首页 > 最新文献

Cancer & Metabolism最新文献

英文 中文
Epigenetic repression of de novo cysteine synthetases induces intra-cellular accumulation of cysteine in hepatocarcinoma by up-regulating the cystine uptake transporter xCT. 通过上调胱氨酸摄取转运体 xCT,对半胱氨酸合成酶的表观遗传抑制诱导肝癌细胞内半胱氨酸的积累。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-08-07 DOI: 10.1186/s40170-024-00352-4
Tomoaki Yamauchi, Yumi Okano, Daishu Terada, Sai Yasukochi, Akito Tsuruta, Yuya Tsurudome, Kentaro Ushijima, Naoya Matsunaga, Satoru Koyanagi, Shigehiro Ohdo

Background: The metabolic reprogramming of amino acids is critical for cancer cell growth and survival. Notably, intracellular accumulation of cysteine is often observed in various cancers, suggesting its potential role in alleviating the oxidative stress associated with rapid proliferation. The liver is the primary organ for cysteine biosynthesis, but much remains unknown about the metabolic alterations of cysteine and their mechanisms in hepatocellular carcinoma cells.

Methods: RNA-seq data from patients with hepatocarcinoma were analyzed using the TNMplot database. The underlying mechanism of the oncogenic alteration of cysteine metabolism was studied in mice implanted with BNL 1ME A.7 R.1 hepatocarcinoma.

Results: Database analysis of patients with hepatocellular carcinoma revealed that the expression of enzymes involved in de novo cysteine synthesis was down-regulated accompanying with increased expression of the cystine uptake transporter xCT. Similar alterations in gene expression have also been observed in a syngeneic mouse model of hepatocarcinoma. The enhanced expression of DNA methyltransferase in murine hepatocarcinoma cells caused methylation of the upstream regions of cysteine synthesis genes, thereby repressing their expression. Conversely, suppression of de novo cysteine synthesis in healthy liver cells induced xCT expression by up-regulating the oxidative-stress response factor NRF2, indicating that reduced de novo cysteine synthesis repulsively increases cystine uptake via enhanced xCT expression, leading to intracellular cysteine accumulation. Furthermore, the pharmacological inhibition of xCT activity decreased intracellular cysteine levels and suppressed hepatocarcinoma tumor growth in mice.

Conclusions: Our findings indicate an underlying mechanism of the oncogenic alteration of cysteine metabolism in hepatocarcinoma and highlight the efficacy of alteration of cysteine metabolism as a viable therapeutic target in cancer.

背景:氨基酸的代谢重编程对癌细胞的生长和存活至关重要。值得注意的是,在各种癌症中经常观察到细胞内半胱氨酸的积累,这表明半胱氨酸在缓解与快速增殖相关的氧化应激方面具有潜在作用。肝脏是半胱氨酸生物合成的主要器官,但肝癌细胞中半胱氨酸的代谢改变及其机制仍有许多未知之处:利用 TNMplot 数据库分析了肝癌患者的 RNA-seq 数据。方法:利用 TNMplot 数据库分析肝癌患者的 RNA-seq 数据,并在植入 BNL 1ME A.7 R.1 肝癌的小鼠体内研究半胱氨酸代谢致癌改变的内在机制:对肝细胞癌患者的数据库分析表明,参与半胱氨酸新合成的酶的表达下调,同时胱氨酸摄取转运体 xCT 的表达增加。在肝癌的合成小鼠模型中也观察到了类似的基因表达变化。DNA 甲基转移酶在小鼠肝癌细胞中的表达增强,导致半胱氨酸合成基因上游区域发生甲基化,从而抑制了这些基因的表达。相反,抑制健康肝细胞中半胱氨酸的从头合成会通过上调氧化应激反应因子 NRF2 来诱导 xCT 的表达,这表明半胱氨酸从头合成的减少会通过增强 xCT 的表达来增加胱氨酸的摄取,从而导致细胞内半胱氨酸的积累。此外,药物抑制 xCT 活性可降低细胞内半胱氨酸水平,抑制小鼠肝癌肿瘤的生长:我们的研究结果表明了肝癌中半胱氨酸代谢改变的潜在机制,并强调了半胱氨酸代谢改变作为癌症治疗靶点的有效性。
{"title":"Epigenetic repression of de novo cysteine synthetases induces intra-cellular accumulation of cysteine in hepatocarcinoma by up-regulating the cystine uptake transporter xCT.","authors":"Tomoaki Yamauchi, Yumi Okano, Daishu Terada, Sai Yasukochi, Akito Tsuruta, Yuya Tsurudome, Kentaro Ushijima, Naoya Matsunaga, Satoru Koyanagi, Shigehiro Ohdo","doi":"10.1186/s40170-024-00352-4","DOIUrl":"10.1186/s40170-024-00352-4","url":null,"abstract":"<p><strong>Background: </strong>The metabolic reprogramming of amino acids is critical for cancer cell growth and survival. Notably, intracellular accumulation of cysteine is often observed in various cancers, suggesting its potential role in alleviating the oxidative stress associated with rapid proliferation. The liver is the primary organ for cysteine biosynthesis, but much remains unknown about the metabolic alterations of cysteine and their mechanisms in hepatocellular carcinoma cells.</p><p><strong>Methods: </strong>RNA-seq data from patients with hepatocarcinoma were analyzed using the TNMplot database. The underlying mechanism of the oncogenic alteration of cysteine metabolism was studied in mice implanted with BNL 1ME A.7 R.1 hepatocarcinoma.</p><p><strong>Results: </strong>Database analysis of patients with hepatocellular carcinoma revealed that the expression of enzymes involved in de novo cysteine synthesis was down-regulated accompanying with increased expression of the cystine uptake transporter xCT. Similar alterations in gene expression have also been observed in a syngeneic mouse model of hepatocarcinoma. The enhanced expression of DNA methyltransferase in murine hepatocarcinoma cells caused methylation of the upstream regions of cysteine synthesis genes, thereby repressing their expression. Conversely, suppression of de novo cysteine synthesis in healthy liver cells induced xCT expression by up-regulating the oxidative-stress response factor NRF2, indicating that reduced de novo cysteine synthesis repulsively increases cystine uptake via enhanced xCT expression, leading to intracellular cysteine accumulation. Furthermore, the pharmacological inhibition of xCT activity decreased intracellular cysteine levels and suppressed hepatocarcinoma tumor growth in mice.</p><p><strong>Conclusions: </strong>Our findings indicate an underlying mechanism of the oncogenic alteration of cysteine metabolism in hepatocarcinoma and highlight the efficacy of alteration of cysteine metabolism as a viable therapeutic target in cancer.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"23"},"PeriodicalIF":6.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304919/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
METTL16 regulates the mRNA stability of FBXO5 via m6A modification to facilitate the malignant behavior of breast cancer. METTL16 通过 m6A 修饰调节 FBXO5 的 mRNA 稳定性,从而促进乳腺癌的恶性行为。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-07-25 DOI: 10.1186/s40170-024-00351-5
Runying Wang, Xingjie Gao, Luhan Xie, Jiaqi Lin, Yanying Ren

Background: N6-methyladenosine (m6A) regulates the progression of breast cancer (BC). We aimed to investigate the action and mechanism involved of methyltransferase-like protein 16 (METTL16) in BC growth and metastasis.

Methods: RT-qPCR, immunoblotting, and IHC were performed to test the levels of gene expression. CCK-8, clone formation, wound healing, and transwell assays were applied to measure the cell proliferation, migration, and invasion. m6A RNA methylation and MeRIP assay were utilized to confirm the m6A level of total RNA and FBXO5 mRNA. RIP was utilized to ascertain the interaction between METTL16 and FBXO5 mRNA. The in vivo murine subcutaneous tumor and metastasis model were constructed to further confirm the action of METTL16.

Results: METTL16 was overexpression in BC cells and tissues. Inhibition of METTL16 restrained the growth and metastasis of BC. Furthermore, the METTL16 level and FBXO5 level was positively correlated in BC tissues, and METTL16 aggrandized the stability of FBXO5 mRNA depending on the m6A modification. Overexpression of FBXO5 antagonized the restrained function of METTL16 knockdown on BC cells' proliferation, migration, invasion, and EMT.

Conclusion: METTL16 boosts the mRNA stability of FBXO5 via m6A modification to facilitate the malignant action of BC in vitro and in vivo, offering new latent targets for cure of BC.

背景:N6-甲基腺苷(m6AN6-甲基腺苷(m6A)调控乳腺癌(BC)的进展。我们旨在研究甲基转移酶样蛋白 16(METTL16)在乳腺癌生长和转移中的作用和机制:方法:采用 RT-qPCR、免疫印迹和 IHC 检测基因表达水平。采用 CCK-8、克隆形成、伤口愈合和透孔试验测定细胞的增殖、迁移和侵袭。m6A RNA 甲基化和 MeRIP 试验确认总 RNA 和 FBXO5 mRNA 的 m6A 水平。利用 RIP 法确定 METTL16 和 FBXO5 mRNA 之间的相互作用。为进一步证实 METTL16 的作用,构建了体内小鼠皮下肿瘤和转移模型:结果:METTL16在BC细胞和组织中过表达。结果:METTL16在BC细胞和组织中过表达,抑制METTL16可抑制BC的生长和转移。此外,在 BC 组织中,METTL16 的水平与 FBXO5 的水平呈正相关,METTL16 依赖于 m6A 修饰增强了 FBXO5 mRNA 的稳定性。FBXO5的过表达拮抗了METTL16敲除对BC细胞增殖、迁移、侵袭和EMT的抑制作用:结论:METTL16通过m6A修饰提高了FBXO5的mRNA稳定性,从而促进了BC在体外和体内的恶性作用,为治疗BC提供了新的潜在靶点。
{"title":"METTL16 regulates the mRNA stability of FBXO5 via m6A modification to facilitate the malignant behavior of breast cancer.","authors":"Runying Wang, Xingjie Gao, Luhan Xie, Jiaqi Lin, Yanying Ren","doi":"10.1186/s40170-024-00351-5","DOIUrl":"10.1186/s40170-024-00351-5","url":null,"abstract":"<p><strong>Background: </strong>N6-methyladenosine (m6A) regulates the progression of breast cancer (BC). We aimed to investigate the action and mechanism involved of methyltransferase-like protein 16 (METTL16) in BC growth and metastasis.</p><p><strong>Methods: </strong>RT-qPCR, immunoblotting, and IHC were performed to test the levels of gene expression. CCK-8, clone formation, wound healing, and transwell assays were applied to measure the cell proliferation, migration, and invasion. m6A RNA methylation and MeRIP assay were utilized to confirm the m6A level of total RNA and FBXO5 mRNA. RIP was utilized to ascertain the interaction between METTL16 and FBXO5 mRNA. The in vivo murine subcutaneous tumor and metastasis model were constructed to further confirm the action of METTL16.</p><p><strong>Results: </strong>METTL16 was overexpression in BC cells and tissues. Inhibition of METTL16 restrained the growth and metastasis of BC. Furthermore, the METTL16 level and FBXO5 level was positively correlated in BC tissues, and METTL16 aggrandized the stability of FBXO5 mRNA depending on the m6A modification. Overexpression of FBXO5 antagonized the restrained function of METTL16 knockdown on BC cells' proliferation, migration, invasion, and EMT.</p><p><strong>Conclusion: </strong>METTL16 boosts the mRNA stability of FBXO5 via m6A modification to facilitate the malignant action of BC in vitro and in vivo, offering new latent targets for cure of BC.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"22"},"PeriodicalIF":6.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141765548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The relationship between Stroma AReactive Invasion Front Areas (SARIFA), Warburg-subtype and survival: results from a large prospective series of colorectal cancer patients. 基质活性侵袭前区(SARIFA)、沃伯格亚型与生存之间的关系:大型前瞻性结直肠癌患者系列研究的结果。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-07-11 DOI: 10.1186/s40170-024-00349-z
Kelly Offermans, Nic G Reitsam, Colinda C J M Simons, Bianca Grosser, Jessica Zimmermann, Heike I Grabsch, Bruno Märkl, Piet A van den Brandt

Background: Stroma AReactive Invasion Front Areas (SARIFA) is a recently identified haematoxylin & eosin (H&E)based histopathologic biomarker in gastrointestinal cancers, including colorectal cancer (CRC), defined as direct contact between tumour cells and adipocytes at the tumour invasion front. The current study aimed at validating the prognostic relevance of SARIFA in a large population-based CRC series as well as at investigating the relationship between SARIFA-status and previously established Warburg-subtypes, both surrogates of the metabolic state of the tumour cells.

Methods: SARIFA-status (positive versus negative) was determined on H&E slides of 1,727 CRC specimens. Warburg-subtype (high versus moderate versus low) data was available from our previous study. The associations between SARIFA-status, Warburg-subtype, clinicopathological characteristics and CRC-specific as well as overall survival were investigated.

Results: 28.7% (n=496) CRC were SARIFA-positive. SARIFA-positivity was associated with more advanced disease stage, higher pT category, and more frequent lymph node involvement (all p<0.001). SARIFA-positivity was more common in Warburg-high CRC. 44.2% (n=219) of SARIFA-positive CRCs were Warburg-high compared to 22.8% (n=113) being Warburg-low and 33.1% (n=164) being Warburg-moderate (p<0.001). In multivariable-adjusted analysis, patients with SARIFA-positive CRCs had significantly poorer CRC-specific (HRCRC-specific 1.65; 95% CI 1.41-1.93) and overall survival (HRoverall survival 1.46; 95% CI 1.28-1.67) independent of clinically known risk factors and independent of Warburg-subtype. Combining the SARIFA-status and the Warburg-subtype to a combination score (SARIFA-negative/Warburg-high versus SARIFA-positive/Warburg-low versus SARIFA-positive/Warburg-high, and so on) did not improve the survival prediction compared to the use of SARIFA-status alone (SARIFA-negative + Warburg-high: HRCRC-specific 1.08; 95% CI 0.84-1.38; SARIFA-positive + Warburg-low: HRCRC-specific 1.79; 95% CI 1.32-2.41; SARIFA-positive + Warburg-high: HRCRC-specific 1.58; 95% CI 1.23-2.04).

Conclusions: Our current study is the by far largest external validation of SARIFA-positivity as a novel independent negative prognostic H&E-based biomarker in CRC. In addition, our study shows that SARIFA-positivity is associated with the Warburg-high subtype. Further research is warranted to provide a more mechanistic understanding of the underlying tumour biology. Based on our data, we conclude SARIFA-status should be implemented in pathologic routine practice to stratify CRC patients.

背景:基质活性侵袭前区(SARIFA)是最近在包括结直肠癌(CRC)在内的胃肠道癌症中发现的一种基于血涂片和伊红(H&E)的组织病理学生物标志物,它被定义为肿瘤细胞和脂肪细胞在肿瘤侵袭前区的直接接触。目前的研究旨在验证 SARIFA 在大型人群 CRC 系列中的预后相关性,并调查 SARIFA 状态与之前确定的沃伯格亚型(均为肿瘤细胞代谢状态的替代物)之间的关系:方法:在1,727份CRC标本的H&E切片上确定SARIFA状态(阳性与阴性)。沃伯格亚型(高、中、低)数据来自我们之前的研究。结果:28.7%(n=496)的 CRC 呈 SARIFA 阳性。SARIFA阳性与更晚的疾病分期、更高的pT分类、更频繁的淋巴结受累(所有pCRC特异性为1.65;95% CI为1.41-1.93)和总生存率(总生存率为1.46;95% CI为1.28-1.67)相关,与临床已知的风险因素无关,也与沃伯格亚型无关。与单独使用SARIFA状态相比,将SARIFA状态和沃伯格亚型合并为一个组合评分(SARIFA阴性/沃伯格-高与SARIFA阳性/沃伯格-低与SARIFA阳性/沃伯格-高,以此类推)并不能改善生存预测(SARIFA阴性+沃伯格-高:HRC特异性1.08;95% CI 0.84-1.38;SARIFA阳性+沃伯格-低:HRC特异性1.79;95% CI 0.84-1.38):结论:我们目前的研究是迄今为止对 SARIFA 阳性作为一种基于 H&E 的新型独立阴性预后生物标志物进行的最大规模的外部验证。此外,我们的研究还表明,SARIFA 阳性与沃伯格高亚型相关。我们有必要开展进一步的研究,以便从机制上更深入地了解潜在的肿瘤生物学。根据我们的数据,我们得出结论:SARIFA 状态应在病理常规实践中用于对 CRC 患者进行分层。
{"title":"The relationship between Stroma AReactive Invasion Front Areas (SARIFA), Warburg-subtype and survival: results from a large prospective series of colorectal cancer patients.","authors":"Kelly Offermans, Nic G Reitsam, Colinda C J M Simons, Bianca Grosser, Jessica Zimmermann, Heike I Grabsch, Bruno Märkl, Piet A van den Brandt","doi":"10.1186/s40170-024-00349-z","DOIUrl":"10.1186/s40170-024-00349-z","url":null,"abstract":"<p><strong>Background: </strong>Stroma AReactive Invasion Front Areas (SARIFA) is a recently identified haematoxylin & eosin (H&E)based histopathologic biomarker in gastrointestinal cancers, including colorectal cancer (CRC), defined as direct contact between tumour cells and adipocytes at the tumour invasion front. The current study aimed at validating the prognostic relevance of SARIFA in a large population-based CRC series as well as at investigating the relationship between SARIFA-status and previously established Warburg-subtypes, both surrogates of the metabolic state of the tumour cells.</p><p><strong>Methods: </strong>SARIFA-status (positive versus negative) was determined on H&E slides of 1,727 CRC specimens. Warburg-subtype (high versus moderate versus low) data was available from our previous study. The associations between SARIFA-status, Warburg-subtype, clinicopathological characteristics and CRC-specific as well as overall survival were investigated.</p><p><strong>Results: </strong>28.7% (n=496) CRC were SARIFA-positive. SARIFA-positivity was associated with more advanced disease stage, higher pT category, and more frequent lymph node involvement (all p<0.001). SARIFA-positivity was more common in Warburg-high CRC. 44.2% (n=219) of SARIFA-positive CRCs were Warburg-high compared to 22.8% (n=113) being Warburg-low and 33.1% (n=164) being Warburg-moderate (p<0.001). In multivariable-adjusted analysis, patients with SARIFA-positive CRCs had significantly poorer CRC-specific (HR<sub>CRC-specific</sub> 1.65; 95% CI 1.41-1.93) and overall survival (HR<sub>overall survival</sub> 1.46; 95% CI 1.28-1.67) independent of clinically known risk factors and independent of Warburg-subtype. Combining the SARIFA-status and the Warburg-subtype to a combination score (SARIFA-negative/Warburg-high versus SARIFA-positive/Warburg-low versus SARIFA-positive/Warburg-high, and so on) did not improve the survival prediction compared to the use of SARIFA-status alone (SARIFA-negative + Warburg-high: HR<sub>CRC-specific</sub> 1.08; 95% CI 0.84-1.38; SARIFA-positive + Warburg-low: HR<sub>CRC-specific</sub> 1.79; 95% CI 1.32-2.41; SARIFA-positive + Warburg-high: HR<sub>CRC-specific</sub> 1.58; 95% CI 1.23-2.04).</p><p><strong>Conclusions: </strong>Our current study is the by far largest external validation of SARIFA-positivity as a novel independent negative prognostic H&E-based biomarker in CRC. In addition, our study shows that SARIFA-positivity is associated with the Warburg-high subtype. Further research is warranted to provide a more mechanistic understanding of the underlying tumour biology. Based on our data, we conclude SARIFA-status should be implemented in pathologic routine practice to stratify CRC patients.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"21"},"PeriodicalIF":6.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11241902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subclinical dose irradiation triggers human breast cancer migration via mitochondrial reactive oxygen species. 亚临床剂量辐照通过线粒体活性氧引发人类乳腺癌迁移
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-07-08 DOI: 10.1186/s40170-024-00347-1
Justin D Rondeau, Justine A Van de Velde, Yasmine Bouidida, Pierre Sonveaux

Background: Despite technological advances in radiotherapy, cancer cells at the tumor margin and in diffusive infiltrates can receive subcytotoxic doses of photons. Even if only a minority of cancer cells are concerned, phenotypic consequences could be important considering that mitochondrial DNA (mtDNA) is a primary target of radiation and that damage to mtDNA can persist. In turn, mitochondrial dysfunction associated with enhanced mitochondrial ROS (mtROS) production could promote cancer cell migration out of the irradiation field in a natural attempt to escape therapy. In this study, using MCF7 and MDA-MB-231 human breast cancer cells as models, we aimed to elucidate the molecular mechanisms supporting a mitochondrial contribution to cancer cell migration induced by subclinical doses of irradiation (< 2 Gy).

Methods: Mitochondrial dysfunction was tested using mtDNA multiplex PCR, oximetry, and ROS-sensitive fluorescent reporters. Migration was tested in transwells 48 h after irradiation in the presence or absence of inhibitors targeting specific ROS or downstream effectors. Among tested inhibitors, we designed a mitochondria-targeted version of human catalase (mtCAT) to selectively inactivate mitochondrial H2O2.

Results: Photon irradiation at subclinical doses (0.5 Gy for MCF7 and 0.125 Gy for MDA-MB-231 cells) sequentially affected mtDNA levels and/or integrity, increased mtROS production, increased MAP2K1/MEK1 gene expression, activated ROS-sensitive transcription factors NF-κB and AP1 and stimulated breast cancer cell migration. Targeting mtROS pharmacologically by MitoQ or genetically by mtCAT expression mitigated migration induced by a subclinical dose of irradiation.

Conclusion: Subclinical doses of photon irradiation promote human breast cancer migration, which can be countered by selectively targeting mtROS.

背景:尽管放疗技术不断进步,但肿瘤边缘和弥漫浸润的癌细胞仍会受到亚细胞毒性剂量的光子照射。即使只有少数癌细胞受到影响,考虑到线粒体 DNA(mtDNA)是辐射的主要靶点,而且对 mtDNA 的损伤可能会持续存在,其表型后果也可能非常重要。反过来,与线粒体 ROS(mtROS)产生增强相关的线粒体功能障碍可能会促进癌细胞迁移到辐照区域之外,从而自然地试图逃避治疗。在本研究中,我们以 MCF7 和 MDA-MB-231 人类乳腺癌细胞为模型,旨在阐明支持线粒体促进亚临床剂量辐照诱导的癌细胞迁移的分子机制(方法:使用 mtDNA 多重 PCR、血氧测定法和 ROS 敏感荧光报告器检测线粒体功能障碍。辐照 48 小时后,在存在或不存在针对特定 ROS 或下游效应物的抑制剂的情况下,在转孔中检测迁移情况。在测试的抑制剂中,我们设计了一种线粒体靶向的人类过氧化氢酶(mtCAT),以选择性地灭活线粒体中的H2O2:亚临床剂量的光子照射(MCF7 细胞为 0.5 Gy,MDA-MB-231 细胞为 0.125 Gy)会连续影响线粒体 DNA 的水平和/或完整性,增加线粒体 ROS 的产生,增加 MAP2K1/MEK1 基因的表达,激活对 ROS 敏感的转录因子 NF-κB 和 AP1,并刺激乳腺癌细胞的迁移。通过 MitoQ 的药理作用或 mtCAT 的基因表达来靶向 mtROS,可减轻亚临床剂量辐照诱导的迁移:结论:亚临床剂量的光子照射会促进人类乳腺癌的迁移,而选择性地靶向mtROS可以对抗这种迁移。
{"title":"Subclinical dose irradiation triggers human breast cancer migration via mitochondrial reactive oxygen species.","authors":"Justin D Rondeau, Justine A Van de Velde, Yasmine Bouidida, Pierre Sonveaux","doi":"10.1186/s40170-024-00347-1","DOIUrl":"10.1186/s40170-024-00347-1","url":null,"abstract":"<p><strong>Background: </strong>Despite technological advances in radiotherapy, cancer cells at the tumor margin and in diffusive infiltrates can receive subcytotoxic doses of photons. Even if only a minority of cancer cells are concerned, phenotypic consequences could be important considering that mitochondrial DNA (mtDNA) is a primary target of radiation and that damage to mtDNA can persist. In turn, mitochondrial dysfunction associated with enhanced mitochondrial ROS (mtROS) production could promote cancer cell migration out of the irradiation field in a natural attempt to escape therapy. In this study, using MCF7 and MDA-MB-231 human breast cancer cells as models, we aimed to elucidate the molecular mechanisms supporting a mitochondrial contribution to cancer cell migration induced by subclinical doses of irradiation (< 2 Gy).</p><p><strong>Methods: </strong>Mitochondrial dysfunction was tested using mtDNA multiplex PCR, oximetry, and ROS-sensitive fluorescent reporters. Migration was tested in transwells 48 h after irradiation in the presence or absence of inhibitors targeting specific ROS or downstream effectors. Among tested inhibitors, we designed a mitochondria-targeted version of human catalase (mtCAT) to selectively inactivate mitochondrial H<sub>2</sub>O<sub>2</sub>.</p><p><strong>Results: </strong>Photon irradiation at subclinical doses (0.5 Gy for MCF7 and 0.125 Gy for MDA-MB-231 cells) sequentially affected mtDNA levels and/or integrity, increased mtROS production, increased MAP2K1/MEK1 gene expression, activated ROS-sensitive transcription factors NF-κB and AP1 and stimulated breast cancer cell migration. Targeting mtROS pharmacologically by MitoQ or genetically by mtCAT expression mitigated migration induced by a subclinical dose of irradiation.</p><p><strong>Conclusion: </strong>Subclinical doses of photon irradiation promote human breast cancer migration, which can be countered by selectively targeting mtROS.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"20"},"PeriodicalIF":6.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229245/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-acting Erwinia chrysanthemi, Pegcrisantaspase, induces alternate amino acid biosynthetic pathways in a preclinical model of pancreatic ductal adenocarcinoma. 在胰腺导管腺癌临床前模型中,长效埃尔文菌 Pegcrisantaspase 可诱导交替氨基酸生物合成途径。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-06-30 DOI: 10.1186/s40170-024-00346-2
Dominique Bollino, Kanwal Hameed, Anusha Bhat, Arveen Zarrabi, Andrea Casildo, Xinrong Ma, Kayla M Tighe, Brandon Carter-Cooper, Erin T Strovel, Rena G Lapidus, Ashkan Emadi

Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease without meaningful therapeutic options beyond the first salvage therapy. Targeting PDAC metabolism through amino acid restriction has emerged as a promising new strategy, with asparaginases, enzymes that deplete plasma glutamine and asparagine, reaching clinical trials. In this study, we investigated the anti-PDAC activity of the asparaginase formulation Pegcrisantaspase (PegC) alone and in combination with standard-of-care chemotherapeutics.

Methods: Using mouse and human PDAC cell lines, we assessed the impact of PegC on cell proliferation, cell death, and cell cycle progression. We further characterized the in vitro effect of PegC on protein synthesis as well as the generation of reactive oxygen species and levels of glutathione, a major cellular antioxidant. Additional cell line studies examined the effect of the combination of PegC with standard-of-care chemotherapeutics. In vivo, the tolerability and efficacy of PegC, as well as the impact on plasma amino acid levels, was assessed using the C57BL/6-derived KPC syngeneic mouse model.

Results: Here we report that PegC demonstrated potent anti-proliferative activity in a panel of human and murine PDAC cell lines. This decrease in proliferation was accompanied by inhibited protein synthesis and decreased levels of glutathione. In vivo, PegC was tolerable and effectively reduced plasma levels of glutamine and asparagine, leading to a statistically significant inhibition of tumor growth in a syngeneic mouse model of PDAC. There was no observable in vitro or in vivo benefit to combining PegC with standard-of-care chemotherapeutics, including oxaliplatin, irinotecan, 5-fluorouracil, paclitaxel, and gemcitabine. Notably, PegC treatment increased tumor expression of asparagine and serine biosynthetic enzymes.

Conclusions: Taken together, our results demonstrate the potential therapeutic use of PegC in PDAC and highlight the importance of identifying candidates for combination regimens that could improve cytotoxicity and/or reduce the induction of resistance pathways.

背景:胰腺导管腺癌(PDAC)是一种侵袭性疾病,除了首次抢救治疗外,没有其他有意义的治疗方案。通过限制氨基酸来靶向 PDAC 代谢已成为一种很有前景的新策略,天冬酰胺酶(一种消耗血浆谷氨酰胺和天冬酰胺的酶)已进入临床试验阶段。在这项研究中,我们研究了天冬酰胺酶制剂Pegcrisantaspase(PegC)单独或与标准化疗药物联合使用的抗PDAC活性:我们使用小鼠和人类 PDAC 细胞系评估了 PegC 对细胞增殖、细胞死亡和细胞周期进展的影响。我们进一步确定了 PegC 对蛋白质合成、活性氧生成和谷胱甘肽(一种主要的细胞抗氧化剂)水平的体外影响。其他细胞系研究还考察了 PegC 与标准化疗药物联合使用的效果。在体内,我们使用源自 C57BL/6 的 KPC 合成小鼠模型评估了 PegC 的耐受性和疗效以及对血浆氨基酸水平的影响:结果:我们在此报告,PegC 在一组人类和鼠类 PDAC 细胞系中表现出了强大的抗增殖活性。增殖的减少伴随着蛋白质合成的抑制和谷胱甘肽水平的降低。在体内,PegC 具有耐受性,并能有效降低血浆中谷氨酰胺和天冬酰胺的水平,从而在 PDAC 合成小鼠模型中显著抑制肿瘤生长。将 PegC 与标准化疗药物(包括奥沙利铂、伊立替康、5-氟尿嘧啶、紫杉醇和吉西他滨)联合使用,在体外或体内均无明显疗效。值得注意的是,PegC治疗增加了肿瘤中天冬酰胺和丝氨酸生物合成酶的表达:综上所述,我们的研究结果证明了PegC在PDAC中的潜在治疗作用,并强调了确定可提高细胞毒性和/或减少耐药途径诱导的候选联合方案的重要性。
{"title":"Long-acting Erwinia chrysanthemi, Pegcrisantaspase, induces alternate amino acid biosynthetic pathways in a preclinical model of pancreatic ductal adenocarcinoma.","authors":"Dominique Bollino, Kanwal Hameed, Anusha Bhat, Arveen Zarrabi, Andrea Casildo, Xinrong Ma, Kayla M Tighe, Brandon Carter-Cooper, Erin T Strovel, Rena G Lapidus, Ashkan Emadi","doi":"10.1186/s40170-024-00346-2","DOIUrl":"10.1186/s40170-024-00346-2","url":null,"abstract":"<p><strong>Background: </strong>Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease without meaningful therapeutic options beyond the first salvage therapy. Targeting PDAC metabolism through amino acid restriction has emerged as a promising new strategy, with asparaginases, enzymes that deplete plasma glutamine and asparagine, reaching clinical trials. In this study, we investigated the anti-PDAC activity of the asparaginase formulation Pegcrisantaspase (PegC) alone and in combination with standard-of-care chemotherapeutics.</p><p><strong>Methods: </strong>Using mouse and human PDAC cell lines, we assessed the impact of PegC on cell proliferation, cell death, and cell cycle progression. We further characterized the in vitro effect of PegC on protein synthesis as well as the generation of reactive oxygen species and levels of glutathione, a major cellular antioxidant. Additional cell line studies examined the effect of the combination of PegC with standard-of-care chemotherapeutics. In vivo, the tolerability and efficacy of PegC, as well as the impact on plasma amino acid levels, was assessed using the C57BL/6-derived KPC syngeneic mouse model.</p><p><strong>Results: </strong>Here we report that PegC demonstrated potent anti-proliferative activity in a panel of human and murine PDAC cell lines. This decrease in proliferation was accompanied by inhibited protein synthesis and decreased levels of glutathione. In vivo, PegC was tolerable and effectively reduced plasma levels of glutamine and asparagine, leading to a statistically significant inhibition of tumor growth in a syngeneic mouse model of PDAC. There was no observable in vitro or in vivo benefit to combining PegC with standard-of-care chemotherapeutics, including oxaliplatin, irinotecan, 5-fluorouracil, paclitaxel, and gemcitabine. Notably, PegC treatment increased tumor expression of asparagine and serine biosynthetic enzymes.</p><p><strong>Conclusions: </strong>Taken together, our results demonstrate the potential therapeutic use of PegC in PDAC and highlight the importance of identifying candidates for combination regimens that could improve cytotoxicity and/or reduce the induction of resistance pathways.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"19"},"PeriodicalIF":6.0,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218198/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfatide imaging identifies tumor cells in colorectal cancer peritoneal metastases. 硫化物成像可识别结直肠癌腹膜转移灶中的肿瘤细胞。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-06-28 DOI: 10.1186/s40170-024-00345-3
G M Sarcinelli, L Varinelli, S Ghislanzoni, F Padelli, D Lorenzini, A Vingiani, M Milione, M Guaglio, S Kusamura, M Deraco, G Pruneri, M Gariboldi, D Baratti, I Bongarzone

Even with systemic chemotherapy, cytoreductive surgery (CRS), and hyperthermic intraperitoneal chemotherapy (HIPEC), peritoneal metastases (PM) remain a common site of disease progression for colorectal cancer (CRC) and are frequently associated with a poor prognosis. The mass spectrometry (MS) method known as Matrix-Assisted Laser Desorption/Ionization - Time of Flight (MALDI-TOF) is frequently used in medicine to identify structural compounds and biomarkers. It has been demonstrated that lipids are crucial in mediating the aggressive growth of tumors. In order to investigate the lipid profiles, particularly with regard to histological distribution, we used MALDI-TOF MS (MALDI-MS) and MALDI-TOF imaging MS (MALDI-IMS) on patient-derived tumor organoids (PDOs) and PM clinical samples. According to the MALDI-IMS research shown here, the predominant lipid signature of PDOs in PM tissues, glycosphingolipid (GSL) sulfates or sulfatides, or STs, is unique to the areas containing tumor cells and absent from the surrounding stromal compartments. Bioactive lipids are derived from arachidonic acid (AA), and AA-containing phosphatidylinositol (PI), or PI (18:0-20:4), is shown to be highly expressed in the stromal components. On the other hand, the tumor components contained a higher abundance of PI species with shorter and more saturated acyl chains (C34 and C36 carbons). The cellular subversion of PI and ST species may alter in ways that promote the growth, aggressiveness, and metastasis of tumor cells. Together, these findings suggest that the GSL/ST metabolic programming of PM may contain novel therapeutic targets to impede or halt PM progression.

即使进行了全身化疗、细胞还原手术(CRS)和腹腔热化疗(HIPEC),腹膜转移瘤(PM)仍然是结直肠癌(CRC)疾病进展的常见部位,而且往往与不良预后有关。基质辅助激光解吸/电离-飞行时间(MALDI-TOF)质谱(MS)方法常用于医学领域,以鉴定结构化合物和生物标记物。研究表明,脂质是肿瘤侵袭性生长的关键因素。为了研究脂质特征,特别是组织学分布方面的特征,我们使用 MALDI-TOF MS(MALDI-MS)和 MALDI-TOF 成像 MS(MALDI-IMS)对患者衍生的肿瘤组织细胞(PDOs)和 PM 临床样本进行了研究。根据本文所示的 MALDI-IMS 研究,PM 组织中 PDOs 的主要脂质特征--糖磷脂(GSL)硫酸盐或硫化物(STs)是包含肿瘤细胞的区域所独有的,而周围的基质区则不存在。生物活性脂类来自花生四烯酸(AA),含 AA 的磷脂酰肌醇(PI)或 PI(18:0-20:4)在基质成分中高表达。另一方面,肿瘤成分中含有更多具有更短和更饱和酰基链(C34 和 C36 碳链)的 PI 种类。细胞中 PI 和 ST 物种的颠覆性变化可能会促进肿瘤细胞的生长、侵袭性和转移。这些发现共同表明,PM 的 GSL/ST 代谢程序可能包含新的治疗靶点,可阻碍或阻止 PM 的发展。
{"title":"Sulfatide imaging identifies tumor cells in colorectal cancer peritoneal metastases.","authors":"G M Sarcinelli, L Varinelli, S Ghislanzoni, F Padelli, D Lorenzini, A Vingiani, M Milione, M Guaglio, S Kusamura, M Deraco, G Pruneri, M Gariboldi, D Baratti, I Bongarzone","doi":"10.1186/s40170-024-00345-3","DOIUrl":"10.1186/s40170-024-00345-3","url":null,"abstract":"<p><p>Even with systemic chemotherapy, cytoreductive surgery (CRS), and hyperthermic intraperitoneal chemotherapy (HIPEC), peritoneal metastases (PM) remain a common site of disease progression for colorectal cancer (CRC) and are frequently associated with a poor prognosis. The mass spectrometry (MS) method known as Matrix-Assisted Laser Desorption/Ionization - Time of Flight (MALDI-TOF) is frequently used in medicine to identify structural compounds and biomarkers. It has been demonstrated that lipids are crucial in mediating the aggressive growth of tumors. In order to investigate the lipid profiles, particularly with regard to histological distribution, we used MALDI-TOF MS (MALDI-MS) and MALDI-TOF imaging MS (MALDI-IMS) on patient-derived tumor organoids (PDOs) and PM clinical samples. According to the MALDI-IMS research shown here, the predominant lipid signature of PDOs in PM tissues, glycosphingolipid (GSL) sulfates or sulfatides, or STs, is unique to the areas containing tumor cells and absent from the surrounding stromal compartments. Bioactive lipids are derived from arachidonic acid (AA), and AA-containing phosphatidylinositol (PI), or PI (18:0-20:4), is shown to be highly expressed in the stromal components. On the other hand, the tumor components contained a higher abundance of PI species with shorter and more saturated acyl chains (C34 and C36 carbons). The cellular subversion of PI and ST species may alter in ways that promote the growth, aggressiveness, and metastasis of tumor cells. Together, these findings suggest that the GSL/ST metabolic programming of PM may contain novel therapeutic targets to impede or halt PM progression.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"18"},"PeriodicalIF":6.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glycemic status, insulin resistance, and mortality from lung cancer among individuals with and without diabetes. 糖尿病患者和非糖尿病患者的血糖状况、胰岛素抵抗和肺癌死亡率。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-06-20 DOI: 10.1186/s40170-024-00344-4
In Young Cho, Yoosoo Chang, Eunju Sung, Boyoung Park, Jae-Heon Kang, Hocheol Shin, Sarah H Wild, Christopher D Byrne, Seungho Ryu

Background: The effects of glycemic status and insulin resistance on lung cancer remain unclear. We investigated the associations between both glycemic status and insulin resistance, and lung cancer mortality, in a young and middle-aged population with and without diabetes.

Methods: This cohort study involved individuals who participated in routine health examinations. Lung cancer mortality was identified using national death records. Cox proportional hazards models were used to calculate hazard ratios (HRs) with 95% CIs for lung cancer mortality risk.

Results: Among 666,888 individuals (mean age 39.9 ± 10.9 years) followed for 8.3 years (interquartile range, 4.6-12.7), 602 lung cancer deaths occurred. Among individuals without diabetes, the multivariable-adjusted HRs (95% CI) for lung cancer mortality comparing hemoglobin A1c categories (5.7-5.9, 6.0-6.4, and ≥ 6.5% or 39-41, 42-46, and ≥ 48 mmol/mol, respectively) with the reference (< 5.7% or < 39 mmol/mol) were 1.39 (1.13-1.71), 1.72 (1.33-2.20), and 2.22 (1.56-3.17), respectively. Lung cancer mortality was associated with fasting blood glucose categories in a dose-response manner (P for trend = 0.001) and with previously diagnosed diabetes. Insulin resistance (HOMA-IR ≥ 2.5) in individuals without diabetes was also associated with lung cancer mortality (multivariable-adjusted HR, 1.41; 95% CI, 1.13-1.75). These associations remained after adjusting for changing status in glucose, hemoglobin A1c, insulin resistance, smoking status, and other confounders during follow-up as time-varying covariates.

Conclusions: Glycemic status within both diabetes and prediabetes ranges and insulin resistance were independently associated with an increased risk of lung cancer mortality.

背景:血糖状况和胰岛素抵抗对肺癌的影响仍不清楚。我们在患有和未患有糖尿病的中青年人群中调查了血糖状况和胰岛素抵抗与肺癌死亡率之间的关系:这项队列研究涉及参加常规健康检查的人群。肺癌死亡率是通过国家死亡记录确定的。采用 Cox 比例危险模型计算肺癌死亡风险的危险比(HRs)和 95% CIs:在 666 888 名随访 8.3 年(四分位数间距为 4.6-12.7 年)的患者(平均年龄为 39.9 ± 10.9 岁)中,有 602 人死于肺癌。在非糖尿病患者中,将血红蛋白 A1c 类别(分别为 5.7-5.9、6.0-6.4 和 ≥ 6.5%,或分别为 39-41、42-46 和 ≥ 48 mmol/mol)与参考值进行比较,肺癌死亡率的多变量调整 HRs(95% CI)(结论:在糖尿病患者中,血红蛋白 A1c 类别为 5.7-5.9、6.0-6.4 和 ≥ 6.5%,或分别为 39-41、42-46 和 ≥ 48 mmol/mol):糖尿病和糖尿病前期范围内的血糖状况以及胰岛素抵抗与肺癌死亡风险增加有独立关联。
{"title":"Glycemic status, insulin resistance, and mortality from lung cancer among individuals with and without diabetes.","authors":"In Young Cho, Yoosoo Chang, Eunju Sung, Boyoung Park, Jae-Heon Kang, Hocheol Shin, Sarah H Wild, Christopher D Byrne, Seungho Ryu","doi":"10.1186/s40170-024-00344-4","DOIUrl":"10.1186/s40170-024-00344-4","url":null,"abstract":"<p><strong>Background: </strong>The effects of glycemic status and insulin resistance on lung cancer remain unclear. We investigated the associations between both glycemic status and insulin resistance, and lung cancer mortality, in a young and middle-aged population with and without diabetes.</p><p><strong>Methods: </strong>This cohort study involved individuals who participated in routine health examinations. Lung cancer mortality was identified using national death records. Cox proportional hazards models were used to calculate hazard ratios (HRs) with 95% CIs for lung cancer mortality risk.</p><p><strong>Results: </strong>Among 666,888 individuals (mean age 39.9 ± 10.9 years) followed for 8.3 years (interquartile range, 4.6-12.7), 602 lung cancer deaths occurred. Among individuals without diabetes, the multivariable-adjusted HRs (95% CI) for lung cancer mortality comparing hemoglobin A1c categories (5.7-5.9, 6.0-6.4, and ≥ 6.5% or 39-41, 42-46, and ≥ 48 mmol/mol, respectively) with the reference (< 5.7% or < 39 mmol/mol) were 1.39 (1.13-1.71), 1.72 (1.33-2.20), and 2.22 (1.56-3.17), respectively. Lung cancer mortality was associated with fasting blood glucose categories in a dose-response manner (P for trend = 0.001) and with previously diagnosed diabetes. Insulin resistance (HOMA-IR ≥ 2.5) in individuals without diabetes was also associated with lung cancer mortality (multivariable-adjusted HR, 1.41; 95% CI, 1.13-1.75). These associations remained after adjusting for changing status in glucose, hemoglobin A1c, insulin resistance, smoking status, and other confounders during follow-up as time-varying covariates.</p><p><strong>Conclusions: </strong>Glycemic status within both diabetes and prediabetes ranges and insulin resistance were independently associated with an increased risk of lung cancer mortality.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"17"},"PeriodicalIF":6.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188269/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic alterations and cellular responses to β-Hydroxybutyrate treatment in breast cancer cells 乳腺癌细胞的代谢变化和细胞对β-羟丁酸处理的反应
IF 5.9 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-05-29 DOI: 10.1186/s40170-024-00339-1
Hadas Fulman-Levy, Raichel Cohen-Harazi, Bar Levi, Lital Argaev-Frenkel, Ifat Abramovich, Eyal Gottlieb, Sarah Hofmann, Igor Koman, Elimelech Nesher
The ketogenic diet (KD), based on high fat (over 70% of daily calories), low carbohydrate, and adequate protein intake, has become popular due to its potential therapeutic benefits for several diseases including cancer. Under KD and starvation conditions, the lack of carbohydrates promotes the production of ketone bodies (KB) from fats by the liver as an alternative source of metabolic energy. KD and starvation may affect the metabolism in cancer cells, as well as tumor characteristics. The aim of this study is to evaluate the effect of KD conditions on a wide variety of aspects of breast cancer cells in vitro. Using two cancer and one non-cancer breast cell line, we evaluate the effect of β-hydroxybutyrate (βHb) treatment on cell growth, survival, proliferation, colony formation, and migration. We also assess the effect of KB on metabolic profile of the cells. Using RNAseq analysis, we elucidate the effect of βHb on the gene expression profile. Significant effects were observed following treatment by βHb which include effects on viability, proliferation, and colony formation of MCF7 cells, and different effects on colony formation of MDA-MB-231 cells, with no such effects on non-cancer HB2 cells. We found no changes in glucose intake or lactate output following βHb treatment as measured by LC-MS, but an increase in reactive oxygen species (ROS) level was detected. RNAseq analysis demonstrated significant changes in genes involved in lipid metabolism, cancer, and oxidative phosphorylation. Based on our results, we conclude that differential response of cancer cell lines to βHb treatment, as alternative energy source or signal to alter lipid metabolism and oncogenicity, supports the need for a personalized approach to breast cancer patient treatment.
生酮饮食(KD)以高脂肪(占每日热量的 70% 以上)、低碳水化合物和充足的蛋白质摄入为基础,因其对包括癌症在内的多种疾病具有潜在的治疗效果而广受欢迎。在 KD 和饥饿条件下,碳水化合物的缺乏会促进肝脏从脂肪中产生酮体(KB),作为代谢能量的替代来源。KD和饥饿可能会影响癌细胞的新陈代谢以及肿瘤特征。本研究旨在评估 KD 条件对体外乳腺癌细胞各方面的影响。我们使用两种癌症和一种非癌症乳腺癌细胞系,评估了β-羟丁酸(βHb)处理对细胞生长、存活、增殖、集落形成和迁移的影响。我们还评估了 KB 对细胞代谢谱的影响。通过 RNAseq 分析,我们阐明了 βHb 对基因表达谱的影响。我们观察到,βHb 对 MCF7 细胞的活力、增殖和集落形成有显著影响,对 MDA-MB-231 细胞的集落形成也有不同影响,而对非癌症 HB2 细胞则没有影响。通过 LC-MS 测量,我们发现βHb 处理后葡萄糖摄入量或乳酸输出量没有变化,但检测到活性氧(ROS)水平增加。RNAseq 分析表明,涉及脂质代谢、癌症和氧化磷酸化的基因发生了显著变化。根据我们的研究结果,我们得出结论:作为替代能源或改变脂质代谢和致癌性的信号,癌细胞株对βHb治疗的不同反应支持了对乳腺癌患者进行个性化治疗的需要。
{"title":"Metabolic alterations and cellular responses to β-Hydroxybutyrate treatment in breast cancer cells","authors":"Hadas Fulman-Levy, Raichel Cohen-Harazi, Bar Levi, Lital Argaev-Frenkel, Ifat Abramovich, Eyal Gottlieb, Sarah Hofmann, Igor Koman, Elimelech Nesher","doi":"10.1186/s40170-024-00339-1","DOIUrl":"https://doi.org/10.1186/s40170-024-00339-1","url":null,"abstract":"The ketogenic diet (KD), based on high fat (over 70% of daily calories), low carbohydrate, and adequate protein intake, has become popular due to its potential therapeutic benefits for several diseases including cancer. Under KD and starvation conditions, the lack of carbohydrates promotes the production of ketone bodies (KB) from fats by the liver as an alternative source of metabolic energy. KD and starvation may affect the metabolism in cancer cells, as well as tumor characteristics. The aim of this study is to evaluate the effect of KD conditions on a wide variety of aspects of breast cancer cells in vitro. Using two cancer and one non-cancer breast cell line, we evaluate the effect of β-hydroxybutyrate (βHb) treatment on cell growth, survival, proliferation, colony formation, and migration. We also assess the effect of KB on metabolic profile of the cells. Using RNAseq analysis, we elucidate the effect of βHb on the gene expression profile. Significant effects were observed following treatment by βHb which include effects on viability, proliferation, and colony formation of MCF7 cells, and different effects on colony formation of MDA-MB-231 cells, with no such effects on non-cancer HB2 cells. We found no changes in glucose intake or lactate output following βHb treatment as measured by LC-MS, but an increase in reactive oxygen species (ROS) level was detected. RNAseq analysis demonstrated significant changes in genes involved in lipid metabolism, cancer, and oxidative phosphorylation. Based on our results, we conclude that differential response of cancer cell lines to βHb treatment, as alternative energy source or signal to alter lipid metabolism and oncogenicity, supports the need for a personalized approach to breast cancer patient treatment.","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"102 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141171139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disrupting Na+ ion homeostasis and Na+/K+ ATPase activity in breast cancer cells directly modulates glycolysis in vitro and in vivo. 破坏乳腺癌细胞中的 Na+ 离子平衡和 Na+/K+ ATPase 活性可直接调节体外和体内糖酵解。
IF 5.9 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-05-24 DOI: 10.1186/s40170-024-00343-5
Aidan M Michaels, Anna Zoccarato, Zoe Hoare, George Firth, Yu Jin Chung, Philip W Kuchel, Ajay M Shah, Michael J Shattock, Richard Southworth, Thomas R Eykyn

Background: Glycolytic flux is regulated by the energy demands of the cell. Upregulated glycolysis in cancer cells may therefore result from increased demand for adenosine triphosphate (ATP), however it is unknown what this extra ATP turnover is used for. We hypothesise that an important contribution to the increased glycolytic flux in cancer cells results from the ATP demand of Na+/K+-ATPase (NKA) due to altered sodium ion homeostasis in cancer cells.

Methods: Live whole-cell measurements of intracellular sodium [Na+]i were performed in three human breast cancer cells (MDA-MB-231, HCC1954, MCF-7), in murine breast cancer cells (4T1), and control human epithelial cells MCF-10A using triple quantum filtered 23Na nuclear magnetic resonance (NMR) spectroscopy. Glycolytic flux was measured by 2H NMR to monitor conversion of [6,6-2H2]D-glucose to [2H]-labelled L-lactate at baseline and in response to NKA inhibition with ouabain. Intracellular [Na+]i was titrated using isotonic buffers with varying [Na+] and [K+] and introducing an artificial Na+ plasma membrane leak using the ionophore gramicidin-A. Experiments were carried out in parallel with cell viability assays, 1H NMR metabolomics of intracellular and extracellular metabolites, extracellular flux analyses and in vivo measurements in a MDA-MB-231 human-xenograft mouse model using 2-deoxy-2-[18F]fluoroglucose (18F-FDG) positron emission tomography (PET).

Results: Intracellular [Na+]i was elevated in human and murine breast cancer cells compared to control MCF-10A cells. Acute inhibition of NKA by ouabain resulted in elevated [Na+]i and inhibition of glycolytic flux in all three human cancer cells which are ouabain sensitive, but not in the murine cells which are ouabain resistant. Permeabilization of cell membranes with gramicidin-A led to a titratable increase of [Na+]i in MDA-MB-231 and 4T1 cells and a Na+-dependent increase in glycolytic flux. This was attenuated with ouabain in the human cells but not in the murine cells. 18FDG PET imaging in an MDA-MB-231 human-xenograft mouse model recorded lower 18FDG tumour uptake when treated with ouabain while murine tissue uptake was unaffected.

Conclusions: Glycolytic flux correlates with Na+-driven NKA activity in breast cancer cells, providing evidence for the 'centrality of the [Na+]i-NKA nexus' in the mechanistic basis of the Warburg effect.

背景:糖酵解通量受细胞能量需求的调节。因此,癌细胞中的糖酵解上调可能是由于对三磷酸腺苷(ATP)的需求增加所致,但这种额外的ATP周转用于何处尚不清楚。我们假设癌细胞中糖酵解通量增加的一个重要原因是癌细胞中钠离子平衡的改变导致 Na+/K+-ATP 酶(NKA)对 ATP 的需求:方法:使用三重量子过滤 23Na 核磁共振 (NMR) 光谱法对三种人类乳腺癌细胞(MDA-MB-231、HCC1954、MCF-7)、小鼠乳腺癌细胞(4T1)和对照人类上皮细胞 MCF-10A 进行了细胞内钠 [Na+]i 的活体全细胞测量。通过 2H NMR 测量糖酵解通量,以监测基线和用乌巴因抑制 NKA 时[6,6-2H2]D-葡萄糖向[2H]标记的 L-乳酸的转化。使用不同[Na+]和[K+]的等渗缓冲液对细胞内[Na+]i进行滴定,并使用离子诱导剂gramicidin-A引入人工Na+质膜泄漏。实验与细胞活力测定、细胞内外代谢物的 1H NMR 代谢组学、细胞外通量分析以及使用 2-脱氧-2-[18F]荧光葡萄糖(18F-FDG)正电子发射断层扫描(PET)在 MDA-MB-231 人类异种移植小鼠模型中进行的体内测量同时进行:结果:与对照组 MCF-10A 细胞相比,人和小鼠乳腺癌细胞的细胞内[Na+]i 升高。乌苯那敏对 NKA 的急性抑制导致[Na+]i 升高,并抑制了对乌苯那敏敏感的所有三种人类癌细胞的糖酵解通量,但对乌苯那敏耐受的鼠类细胞则没有抑制作用。在 MDA-MB-231 和 4T1 细胞中,用克霉素-A 使细胞膜渗透导致[Na+]i 的可滴定性增加,并导致糖酵解通量的 Na+ 依赖性增加。在人体细胞中,使用乌苯那敏可减轻这一现象,但在鼠体细胞中则没有。在 MDA-MB-231 人类异种移植小鼠模型中进行的 18FDG PET 成像显示,使用欧贝因治疗时,18FDG 肿瘤摄取量较低,而小鼠组织摄取量则不受影响:结论:糖酵解通量与乳腺癌细胞中由 Na+ 驱动的 NKA 活性相关,为"[Na+]i-NKA 关联的中心地位 "在沃伯格效应的机理基础中提供了证据。
{"title":"Disrupting Na<sup>+</sup> ion homeostasis and Na<sup>+</sup>/K<sup>+</sup> ATPase activity in breast cancer cells directly modulates glycolysis in vitro and in vivo.","authors":"Aidan M Michaels, Anna Zoccarato, Zoe Hoare, George Firth, Yu Jin Chung, Philip W Kuchel, Ajay M Shah, Michael J Shattock, Richard Southworth, Thomas R Eykyn","doi":"10.1186/s40170-024-00343-5","DOIUrl":"10.1186/s40170-024-00343-5","url":null,"abstract":"<p><strong>Background: </strong>Glycolytic flux is regulated by the energy demands of the cell. Upregulated glycolysis in cancer cells may therefore result from increased demand for adenosine triphosphate (ATP), however it is unknown what this extra ATP turnover is used for. We hypothesise that an important contribution to the increased glycolytic flux in cancer cells results from the ATP demand of Na<sup>+</sup>/K<sup>+</sup>-ATPase (NKA) due to altered sodium ion homeostasis in cancer cells.</p><p><strong>Methods: </strong>Live whole-cell measurements of intracellular sodium [Na<sup>+</sup>]<sub>i</sub> were performed in three human breast cancer cells (MDA-MB-231, HCC1954, MCF-7), in murine breast cancer cells (4T1), and control human epithelial cells MCF-10A using triple quantum filtered <sup>23</sup>Na nuclear magnetic resonance (NMR) spectroscopy. Glycolytic flux was measured by <sup>2</sup>H NMR to monitor conversion of [6,6-<sup>2</sup>H<sub>2</sub>]D-glucose to [<sup>2</sup>H]-labelled L-lactate at baseline and in response to NKA inhibition with ouabain. Intracellular [Na<sup>+</sup>]<sub>i</sub> was titrated using isotonic buffers with varying [Na<sup>+</sup>] and [K<sup>+</sup>] and introducing an artificial Na<sup>+</sup> plasma membrane leak using the ionophore gramicidin-A. Experiments were carried out in parallel with cell viability assays, <sup>1</sup>H NMR metabolomics of intracellular and extracellular metabolites, extracellular flux analyses and in vivo measurements in a MDA-MB-231 human-xenograft mouse model using 2-deoxy-2-[<sup>18</sup>F]fluoroglucose (<sup>18</sup>F-FDG) positron emission tomography (PET).</p><p><strong>Results: </strong>Intracellular [Na<sup>+</sup>]<sub>i</sub> was elevated in human and murine breast cancer cells compared to control MCF-10A cells. Acute inhibition of NKA by ouabain resulted in elevated [Na<sup>+</sup>]<sub>i</sub> and inhibition of glycolytic flux in all three human cancer cells which are ouabain sensitive, but not in the murine cells which are ouabain resistant. Permeabilization of cell membranes with gramicidin-A led to a titratable increase of [Na<sup>+</sup>]<sub>i</sub> in MDA-MB-231 and 4T1 cells and a Na<sup>+</sup>-dependent increase in glycolytic flux. This was attenuated with ouabain in the human cells but not in the murine cells. <sup>18</sup>FDG PET imaging in an MDA-MB-231 human-xenograft mouse model recorded lower <sup>18</sup>FDG tumour uptake when treated with ouabain while murine tissue uptake was unaffected.</p><p><strong>Conclusions: </strong>Glycolytic flux correlates with Na<sup>+</sup>-driven NKA activity in breast cancer cells, providing evidence for the 'centrality of the [Na<sup>+</sup>]<sub>i</sub>-NKA nexus' in the mechanistic basis of the Warburg effect.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"15"},"PeriodicalIF":5.9,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11119389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141086864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypoxia-induced NOS1 as a therapeutic target in hypercholesterolemia-related colorectal cancer. 缺氧诱导的 NOS1 是高胆固醇血症相关结直肠癌的治疗靶点。
IF 5.9 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-05-17 DOI: 10.1186/s40170-024-00338-2
Weiqing Qiu, Li Zhao, Hua Liu, Ping Xu, Changlin Qian

Background: It is well established that hypercholesterolemia increases the risk of atherosclerosis, especially because it reduces the availability of nitric oxide (NO). However, the relationship between hypercholesterolemia and NO in regulating colorectal cancer development and progression remains unknown.

Methods: We conducted bioinformatics analysis, qRT-PCR, ChIP-qPCR assays, luciferase report assays, clonogenic survival assays, and multiple mouse models to investigate the function and mechanism of hypercholesterolemia in regulating NO signaling. Additionally, NOS inhibitors were used to evaluate the potential of therapeutic strategy in anti-tumor response.

Results: Here, we show that oxidized low-density lipoprotein (oxLDL) cholesterol and its receptor LOX-1 are essential for hypercholesterolemia-induced colorectal tumorigenesis. Mechanically, the oxLDL promotes the oxidant stress-dependent induction of hypoxia signaling to transcriptionally up-regulate NO synthase (NOS) especially NOS1 expression in colorectal cancer (CRC) cells. More importantly, our results suggested that selective inhibition of NOS1 with its specific inhibitor Nω-Propyl-L-arginine is a suitable therapeutic strategy for hypercholesterolemia-related CRC with both efficacy and toxicity reduction.

Conclusions: Our findings established that hypercholesterolemia induces the oxidant stress-dependent induction of hypoxia signaling to transcriptionally up-regulate NOS1 expression in CRC cells, and the clinically applicable NOS1 inhibitor Nω-Propyl-L-arginine represents an effective therapeutic strategy for hypercholesterolemia-related CRC.

背景:众所周知,高胆固醇血症会增加动脉粥样硬化的风险,特别是因为它会减少一氧化氮(NO)的供应。然而,高胆固醇血症与一氧化氮在调控结直肠癌发生和发展中的关系仍然未知:我们通过生物信息学分析、qRT-PCR、ChIP-qPCR 检测、荧光素酶报告检测、克隆性生存检测和多种小鼠模型来研究高胆固醇血症在调节 NO 信号传导中的功能和机制。此外,还使用 NOS 抑制剂来评估治疗策略在抗肿瘤反应中的潜力:结果:我们在这里发现,氧化低密度脂蛋白胆固醇及其受体 LOX-1 对高胆固醇血症诱导的结直肠肿瘤发生至关重要。从机理上讲,氧化低密度脂蛋白促进氧化应激依赖性缺氧信号诱导,转录上调NO合成酶(NOS),尤其是NOS1在结直肠癌(CRC)细胞中的表达。更重要的是,我们的研究结果表明,用特异性抑制剂 Nω-丙基-L-精氨酸选择性抑制 NOS1 是治疗高胆固醇血症相关 CRC 的一种既有效又减毒的合适策略:我们的研究结果证实,高胆固醇血症会诱导氧化应激依赖性缺氧信号转导,从而转录上调CRC细胞中NOS1的表达,而临床适用的NOS1抑制剂Nω-丙基-L-精氨酸是治疗高胆固醇血症相关CRC的有效策略。
{"title":"Hypoxia-induced NOS1 as a therapeutic target in hypercholesterolemia-related colorectal cancer.","authors":"Weiqing Qiu, Li Zhao, Hua Liu, Ping Xu, Changlin Qian","doi":"10.1186/s40170-024-00338-2","DOIUrl":"https://doi.org/10.1186/s40170-024-00338-2","url":null,"abstract":"<p><strong>Background: </strong>It is well established that hypercholesterolemia increases the risk of atherosclerosis, especially because it reduces the availability of nitric oxide (NO). However, the relationship between hypercholesterolemia and NO in regulating colorectal cancer development and progression remains unknown.</p><p><strong>Methods: </strong>We conducted bioinformatics analysis, qRT-PCR, ChIP-qPCR assays, luciferase report assays, clonogenic survival assays, and multiple mouse models to investigate the function and mechanism of hypercholesterolemia in regulating NO signaling. Additionally, NOS inhibitors were used to evaluate the potential of therapeutic strategy in anti-tumor response.</p><p><strong>Results: </strong>Here, we show that oxidized low-density lipoprotein (oxLDL) cholesterol and its receptor LOX-1 are essential for hypercholesterolemia-induced colorectal tumorigenesis. Mechanically, the oxLDL promotes the oxidant stress-dependent induction of hypoxia signaling to transcriptionally up-regulate NO synthase (NOS) especially NOS1 expression in colorectal cancer (CRC) cells. More importantly, our results suggested that selective inhibition of NOS1 with its specific inhibitor Nω-Propyl-L-arginine is a suitable therapeutic strategy for hypercholesterolemia-related CRC with both efficacy and toxicity reduction.</p><p><strong>Conclusions: </strong>Our findings established that hypercholesterolemia induces the oxidant stress-dependent induction of hypoxia signaling to transcriptionally up-regulate NOS1 expression in CRC cells, and the clinically applicable NOS1 inhibitor Nω-Propyl-L-arginine represents an effective therapeutic strategy for hypercholesterolemia-related CRC.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"14"},"PeriodicalIF":5.9,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100240/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140956464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer & Metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1