For textile-based electronic systems with multiple contacts distributed over a large area, it is very complex to create reliable electrical and mechanical interconnections. In this work, we report for the first time on the use of rotating ultrasonic polymer welding for the continuous integration and interconnection of highly conductive ribbons with textile-integrated conductive tracks. For this purpose, the conductive ribbons are prelaminated on the bottom side with a thermoplastic film, which serves as an adhesion agent to the textile carrier, and another thermoplastic film is laminated on the top side, which serves as an electrical insulation layer. Experimental tests are used to investigate the optimum welding process parameters for each material combination. The interconnects are initially electrically measured and then tested by thermal cycling, moisture aging, buckling and washing tests, followed by electrical and optical analyses. The interconnects obtained are very low ohmic across the materials tested, with resulting contact resistances between 1 and 5 mOhm. Material-dependent results were observed in the reliability tests, with climatic and mechanical tests performing better than the wash tests for all materials. In addition, the development of a heated functional prototype demonstrates a first industrial application.
{"title":"Use of Rotary Ultrasonic Plastic Welding as a Continuous Interconnection Technology for Large-Area e-Textiles","authors":"C. Dils, Sebastian Hohner, M. Schneider-Ramelow","doi":"10.3390/textiles3010006","DOIUrl":"https://doi.org/10.3390/textiles3010006","url":null,"abstract":"For textile-based electronic systems with multiple contacts distributed over a large area, it is very complex to create reliable electrical and mechanical interconnections. In this work, we report for the first time on the use of rotating ultrasonic polymer welding for the continuous integration and interconnection of highly conductive ribbons with textile-integrated conductive tracks. For this purpose, the conductive ribbons are prelaminated on the bottom side with a thermoplastic film, which serves as an adhesion agent to the textile carrier, and another thermoplastic film is laminated on the top side, which serves as an electrical insulation layer. Experimental tests are used to investigate the optimum welding process parameters for each material combination. The interconnects are initially electrically measured and then tested by thermal cycling, moisture aging, buckling and washing tests, followed by electrical and optical analyses. The interconnects obtained are very low ohmic across the materials tested, with resulting contact resistances between 1 and 5 mOhm. Material-dependent results were observed in the reliability tests, with climatic and mechanical tests performing better than the wash tests for all materials. In addition, the development of a heated functional prototype demonstrates a first industrial application.","PeriodicalId":94219,"journal":{"name":"Textiles (Basel, Switzerland)","volume":"146 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83099208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High-quality academic publishing is built on rigorous peer review [...]
高质量的学术出版建立在严格的同行评审的基础上[…]
{"title":"Acknowledgment to the Reviewers of Textiles in 2022","authors":"","doi":"10.3390/textiles3010004","DOIUrl":"https://doi.org/10.3390/textiles3010004","url":null,"abstract":"High-quality academic publishing is built on rigorous peer review [...]","PeriodicalId":94219,"journal":{"name":"Textiles (Basel, Switzerland)","volume":"62 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72588160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sara A. Ebrahim, Hanan A. Othman, Mohamed M. Mosaad, A. Hassabo
Fruit peels are a rich source of many substances, such as pectin. Extraction of natural thickening agent (pectin) from fruit waste such as (orange and pomegranate peels) is an environmentally friendly alternative to commercial thickeners and is cheap for use in the printing of natural and synthetic fabrics, especially polyester and polyacrylic fabrics. Hexamine was used to treat the extracted pectin to make it appropriate for use in an alkali medium for printing cotton fabric. The results showed that the extracted and modified pectin have good rheological properties as well as bacterial resistance. Pectin is suitable for use in an acidic medium. All the printed samples with pectin and its modified synthetic dyes (reactive, acid, and disperse) exhibited good fastness towards washing and wet and dry rubbing. The light fastness of printed textiles was excellent (7), which is more than using alginate as a thickener (5). In both acidic and alkaline perspiration, the perspiration fastness characteristic revealed 3–4 to 4–5 color differences. Colorfastness to rubbing was tested in both dry and wet conditions, and it was revealed that dry rubbing had the same effect as wet rubbing. Printed textiles using pectin or modified pectin as thickeners exhibit antibacterial activity. Physical and mechanical properties of all printed fabrics such as (tensile strength, elongation, and surface roughness) were enhanced.
{"title":"Eco-Friendly Natural Thickener (Pectin) Extracted from Fruit Peels for Valuable Utilization in Textile Printing as a Thickening Agent","authors":"Sara A. Ebrahim, Hanan A. Othman, Mohamed M. Mosaad, A. Hassabo","doi":"10.3390/textiles3010003","DOIUrl":"https://doi.org/10.3390/textiles3010003","url":null,"abstract":"Fruit peels are a rich source of many substances, such as pectin. Extraction of natural thickening agent (pectin) from fruit waste such as (orange and pomegranate peels) is an environmentally friendly alternative to commercial thickeners and is cheap for use in the printing of natural and synthetic fabrics, especially polyester and polyacrylic fabrics. Hexamine was used to treat the extracted pectin to make it appropriate for use in an alkali medium for printing cotton fabric. The results showed that the extracted and modified pectin have good rheological properties as well as bacterial resistance. Pectin is suitable for use in an acidic medium. All the printed samples with pectin and its modified synthetic dyes (reactive, acid, and disperse) exhibited good fastness towards washing and wet and dry rubbing. The light fastness of printed textiles was excellent (7), which is more than using alginate as a thickener (5). In both acidic and alkaline perspiration, the perspiration fastness characteristic revealed 3–4 to 4–5 color differences. Colorfastness to rubbing was tested in both dry and wet conditions, and it was revealed that dry rubbing had the same effect as wet rubbing. Printed textiles using pectin or modified pectin as thickeners exhibit antibacterial activity. Physical and mechanical properties of all printed fabrics such as (tensile strength, elongation, and surface roughness) were enhanced.","PeriodicalId":94219,"journal":{"name":"Textiles (Basel, Switzerland)","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80450740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study analyzed what design elements are attractive to consumers of denim fabric products. A questionnaire survey was used to investigate the brands and design elements that consumers prefer. Subsequently, the degree to which participating consumers liked the five design elements (traditional, transformative, pattern, multi-material, and decorative designs), fast fashion brands, and luxury brands were used as explanatory variables to determine the consumers’ willingness to pay. A multiple regression analysis was performed on these variables. The results indicated that consumers who preferred traditional and transformative designs showed a positive effect on their willingness to pay for denim fabric products. Therefore, these elements could be attractive design elements that may command a high price point in new product planning proposals. Moreover, depending on the type of brand preferred by consumers, the impact of design elements on their purchase intention of denim fabric products has different consequences. This study analyzes the design elements preferred by consumers and contributes to the creation of design proposals by designers and apparel firms.
{"title":"Design Elements That Increase the Willingness to Pay for Denim Fabric Products","authors":"Ryoga Miyauchi, Xiaoxiao Zhou, Yuki Inoue","doi":"10.3390/textiles3010002","DOIUrl":"https://doi.org/10.3390/textiles3010002","url":null,"abstract":"This study analyzed what design elements are attractive to consumers of denim fabric products. A questionnaire survey was used to investigate the brands and design elements that consumers prefer. Subsequently, the degree to which participating consumers liked the five design elements (traditional, transformative, pattern, multi-material, and decorative designs), fast fashion brands, and luxury brands were used as explanatory variables to determine the consumers’ willingness to pay. A multiple regression analysis was performed on these variables. The results indicated that consumers who preferred traditional and transformative designs showed a positive effect on their willingness to pay for denim fabric products. Therefore, these elements could be attractive design elements that may command a high price point in new product planning proposals. Moreover, depending on the type of brand preferred by consumers, the impact of design elements on their purchase intention of denim fabric products has different consequences. This study analyzes the design elements preferred by consumers and contributes to the creation of design proposals by designers and apparel firms.","PeriodicalId":94219,"journal":{"name":"Textiles (Basel, Switzerland)","volume":"2010 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86307856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huy N. Q. Phan, Jyh Hoang Leu, K. Tran, V. Nguyen, Trung Tan Nguyen
Instead of contributing to global warming by the traditional method—burning crop wastes—in this study, discarded pineapple leaves were rapidly turned into multifunctional fibers: pineapple leaf fibers (PALF). In addition, the presence of pure hydrogen during treatment can be a competitive advantage. PALF were extracted by a conventional technique, then immersed into sodium hydroxide 6% before it was treated with an electrolysis system of sodium chloride 3%. The crystallinity index increased 57.4% of treated PALF, and was collected from XRD. Meanwhile, the removal of hemicellulose and lignin in the fiber formation was presented at the absorbance peak of around 1730 cm−1 by FTIR spectrums. Simultaneously, the purity of hydrogen reached 99% and was confirmed by GC analysis. The obtained PALF and hydrogen can be used for further consideration, aiming for a circular economy.
{"title":"Rapid Fabrication of Pineapple Leaf Fibers from Discarded Leaves by Using Electrolysis of Brine","authors":"Huy N. Q. Phan, Jyh Hoang Leu, K. Tran, V. Nguyen, Trung Tan Nguyen","doi":"10.3390/textiles3010001","DOIUrl":"https://doi.org/10.3390/textiles3010001","url":null,"abstract":"Instead of contributing to global warming by the traditional method—burning crop wastes—in this study, discarded pineapple leaves were rapidly turned into multifunctional fibers: pineapple leaf fibers (PALF). In addition, the presence of pure hydrogen during treatment can be a competitive advantage. PALF were extracted by a conventional technique, then immersed into sodium hydroxide 6% before it was treated with an electrolysis system of sodium chloride 3%. The crystallinity index increased 57.4% of treated PALF, and was collected from XRD. Meanwhile, the removal of hemicellulose and lignin in the fiber formation was presented at the absorbance peak of around 1730 cm−1 by FTIR spectrums. Simultaneously, the purity of hydrogen reached 99% and was confirmed by GC analysis. The obtained PALF and hydrogen can be used for further consideration, aiming for a circular economy.","PeriodicalId":94219,"journal":{"name":"Textiles (Basel, Switzerland)","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90782042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin Scheurer, M. Kalthoff, T. Matschei, M. Raupach, T. Gries
In carbon-reinforced concrete, the commonly used steel reinforcement is replaced with carbon fiber reinforcement textiles, enabling thin-walled elements by using new construction principles. The high drapability of textiles offers design opportunities for new concrete structures. However, commonly utilized textiles are impregnated with comparatively stiff polymeric materials to ensure load transmission into the textile, limiting drapability. In this paper, a new approach is analyzed: the use of pre-impregnated textiles cured within the concrete matrix. This enables the production of filigree, highly curved components with high mechanical performance, as needed for novel additive manufacturing methods. In the presented trials, rovings were successfully impregnated with potential impregnation materials, cured within the concrete, and compared to rovings cured outside of the concrete. The analysis of the curing process using a rolling ball test determines that all materials have to be placed in concrete 4 to 24 h after impregnation. The results of uniaxial tensile tests on reinforced concrete show that maximum load is increased by up to 87% for rovings cured within concrete (compared to non-impregnated rovings). This load increase was higher for rovings cured outside of concrete (up to 185%), indicating that the concrete environment interferes with the curing process, requiring further analysis and adaptation.
{"title":"Analysis of Curing and Mechanical Performance of Pre-Impregnated Carbon Fibers Cured within Concrete","authors":"Martin Scheurer, M. Kalthoff, T. Matschei, M. Raupach, T. Gries","doi":"10.3390/textiles2040038","DOIUrl":"https://doi.org/10.3390/textiles2040038","url":null,"abstract":"In carbon-reinforced concrete, the commonly used steel reinforcement is replaced with carbon fiber reinforcement textiles, enabling thin-walled elements by using new construction principles. The high drapability of textiles offers design opportunities for new concrete structures. However, commonly utilized textiles are impregnated with comparatively stiff polymeric materials to ensure load transmission into the textile, limiting drapability. In this paper, a new approach is analyzed: the use of pre-impregnated textiles cured within the concrete matrix. This enables the production of filigree, highly curved components with high mechanical performance, as needed for novel additive manufacturing methods. In the presented trials, rovings were successfully impregnated with potential impregnation materials, cured within the concrete, and compared to rovings cured outside of the concrete. The analysis of the curing process using a rolling ball test determines that all materials have to be placed in concrete 4 to 24 h after impregnation. The results of uniaxial tensile tests on reinforced concrete show that maximum load is increased by up to 87% for rovings cured within concrete (compared to non-impregnated rovings). This load increase was higher for rovings cured outside of concrete (up to 185%), indicating that the concrete environment interferes with the curing process, requiring further analysis and adaptation.","PeriodicalId":94219,"journal":{"name":"Textiles (Basel, Switzerland)","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87969224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W. Akhtar, C. Watanabe, Y. Tou, Pekka Neittaanmäki
The textile and apparel (fashion) industry has been influenced by developments in societal socio-cultural and economic structures. Due to a change in people’s preferences from economic functionality to supra-functionality beyond economic value, the fashion industry is at the forefront of digitalization. The growing digitalization in the fashion industry corresponds to digital fashion, which can satisfy the rapid shift in consumers’ preferences. This paper explores the evolving con-cept of innovations in digital fashion in the textile and apparel industry. Specifically, it centers on the evaluation of Amazon’s digital fashion initiatives, which have made the platform the United States’ top fashion retailer. An analysis of the business model of Amazon’s digital fashion business showed that with the advancements in artificial intelligence (AI) powered by advanced Amazon Web Services (AWS), Amazon has introduced novel digital solutions for the fashion industry, such as advanced digital fashions (ADFs), on-demand manufacturing, neo-luxury, and, ultimately, cloud-based digital fashion platforms, that is, a supra-omnichannel, where all stakeholders are integrated, and their activities are visible in real time. This can be attributed to the learning orchestration externality strategy. This study concludes that with the advancement of digital innovations, Amazon has fused a self-propagating function that advances digital solutions. This study shows that Amazon is the largest R&D company. Its R&D process is based on users’ knowledge gained by their participation through AWS-driven ICT tools. This promotes a culture of experimentation in the development of user-driven innovations. Such innovations have further advanced the functionality of AWS in data analysis and business solutions. This dynamism promotes the development of soft innovation resources and revenue streams. These endeavors are demonstrated in a model, and their reliability is validated through an empirical analysis focused on the emergence of ADF solutions. Therefore, based on an analysis of the development trajectories of Amazon’s digital fashion technologies, such as ADFs, on-demand manufacturing, and neo-luxury, insightful suggestions and a framework for solutions beyond e-commerce are provided.
{"title":"A New Perspective on the Textile and Apparel Industry in the Digital Transformation Era","authors":"W. Akhtar, C. Watanabe, Y. Tou, Pekka Neittaanmäki","doi":"10.3390/textiles2040037","DOIUrl":"https://doi.org/10.3390/textiles2040037","url":null,"abstract":"The textile and apparel (fashion) industry has been influenced by developments in societal socio-cultural and economic structures. Due to a change in people’s preferences from economic functionality to supra-functionality beyond economic value, the fashion industry is at the forefront of digitalization. The growing digitalization in the fashion industry corresponds to digital fashion, which can satisfy the rapid shift in consumers’ preferences. This paper explores the evolving con-cept of innovations in digital fashion in the textile and apparel industry. Specifically, it centers on the evaluation of Amazon’s digital fashion initiatives, which have made the platform the United States’ top fashion retailer. An analysis of the business model of Amazon’s digital fashion business showed that with the advancements in artificial intelligence (AI) powered by advanced Amazon Web Services (AWS), Amazon has introduced novel digital solutions for the fashion industry, such as advanced digital fashions (ADFs), on-demand manufacturing, neo-luxury, and, ultimately, cloud-based digital fashion platforms, that is, a supra-omnichannel, where all stakeholders are integrated, and their activities are visible in real time. This can be attributed to the learning orchestration externality strategy. This study concludes that with the advancement of digital innovations, Amazon has fused a self-propagating function that advances digital solutions. This study shows that Amazon is the largest R&D company. Its R&D process is based on users’ knowledge gained by their participation through AWS-driven ICT tools. This promotes a culture of experimentation in the development of user-driven innovations. Such innovations have further advanced the functionality of AWS in data analysis and business solutions. This dynamism promotes the development of soft innovation resources and revenue streams. These endeavors are demonstrated in a model, and their reliability is validated through an empirical analysis focused on the emergence of ADF solutions. Therefore, based on an analysis of the development trajectories of Amazon’s digital fashion technologies, such as ADFs, on-demand manufacturing, and neo-luxury, insightful suggestions and a framework for solutions beyond e-commerce are provided.","PeriodicalId":94219,"journal":{"name":"Textiles (Basel, Switzerland)","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76842775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Shah, Muhmmad Shahid, Naveed Ahmad Siddiqui, Yasir Nawab, M. Iqbal
Textiles-fibres, yarns and fabrics are omnipresent in our daily lives, with unique mechanical properties that fit the design specifications for the tasks for which they are designed. The development of yarns and fabrics with negative Poisson’s ratio (NPR) is an area of current research interest due to their potential for use in high performance textiles (e.g., military, sports, etc.). The unique braiding technology of interlacement for preparation of braided helically wrapped yarns with NPR effect with later development of auxetic woven fabric made it possible to avoid the slippage of the wrapped component from the core. The applied geometrical configuration and NPR behaviour of the braided helical yarn structure with seven different angles comprising of monofilament elastomeric polyurethane (PU) core with two wrap materials that include multifilament ultra-high molecular weight polyethylene (UHMWPE) and polyethylene terephthalate (PET) fibres were investigated and analysed. The mechanically stable 2D woven textile auxetic fabrics (AF) with various weave patterns such as 2/2 matt and 3/1 twill were developed from the auxetic yarn with PU elastomer core having maximum NPR effect of −1.70 using lower wrapped angle of 9° to study and compare their mechanical responses. The auxetic yarn was used in weft direction and multifilament UHMWPE yarn in warp direction, using semi-automatic loom. Auxeticity of AF was analysed and its various mechanical properties such tensile strength, impact energy absorption, in-plane, and out-of-plane auxeticity, and puncture resistance were studied. Higher energy absorption of 84 Nm for matt fabric was seen compared to twill fabric having an energy of 65 Nm. The puncture resistance capability of matt fabric was better than twill fabric. While twill fabric exhibited better auxetic effect in both in-plane and out-of-plane mode compared to matt fabric. In short, both the twill and matt design AF’s showed unique characteristics which are beneficial in making various protective textiles such as protective helmets, bullet proof shields, cut resistance gloves, blast resistant curtains, and puncture tolerant elastomeric composites.
{"title":"Effect of Geometric Arrangement on Mechanical Properties of 2D Woven Auxetic Fabrics","authors":"A. Shah, Muhmmad Shahid, Naveed Ahmad Siddiqui, Yasir Nawab, M. Iqbal","doi":"10.3390/textiles2040035","DOIUrl":"https://doi.org/10.3390/textiles2040035","url":null,"abstract":"Textiles-fibres, yarns and fabrics are omnipresent in our daily lives, with unique mechanical properties that fit the design specifications for the tasks for which they are designed. The development of yarns and fabrics with negative Poisson’s ratio (NPR) is an area of current research interest due to their potential for use in high performance textiles (e.g., military, sports, etc.). The unique braiding technology of interlacement for preparation of braided helically wrapped yarns with NPR effect with later development of auxetic woven fabric made it possible to avoid the slippage of the wrapped component from the core. The applied geometrical configuration and NPR behaviour of the braided helical yarn structure with seven different angles comprising of monofilament elastomeric polyurethane (PU) core with two wrap materials that include multifilament ultra-high molecular weight polyethylene (UHMWPE) and polyethylene terephthalate (PET) fibres were investigated and analysed. The mechanically stable 2D woven textile auxetic fabrics (AF) with various weave patterns such as 2/2 matt and 3/1 twill were developed from the auxetic yarn with PU elastomer core having maximum NPR effect of −1.70 using lower wrapped angle of 9° to study and compare their mechanical responses. The auxetic yarn was used in weft direction and multifilament UHMWPE yarn in warp direction, using semi-automatic loom. Auxeticity of AF was analysed and its various mechanical properties such tensile strength, impact energy absorption, in-plane, and out-of-plane auxeticity, and puncture resistance were studied. Higher energy absorption of 84 Nm for matt fabric was seen compared to twill fabric having an energy of 65 Nm. The puncture resistance capability of matt fabric was better than twill fabric. While twill fabric exhibited better auxetic effect in both in-plane and out-of-plane mode compared to matt fabric. In short, both the twill and matt design AF’s showed unique characteristics which are beneficial in making various protective textiles such as protective helmets, bullet proof shields, cut resistance gloves, blast resistant curtains, and puncture tolerant elastomeric composites.","PeriodicalId":94219,"journal":{"name":"Textiles (Basel, Switzerland)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86494853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heitor Luiz Ornaghi Júnior, R. Neves, F. Monticeli, Lucas Dall Agnol
Textiles have been used in our daily life since antiquity in both economies and social relationships. Nowadays, there has never been a greater desire for intelligent materials. Smart fabric textiles with high-quality and high-performance fiber manufacturing with specific functions represented by clothing and apparel brands (such as astronaut suits that can regulate temperature and control muscle vibrations) are becoming increasingly prominent. Product applications also extend from the field of life clothing to the medical/health, ecology/environmental protection, and military/aerospace fields. In this context, this review proposes to demonstrate the recent advances and challenges regarding smart fabric textiles. The possibilities of innovative smart textiles extending the overall usefulness and functionalities of standard fabrics are immense in the fields of medical devices, fashion, entertainment, and defense, considering sufficient comfort as a parameter necessary for users to accept wearable devices. Smart textile devices require a multidisciplinary approach regarding the circuit design of the development of intelligent textiles, as the knowledge of intelligent materials, microelectronics, and chemistry are integrated with a deep understanding of textile production for optimum results.
{"title":"Smart Fabric Textiles: Recent Advances and Challenges","authors":"Heitor Luiz Ornaghi Júnior, R. Neves, F. Monticeli, Lucas Dall Agnol","doi":"10.3390/textiles2040034","DOIUrl":"https://doi.org/10.3390/textiles2040034","url":null,"abstract":"Textiles have been used in our daily life since antiquity in both economies and social relationships. Nowadays, there has never been a greater desire for intelligent materials. Smart fabric textiles with high-quality and high-performance fiber manufacturing with specific functions represented by clothing and apparel brands (such as astronaut suits that can regulate temperature and control muscle vibrations) are becoming increasingly prominent. Product applications also extend from the field of life clothing to the medical/health, ecology/environmental protection, and military/aerospace fields. In this context, this review proposes to demonstrate the recent advances and challenges regarding smart fabric textiles. The possibilities of innovative smart textiles extending the overall usefulness and functionalities of standard fabrics are immense in the fields of medical devices, fashion, entertainment, and defense, considering sufficient comfort as a parameter necessary for users to accept wearable devices. Smart textile devices require a multidisciplinary approach regarding the circuit design of the development of intelligent textiles, as the knowledge of intelligent materials, microelectronics, and chemistry are integrated with a deep understanding of textile production for optimum results.","PeriodicalId":94219,"journal":{"name":"Textiles (Basel, Switzerland)","volume":"331 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74414278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Textiles journal is a peer-reviewed, open-access journal, officially launched in 2020 [...]
纺织品杂志是一本同行评审的开放获取期刊,于2020年正式推出[…]
{"title":"New Research Trends for Textiles","authors":"L. Dufossé","doi":"10.3390/textiles2040033","DOIUrl":"https://doi.org/10.3390/textiles2040033","url":null,"abstract":"The Textiles journal is a peer-reviewed, open-access journal, officially launched in 2020 [...]","PeriodicalId":94219,"journal":{"name":"Textiles (Basel, Switzerland)","volume":"95 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86228946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}