion of the tumor-infiltrating CD8<sup>+</sup> T cells, thus suppressing tumor growth in tumor-bearing mice. This study uncovers the metabolic crosstalk between T cells and tumor cells, which drives the development of tumors resistant to immunotherapy.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"23"},"PeriodicalIF":6.0,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144101396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and impact of microbiota-derived metabolites in ascites of ovarian and gastrointestinal cancer. 卵巢癌和胃肠癌腹水中微生物衍生代谢物的鉴定及其影响。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-05-13 DOI: 10.1186/s40170-025-00391-5
Sisi Deng, Wooyong Kim, Kefan Cheng, Qianlu Yang, Yogesh Singh, Gyuntae Bae, Nicolas Bézière, Lukas Mager, Stefan Kommoss, Jannik Sprengel, Christoph Trautwein

Background: Malignant ascites is a common complication of advanced ovarian cancer (OC) and gastrointestinal cancer (GI), significantly impacting metastasis, quality of life, and survival. Increased intestinal permeability can lead to blood or lymphatic infiltration and microbial translocation from the gastrointestinal or uterine tract. This study aimed to identify microbiota-derived metabolites in ascites from OC (stages II-III and IV) and GI patients, assessing their roles in tumor progression.

Methods: Malignant ascites samples from 18 OC and GI patients were analyzed using a four-dimensional (4D) untargeted metabolomics approach combining reversed-phase (RP) and hydrophilic interaction liquid chromatography (HILIC) with trapped ion mobility spectrometry time-of-flight mass spectrometry (timsTOF-MS). Additonally, a targeted flow cytometry-based cytokine panel was used to screen for inflammatory markers. Non-endogenous, microbiota-derived metabolites were identified through the Human Microbial Metabolome Database (MiMeDB).

Results: OC stage IV exhibited metabolic profiles similar to GI cancers, while OC stage II-III differed significantly. Stage IV OC patients exhibited higher levels of 11 typically microbiome-derived metabolites, including 1-methylhistidine, 3-hydroxyanthranilic acid, 4-pyridoxic acid, biliverdin, butyryl-L-carnitine, hydroxypropionic acid, indole, lysophosphatidylinositol 18:1 (LPI 18:1), mevalonic acid, N-acetyl-L-phenylalanine, and nudifloramide, and lower levels of 5 metabolites, including benzyl alcohol, naringenin, o-cresol, octadecanedioic acid, and phenol, compared to stage II-III. Correlation analysis revealed positive associations between IL-10 and metabolites such as glucosamine and LPCs, while MCP-1 positively correlated with benzyl alcohol and phenol.

Conclusion: 4D metabolomics revealed distinct metabolic signatures in OC and GI ascites, highlighting microbiota-derived metabolites involved in lipid metabolism and inflammation. Metabolites like 3-hydroxyanthranilic acid, indole, and naringenin may serve as markers of disease progression and underscore the microbiota's role in shaping malignant ascites and tumor biology.

背景:恶性腹水是晚期卵巢癌(OC)和胃肠道癌(GI)的常见并发症,严重影响转移、生活质量和生存。肠道通透性增加可导致血液或淋巴浸润和微生物从胃肠道或子宫转移。本研究旨在鉴定OC (II-III期和IV期)和GI患者腹水中微生物衍生代谢物,评估其在肿瘤进展中的作用。方法:采用反相(RP)、亲水相互作用液相色谱(HILIC)和捕获离子迁移率谱法(timsTOF-MS)相结合的四维非靶向代谢组学方法,对18例OC和GI患者的恶性腹水样本进行分析。此外,基于流式细胞术的靶向细胞因子面板用于筛选炎症标志物。通过人类微生物代谢组数据库(MiMeDB)鉴定非内源性微生物衍生代谢物。结果:IV期OC表现出与GI癌症相似的代谢谱,而II-III期OC差异显著。与II-III期相比,IV期OC患者的11种典型微生物衍生代谢物水平较高,包括1-甲基组氨酸、3-羟基苯甲酸、4-吡啶酸、胆绿素、丁基- l-肉碱、羟基丙酸、吲哚、溶血磷脂酰肌醇18:1 (LPI 18:1)、甲羟酸、n -乙酰- l-苯丙氨酸和nudifloramide,而5种代谢物水平较低,包括苯甲醇、柚皮素、邻甲酚、十八烯二酸和苯酚。相关分析显示,IL-10与葡萄糖胺、LPCs等代谢物呈正相关,MCP-1与苯甲醇、苯酚呈正相关。结论:4D代谢组学揭示了OC和GI腹水中不同的代谢特征,突出了参与脂质代谢和炎症的微生物来源代谢产物。代谢物如3-羟基苯甲酸、吲哚和柚皮素可能作为疾病进展的标志,并强调微生物群在形成恶性腹水和肿瘤生物学中的作用。
{"title":"Identification and impact of microbiota-derived metabolites in ascites of ovarian and gastrointestinal cancer.","authors":"Sisi Deng, Wooyong Kim, Kefan Cheng, Qianlu Yang, Yogesh Singh, Gyuntae Bae, Nicolas Bézière, Lukas Mager, Stefan Kommoss, Jannik Sprengel, Christoph Trautwein","doi":"10.1186/s40170-025-00391-5","DOIUrl":"10.1186/s40170-025-00391-5","url":null,"abstract":"<p><strong>Background: </strong>Malignant ascites is a common complication of advanced ovarian cancer (OC) and gastrointestinal cancer (GI), significantly impacting metastasis, quality of life, and survival. Increased intestinal permeability can lead to blood or lymphatic infiltration and microbial translocation from the gastrointestinal or uterine tract. This study aimed to identify microbiota-derived metabolites in ascites from OC (stages II-III and IV) and GI patients, assessing their roles in tumor progression.</p><p><strong>Methods: </strong>Malignant ascites samples from 18 OC and GI patients were analyzed using a four-dimensional (4D) untargeted metabolomics approach combining reversed-phase (RP) and hydrophilic interaction liquid chromatography (HILIC) with trapped ion mobility spectrometry time-of-flight mass spectrometry (timsTOF-MS). Additonally, a targeted flow cytometry-based cytokine panel was used to screen for inflammatory markers. Non-endogenous, microbiota-derived metabolites were identified through the Human Microbial Metabolome Database (MiMeDB).</p><p><strong>Results: </strong>OC stage IV exhibited metabolic profiles similar to GI cancers, while OC stage II-III differed significantly. Stage IV OC patients exhibited higher levels of 11 typically microbiome-derived metabolites, including 1-methylhistidine, 3-hydroxyanthranilic acid, 4-pyridoxic acid, biliverdin, butyryl-L-carnitine, hydroxypropionic acid, indole, lysophosphatidylinositol 18:1 (LPI 18:1), mevalonic acid, N-acetyl-L-phenylalanine, and nudifloramide, and lower levels of 5 metabolites, including benzyl alcohol, naringenin, o-cresol, octadecanedioic acid, and phenol, compared to stage II-III. Correlation analysis revealed positive associations between IL-10 and metabolites such as glucosamine and LPCs, while MCP-1 positively correlated with benzyl alcohol and phenol.</p><p><strong>Conclusion: </strong>4D metabolomics revealed distinct metabolic signatures in OC and GI ascites, highlighting microbiota-derived metabolites involved in lipid metabolism and inflammation. Metabolites like 3-hydroxyanthranilic acid, indole, and naringenin may serve as markers of disease progression and underscore the microbiota's role in shaping malignant ascites and tumor biology.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"21"},"PeriodicalIF":6.0,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12076955/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143961997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteomic and lipidomic analysis of low-density lipoprotein identifies potential biomarkers of early estrogen receptor-positive breast cancer. 低密度脂蛋白的蛋白质组学和脂质组学分析确定早期雌激素受体阳性乳腺癌的潜在生物标志物。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2025-05-01 DOI: 10.1186/s40170-025-00390-6
Yamama Abu Mohsen, Rachel Twitto-Greenberg, Anna Cohen, Gil S Leichner, Lidor Mahler, Hofit Cohen, Yehuda Kamari, Aviv Shaish, Ayelet Harari, Alicia Leikin-Frenkel, Efrat Glick Saar, Tamar Geiger, Sergey Malitsky, Maxim Itkin, Dror Harats, Rom Keshet

Estrogen receptor (ER)-positive breast cancer (BC) is a prevalent and fatal cancer among women, and there is a need to identify molecules involved in the disease pathophysiology which could also serve as biomarkers for early detection. Detection of cancer markers in whole plasma produces excessive information, and identifying important markers involved in cancer progression is challenging. We identified a BC-specific low-density lipoprotein (LDL) particle isolated by ultracentrifugation from the plasma of ER-positive BC patients. This LDL has an aberrant proteome and lipidome, significantly different from that of LDL from healthy women, including a high association with the pro-tumor chemokines CXCL4 and CXCL7, and an enrichment with the lipid subclasses phosphatidylethanolamine, ceramide, triglycerides, lysophosphatidylcholine, phosphatidylserine, phosphatidic acid, and sphingomyelin. In contrast, phosphatidylinositol species were significantly less abundant in LDL from tumor patients than in control. Moreover, BC-associated LDL has a distinct effect on macrophage phenotype, inducing an increased gene expression of IL1β, IL8 and CD206 and decreased gene expression of TNFα, a gene signature characteristic of tumor-associated macrophages (TAMs). This suggests that this formerly unrecognized form of LDL may represent LDL particles that are recruited by the tumor microenvironment to support tumor progression by inducing discrete subsets of TAMs. In conclusion, these data offer BC-associated LDL as an early biomarker detection platform for ER-positive BC. Furthermore, LDL-associated proteins and lipids that promote BC progression may also serve in the future as novel targets for BC therapies.

雌激素受体(ER)阳性乳腺癌(BC)是一种常见的致死性女性癌症,需要识别参与疾病病理生理的分子,这些分子也可以作为早期检测的生物标志物。在整个血浆中检测癌症标志物会产生过多的信息,并且识别与癌症进展有关的重要标志物是具有挑战性的。我们通过超离心从er阳性BC患者的血浆中分离出一种BC特异性低密度脂蛋白(LDL)颗粒。该LDL具有异常的蛋白质组和脂质组,与健康女性的LDL显著不同,包括与促肿瘤趋化因子CXCL4和CXCL7高度相关,并且与磷脂酰乙醇胺、神经酰胺、甘油三酯、溶血磷脂酰胆碱、磷脂酰丝氨酸、磷脂酸和鞘磷脂等脂质亚类富集。相比之下,肿瘤患者LDL中磷脂酰肌醇的含量明显低于对照组。此外,bc相关LDL对巨噬细胞表型有明显影响,诱导il - 1β、il - 8和CD206基因表达增加,tnf - α基因表达降低,这是肿瘤相关巨噬细胞(tam)的基因特征。这表明,这种以前未被识别的LDL形式可能代表LDL颗粒被肿瘤微环境招募,通过诱导离散的tam亚群来支持肿瘤进展。总之,这些数据提供了BC相关LDL作为er阳性BC的早期生物标志物检测平台。此外,促进BC进展的ldl相关蛋白和脂质也可能在未来成为BC治疗的新靶点。
{"title":"Proteomic and lipidomic analysis of low-density lipoprotein identifies potential biomarkers of early estrogen receptor-positive breast cancer.","authors":"Yamama Abu Mohsen, Rachel Twitto-Greenberg, Anna Cohen, Gil S Leichner, Lidor Mahler, Hofit Cohen, Yehuda Kamari, Aviv Shaish, Ayelet Harari, Alicia Leikin-Frenkel, Efrat Glick Saar, Tamar Geiger, Sergey Malitsky, Maxim Itkin, Dror Harats, Rom Keshet","doi":"10.1186/s40170-025-00390-6","DOIUrl":"https://doi.org/10.1186/s40170-025-00390-6","url":null,"abstract":"<p><p>Estrogen receptor (ER)-positive breast cancer (BC) is a prevalent and fatal cancer among women, and there is a need to identify molecules involved in the disease pathophysiology which could also serve as biomarkers for early detection. Detection of cancer markers in whole plasma produces excessive information, and identifying important markers involved in cancer progression is challenging. We identified a BC-specific low-density lipoprotein (LDL) particle isolated by ultracentrifugation from the plasma of ER-positive BC patients. This LDL has an aberrant proteome and lipidome, significantly different from that of LDL from healthy women, including a high association with the pro-tumor chemokines CXCL4 and CXCL7, and an enrichment with the lipid subclasses phosphatidylethanolamine, ceramide, triglycerides, lysophosphatidylcholine, phosphatidylserine, phosphatidic acid, and sphingomyelin. In contrast, phosphatidylinositol species were significantly less abundant in LDL from tumor patients than in control. Moreover, BC-associated LDL has a distinct effect on macrophage phenotype, inducing an increased gene expression of IL1β, IL8 and CD206 and decreased gene expression of TNFα, a gene signature characteristic of tumor-associated macrophages (TAMs). This suggests that this formerly unrecognized form of LDL may represent LDL particles that are recruited by the tumor microenvironment to support tumor progression by inducing discrete subsets of TAMs. In conclusion, these data offer BC-associated LDL as an early biomarker detection platform for ER-positive BC. Furthermore, LDL-associated proteins and lipids that promote BC progression may also serve in the future as novel targets for BC therapies.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"20"},"PeriodicalIF":6.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12046955/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143967294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer & Metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1