首页 > 最新文献

The International journal of developmental biology最新文献

英文 中文
DUX4, the rockstar of embryonic genome activation? DUX4,胚胎基因组激活的摇滚明星?
Pub Date : 2024-05-13 DOI: 10.1387/ijdb.230247sn
Sonja Nykänen, Sanna Vuoristo

During the initial days of development, the embryo gradually shifts from reliance on maternally provided RNAs and proteins to regulation of its own development. This transition is marked by embryonic genome activation (EGA). While the factors driving human EGA remain poorly characterized, accumulating evidence suggests that double homeobox 4 (DUX4) is an important regulator of this process. Despite advances in single-cell methods which have allowed studies in early human embryos, fundamental questions regarding the function and regulation of DUX4 persist. Here, we review current knowledge of DUX4 with a focus on EGA in humans.

在胚胎发育的最初几天,胚胎逐渐从依赖母体提供的核糖核酸(RNA)和蛋白质转变为调节自身发育。胚胎基因组激活(EGA)就是这一转变的标志。虽然驱动人类 EGA 的因素特征尚不明确,但越来越多的证据表明,双同源染色体 4(DUX4)是这一过程的重要调节因子。尽管单细胞方法的进步使得人类早期胚胎的研究成为可能,但有关 DUX4 功能和调控的基本问题依然存在。在此,我们回顾了目前有关 DUX4 的知识,重点是人类的 EGA。
{"title":"DUX4, the rockstar of embryonic genome activation?","authors":"Sonja Nykänen, Sanna Vuoristo","doi":"10.1387/ijdb.230247sn","DOIUrl":"https://doi.org/10.1387/ijdb.230247sn","url":null,"abstract":"<p><p>During the initial days of development, the embryo gradually shifts from reliance on maternally provided RNAs and proteins to regulation of its own development. This transition is marked by embryonic genome activation (EGA). While the factors driving human EGA remain poorly characterized, accumulating evidence suggests that double homeobox 4 (DUX4) is an important regulator of this process. Despite advances in single-cell methods which have allowed studies in early human embryos, fundamental questions regarding the function and regulation of DUX4 persist. Here, we review current knowledge of DUX4 with a focus on EGA in humans.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141072389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wnt target gene Ascl4 is dispensable for skin appendage development. Wnt靶基因Ascl4对皮肤附属器官的发育是不可或缺的。
Pub Date : 2024-05-13 DOI: 10.1387/ijdb.240007vp
Verdiana Papagno, Ana-Marija Sulic, Jyoti P Satta, Aida Kaffash Hoshiar, Vinod Kumar, Jukka Jernvall, Marja L Mikkola

The development of skin appendages, including hair follicles, teeth and mammary glands is initiated through the formation of the placode, a local thickening of the epithelium. The Wnt/β-catenin signaling cascade is an evolutionary conserved pathway with an essential role in placode morphogenesis, but its downstream targets and their exact functions remain ill defined. In this study, we identify Achaete-scute complex-like 4 (Ascl4) as a novel target of the Wnt/β-catenin pathway and demonstrate its expression pattern in the signaling centers of developing hair follicles and teeth. Ascl transcription factors belong to the superfamily of basic helix-loop-helix transcriptional regulators involved in cell fate determination in many tissues. However, their specific role in the developing skin remains largely unknown. We report that Ascl4 null mice have no overt phenotype. Absence of Ascl4 did not impair hair follicle morphogenesis or hair shaft formation suggesting that it is non-essential for hair follicle development. No tooth or mammary gland abnormalities were detected either. We suggest that other transcription factors may functionally compensate for the absence of Ascl4, but further research is warranted to assess this possibility.

皮肤附属物(包括毛囊、牙齿和乳腺)的发育始于胎盘的形成,胎盘是上皮细胞的局部增厚。Wnt/β-catenin信号级联是一条进化保守的通路,在胎盘的形态发生中起着至关重要的作用,但其下游靶点及其确切功能仍未明确。在这项研究中,我们发现Achaete-scute complex-like 4(Ascl4)是Wnt/β-catenin通路的一个新靶点,并证明了它在发育中的毛囊和牙齿信号中心的表达模式。Ascl转录因子属于碱性螺旋-环-螺旋转录调节因子超家族,参与许多组织的细胞命运决定。然而,它们在皮肤发育过程中的具体作用在很大程度上仍然未知。我们报告说,Ascl4无效小鼠没有明显的表型。Ascl4的缺失并不影响毛囊形态发生或毛干的形成,这表明Ascl4对毛囊发育并不重要。也没有发现牙齿或乳腺异常。我们认为,其他转录因子可能会在功能上弥补 Ascl4 的缺失,但还需要进一步的研究来评估这种可能性。
{"title":"Wnt target gene Ascl4 is dispensable for skin appendage development.","authors":"Verdiana Papagno, Ana-Marija Sulic, Jyoti P Satta, Aida Kaffash Hoshiar, Vinod Kumar, Jukka Jernvall, Marja L Mikkola","doi":"10.1387/ijdb.240007vp","DOIUrl":"https://doi.org/10.1387/ijdb.240007vp","url":null,"abstract":"<p><p>The development of skin appendages, including hair follicles, teeth and mammary glands is initiated through the formation of the placode, a local thickening of the epithelium. The Wnt/β-catenin signaling cascade is an evolutionary conserved pathway with an essential role in placode morphogenesis, but its downstream targets and their exact functions remain ill defined. In this study, we identify <i>Achaete-scute complex-like 4</i> (<i>Ascl4</i>) as a novel target of the Wnt/β-catenin pathway and demonstrate its expression pattern in the signaling centers of developing hair follicles and teeth. Ascl transcription factors belong to the superfamily of basic helix-loop-helix transcriptional regulators involved in cell fate determination in many tissues. However, their specific role in the developing skin remains largely unknown. We report that <i>Ascl4</i> null mice have no overt phenotype. Absence of Ascl4 did not impair hair follicle morphogenesis or hair shaft formation suggesting that it is non-essential for hair follicle development. No tooth or mammary gland abnormalities were detected either. We suggest that other transcription factors may functionally compensate for the absence of Ascl4, but further research is warranted to assess this possibility.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141072393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The GLI code controls HNF1A levels during foregut differentiation. 在前肠分化过程中,GLI代码控制着HNF1A的水平。
Pub Date : 2024-01-17 DOI: 10.1387/ijdb.230220lg
Lucas Unger, Andreas F Mathisen, Simona Chera, Thomas Aga Legøy, Luiza Ghila

Differentiation of human induced pluripotent stem cells towards pancreatic islet endocrine cells is a complex process, involving the stepwise modulation of key developmental pathways, such as the Hedgehog signaling inhibition during early differentiation stages. In tandem with this active inhibition, key transcription factors for the islet endocrine cell fate, such as HNF1A, show specific changes in their expression patterns. Here we designed a pilot study aimed at investigating the potential interconnection between HH-signaling inhibition and the increase in the HNF1A expression during early regeneration, by inducing changes in the GLI code. This unveiled a link between the two, where GLI3-R mediated Hedgehog target genes inhibition is apparently required for HNF1A efficient expression.

人类诱导多能干细胞向胰岛内分泌细胞的分化是一个复杂的过程,涉及对关键发育途径的逐步调节,如在早期分化阶段对刺猬信号的抑制。在这种主动抑制的同时,胰岛内分泌细胞命运的关键转录因子(如 HNF1A)的表达模式也会发生特定的变化。在此,我们设计了一项试验性研究,旨在通过诱导 GLI 编码的变化,研究 HH 信号抑制与早期再生过程中 HNF1A 表达增加之间的潜在相互联系。这揭示了两者之间的联系,即 GLI3-R 介导的刺猬靶基因抑制显然是 HNF1A 有效表达所必需的。
{"title":"The GLI code controls HNF1A levels during foregut differentiation.","authors":"Lucas Unger, Andreas F Mathisen, Simona Chera, Thomas Aga Legøy, Luiza Ghila","doi":"10.1387/ijdb.230220lg","DOIUrl":"https://doi.org/10.1387/ijdb.230220lg","url":null,"abstract":"<p><p>Differentiation of human induced pluripotent stem cells towards pancreatic islet endocrine cells is a complex process, involving the stepwise modulation of key developmental pathways, such as the Hedgehog signaling inhibition during early differentiation stages. In tandem with this active inhibition, key transcription factors for the islet endocrine cell fate, such as HNF1A, show specific changes in their expression patterns. Here we designed a pilot study aimed at investigating the potential interconnection between HH-signaling inhibition and the increase in the HNF1A expression during early regeneration, by inducing changes in the GLI code. This unveiled a link between the two, where GLI3-R mediated Hedgehog target genes inhibition is apparently required for HNF1A efficient expression.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139547919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developmental relationship between junctional epithelium and epithelial rests of Malassez. 交界上皮细胞与马拉色斯上皮细胞间的发育关系
Pub Date : 2024-01-01 DOI: 10.1387/ijdb.230243sl
Shubo Li, Shufang Li, Mingguo Cao

Keratin 17 (K17) is thought to be a candidate target gene for regulation by Lymphoid Enhancer Factor-1 (Lef-1). K17 is a marker that distinguishes junctional epithelium (JE) from epithelial rests of Malassez (ERM). However, the relationship of Lef-1 to K17 is not clear in this context. Moreover, the expression of other keratins such as K5, K6, K7 and K16 is not reported. Therefore, the aim of our study was to assay the expression of K5, K6, K7, K14, K16, K17 and Lef-1 in postnatal developing teeth, and clarify the corresponding immunophenotypes of the JE and ERM. Upper jaws of Wistar rats aged from postnatal (PN) day 3.5 to PN21 were used and processed for immunohistochemistry. K5 and K14 were intensely expressed in inner enamel epithelium (IEE), reduced enamel epithelium (REE), ERM and JE. There was no staining for K16 in the tissue, except for strong staining in the oral epithelium. Specifically, at PN3.5 and PN7, K17 was initially strongly expressed and then negative in the IEE. At PN16 and PN21, both REE and ERM were strongly stained for K17, whereas K17 was negative in the JE. In addition, K6, K7 and Lef-1 were not detected in any tissue investigated. REE and ERM have an identical keratin expression pattern before eruption, while JE differs from ERM in the expression of K17 after eruption. The expression of K17 does not coincide with that of Lef-1. These data indicate that JE has a unique phenotype different from ERM, which is of odontogenic origin.

角蛋白 17(K17)被认为是受淋巴增强因子-1(Lef-1)调控的候选靶基因。K17 是区分交界上皮(JE)和马拉色斯上皮休止期(ERM)的标记。然而,在这种情况下,Lef-1 与 K17 的关系并不明确。此外,其他角蛋白如 K5、K6、K7 和 K16 的表达也未见报道。因此,我们的研究旨在检测 K5、K6、K7、K14、K16、K17 和 Lef-1 在出生后发育牙齿中的表达,并明确 JE 和 ERM 的相应免疫表型。使用出生后(PN)第 3.5 天至 PN21 天的 Wistar 大鼠的上颚并对其进行免疫组化处理。K5 和 K14 在内侧釉质上皮(IEE)、还原釉质上皮(REE)、ERM 和 JE 中强烈表达。除了口腔上皮的强染色外,组织中没有 K16 的染色。具体来说,在 PN3.5 和 PN7 时,K17 最初在 IEE 中强表达,随后呈阴性。在 PN16 和 PN21,REE 和 ERM 中的 K17 均呈强染色,而 JE 中的 K17 则呈阴性。此外,K6、K7 和 Lef-1 在所调查的任何组织中均未检测到。REE 和 ERM 在糜烂前的角蛋白表达模式相同,而 JE 在糜烂后的 K17 表达与 ERM 不同。K17 的表达与 Lef-1 的表达不一致。这些数据表明,JE具有不同于ERM的独特表型,而ERM是牙源性的。
{"title":"Developmental relationship between junctional epithelium and epithelial rests of Malassez.","authors":"Shubo Li, Shufang Li, Mingguo Cao","doi":"10.1387/ijdb.230243sl","DOIUrl":"https://doi.org/10.1387/ijdb.230243sl","url":null,"abstract":"<p><p><i>Keratin 17</i> (K17) is thought to be a candidate target gene for regulation by Lymphoid Enhancer Factor-1 (Lef-1)<i>.</i> K17 is a marker that distinguishes junctional epithelium (JE) from epithelial rests of Malassez (ERM). However, the relationship of Lef-1 to K17 is not clear in this context. Moreover, the expression of other keratins such as K5, K6, K7 and K16 is not reported. Therefore, the aim of our study was to assay the expression of K5, K6, K7, K14, K16, K17 and Lef-1 in postnatal developing teeth, and clarify the corresponding immunophenotypes of the JE and ERM. Upper jaws of Wistar rats aged from postnatal (PN) day 3.5 to PN21 were used and processed for immunohistochemistry. K5 and K14 were intensely expressed in inner enamel epithelium (IEE), reduced enamel epithelium (REE), ERM and JE. There was no staining for K16 in the tissue, except for strong staining in the oral epithelium. Specifically, at PN3.5 and PN7, K17 was initially strongly expressed and then negative in the IEE. At PN16 and PN21, both REE and ERM were strongly stained for K17, whereas K17 was negative in the JE. In addition, K6, K7 and Lef-1 were not detected in any tissue investigated. REE and ERM have an identical keratin expression pattern before eruption, while JE differs from ERM in the expression of K17 after eruption. The expression of K17 does not coincide with that of Lef-1. These data indicate that JE has a unique phenotype different from ERM, which is of odontogenic origin.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140873140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of neural crest formation by mechanical force in Xenopus development. 爪蟾发育过程中机械力对神经嵴形成的促进作用
Pub Date : 2024-01-01 DOI: 10.1387/ijdb.230273tm
Toki Kaneshima, Masaki Ogawa, Takayoshi Yamamoto, Yosuke Tsuboyama, Yuki Miyata, Takahiro Kotani, Takaharu Okajima, Tatsuo Michiue

In vertebrate development, ectoderm is specified into neural plate (NP), neural plate border (NPB), and epidermis. Although such patterning is thought to be achieved by molecular concentration gradients, it has been revealed, mainly by in vitro analysis, that mechanical force can regulate cell specification. During in vivo patterning, cells deform and migrate, and this applies force to surrounding tissues, shaping the embryo. However, the role of mechanical force for cell specification in vivo is largely unknown. In this study, with an aspiration assay and atomic force microscopy, we have demonstrated that tension on ectodermal cells decreases laterally from the midline in Xenopus early neurula. Ectopically applied force laterally expanded the neural crest (NC) region, a derivative of the NPB, whereas force relaxation suppressed it. Furthermore, force application activated both the FGF and Wnt pathways, which are required for NC formation during neuroectodermal patterning. Taken together, mechanical force is necessary for NC formation in order to regulate signaling pathways. Furthermore, molecular signals specify the NP and generate force on neighboring tissue, the NPB, with its closure. This force activates signals, possibly determining the appropriate width of a narrow tissue, the NC.

在脊椎动物的发育过程中,外胚层分为神经板(NP)、神经板边缘(NPB)和表皮。虽然这种模式化被认为是通过分子浓度梯度实现的,但主要通过体外分析发现,机械力可以调节细胞的模式化。在体内模式化过程中,细胞会变形和迁移,从而对周围组织产生作用力,塑造胚胎。然而,机械力对体内细胞分化的作用在很大程度上是未知的。在这项研究中,我们利用抽吸试验和原子力显微镜证明,在爪蟾早期神经细胞中,外胚层细胞所受的张力从中线向横向递减。外施力会使神经嵴(NC)区域(NPB 的衍生物)横向扩张,而力的松弛则会抑制该区域的扩张。此外,施力同时激活了FGF和Wnt通路,而这两种通路是神经外胚层模式化过程中NC形成所必需的。综上所述,NC的形成需要机械力来调节信号通路。此外,分子信号指定了NP,并在邻近组织NPB闭合时产生作用力。这种力激活了信号,可能决定了狭窄组织 NC 的适当宽度。
{"title":"Enhancement of neural crest formation by mechanical force in <i>Xenopus</i> development.","authors":"Toki Kaneshima, Masaki Ogawa, Takayoshi Yamamoto, Yosuke Tsuboyama, Yuki Miyata, Takahiro Kotani, Takaharu Okajima, Tatsuo Michiue","doi":"10.1387/ijdb.230273tm","DOIUrl":"https://doi.org/10.1387/ijdb.230273tm","url":null,"abstract":"<p><p>In vertebrate development, ectoderm is specified into neural plate (NP), neural plate border (NPB), and epidermis. Although such patterning is thought to be achieved by molecular concentration gradients, it has been revealed, mainly by <i>in vitro</i> analysis, that mechanical force can regulate cell specification. During <i>in vivo</i> patterning, cells deform and migrate, and this applies force to surrounding tissues, shaping the embryo. However, the role of mechanical force for cell specification <i>in vivo</i> is largely unknown. In this study, with an aspiration assay and atomic force microscopy, we have demonstrated that tension on ectodermal cells decreases laterally from the midline in <i>Xenopus</i> early neurula. Ectopically applied force laterally expanded the neural crest (NC) region, a derivative of the NPB, whereas force relaxation suppressed it. Furthermore, force application activated both the FGF and Wnt pathways, which are required for NC formation during neuroectodermal patterning. Taken together, mechanical force is necessary for NC formation in order to regulate signaling pathways. Furthermore, molecular signals specify the NP and generate force on neighboring tissue, the NPB, with its closure. This force activates signals, possibly determining the appropriate width of a narrow tissue, the NC.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140874318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding megasporogenesis through model plants: contemporary evidence and future insights. 通过模式植物了解巨孢子发生:当代证据和未来见解。
Pub Date : 2024-01-01 DOI: 10.1387/ijdb.230222mk
Inderdeep Kaur, Renu Kathpalia, Monika Koul

The megasporangium serves as a model system for understanding the concept of individual cell identity, and cell-to-cell communication in angiosperms. As development of the ovule progresses, three distinct layers, the epidermal (L1), the subepidermal or the hypodermal (L2) and the innermost layers (L3) are formed along the MMC (megaspore mother cell). The MMC, which is the primary female germline cell, is initiated as a single subepidermal cell amongst several somatic cells. MMC development is governed by various regulatory pathways involving intercellular signaling, small RNAs and DNA methylation. The programming and reprograming of a single nucellar cell to enter meiosis is governed by 'permissive' interacting processes and factors. Concomitantly, several nucellar sister cells are prevented from germline fate also by a set of 'repressive' factors. However, in certain angiosperms, anomalies in development of the female gametophyte have been observed. The sporophytic tissue surrounding the female gametophyte affects the gametophyte in multiple ways. The role of genes and transcription factors in the development of the MMC and in the regulation of various processes studied in selected model plants such as Arabidopsis is explained in detail in this paper. However, as angiosperms display enormous diversity, it is important to investigate early stages of megasporogenesis in other plant systems as well. Such studies provide valuable insights in understanding the regulation of megasporogenesis and the evolution of the female gametophyte from gymnosperms to flowering plants.

巨孢子囊是了解被子植物中单个细胞特性和细胞间通讯概念的模型系统。随着胚珠的发育,沿着巨孢子母细胞(MMC)形成了三个不同的层,即表皮层(L1)、亚表皮层或下表皮层(L2)和最内层(L3)。作为主要雌性生殖细胞的 MMC 是由多个体细胞中的一个表皮下细胞开始发育的。MMC的发育受多种调控途径的控制,包括细胞间信号传导、小核糖核酸和DNA甲基化。单个核细胞进入减数分裂的编程和重编程受 "允许的 "相互作用过程和因素的支配。与此同时,一系列 "抑制 "因子也会阻止几个核姊妹细胞进入生殖细胞命运。然而,在某些被子植物中,雌配子体的发育出现了异常。雌配子体周围的孢子体组织会以多种方式影响配子体。本文详细解释了基因和转录因子在雌配子体发育过程中的作用,以及在拟南芥等选定模式植物中研究的各种过程中的调控作用。不过,由于被子植物具有巨大的多样性,因此研究其他植物系统中巨孢子发生的早期阶段也很重要。这些研究为了解巨孢子发生的调控以及雌配子体从裸子植物到开花植物的进化提供了宝贵的见解。
{"title":"Understanding megasporogenesis through model plants: contemporary evidence and future insights.","authors":"Inderdeep Kaur, Renu Kathpalia, Monika Koul","doi":"10.1387/ijdb.230222mk","DOIUrl":"https://doi.org/10.1387/ijdb.230222mk","url":null,"abstract":"<p><p>The megasporangium serves as a model system for understanding the concept of individual cell identity, and cell-to-cell communication in angiosperms. As development of the ovule progresses, three distinct layers, the epidermal (L1), the subepidermal or the hypodermal (L2) and the innermost layers (L3) are formed along the MMC (megaspore mother cell). The MMC, which is the primary female germline cell, is initiated as a single subepidermal cell amongst several somatic cells. MMC development is governed by various regulatory pathways involving intercellular signaling, small RNAs and DNA methylation. The programming and reprograming of a single nucellar cell to enter meiosis is governed by 'permissive' interacting processes and factors. Concomitantly, several nucellar sister cells are prevented from germline fate also by a set of 'repressive' factors. However, in certain angiosperms, anomalies in development of the female gametophyte have been observed. The sporophytic tissue surrounding the female gametophyte affects the gametophyte in multiple ways. The role of genes and transcription factors in the development of the MMC and in the regulation of various processes studied in selected model plants such as <i>Arabidopsis</i> is explained in detail in this paper. However, as angiosperms display enormous diversity, it is important to investigate early stages of megasporogenesis in other plant systems as well. Such studies provide valuable insights in understanding the regulation of megasporogenesis and the evolution of the female gametophyte from gymnosperms to flowering plants.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140874161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disrupted odontoblast differentiation and dentin dysplasia in Epiprofin-deficient mice. 表皮生长因子缺陷小鼠牙本质分化紊乱和牙本质发育不良
Pub Date : 2024-01-01 DOI: 10.1387/ijdb.240029lj
Lucia Jiménez-Rojo, Susana de Vega, Gaskon Ibarretxe, Takashi Nakamura, Fernando J Unda

Tooth formation is a process tightly regulated by reciprocal interactions between epithelial and mesenchymal tissues. These epithelial-mesenchyme interactions regulate the expression of target genes via transcription factors. Among the regulatory elements governing this process, Epiprofin/Sp6 is a zinc finger transcription factor which is expressed in the embryonic dental epithelium and in differentiating pre-odontoblasts. Epiprofin knockout (Epfn-/-) mice present severe dental abnormalities, such as supernumerary teeth and enamel hypoplasia. Here, we describe dentin defects in molars and incisors of Epfn-/- mice. We observed that in the absence of Epfn, markers of early odontoblast differentiation, such as alkaline phosphatase activity, Dsp/Dpp expression, and Collagen Type I deposition, are downregulated. In addition, the expression of tight and gap junction proteins was severely impaired in the predontoblastic cell layer of developing Epfn-/- molars. Altogether, our data shows that Epfn is crucial for the proper differentiation of dental mesenchymal cells towards functional odontoblasts and subsequent dentin-matrix deposition.

牙齿的形成过程受到上皮组织和间充质组织之间相互影响的严格调控。这些上皮-间质相互作用通过转录因子调控目标基因的表达。在这一过程的调控因子中,Epiprofin/Sp6 是一种锌指转录因子,在胚胎牙上皮和分化前牙本质中均有表达。Epiprofin 基因敲除(Epfn-/-)小鼠表现出严重的牙齿异常,如超常牙齿和釉质发育不全。在这里,我们描述了 Epfn-/- 小鼠臼齿和门齿的牙本质缺陷。我们观察到,在Epfn缺失的情况下,早期牙本质分化的标志物,如碱性磷酸酶活性、Dsp/Dpp表达和胶原蛋白I型沉积都会下调。此外,在发育中的Epfn-/-臼齿的前颌骨细胞层中,紧密连接蛋白和间隙连接蛋白的表达严重受损。总之,我们的数据表明,Epfn对牙齿间充质细胞向功能性牙本质细胞的适当分化以及随后的牙本质基质沉积至关重要。
{"title":"Disrupted odontoblast differentiation and dentin dysplasia in <i>Epiprofin</i>-deficient mice.","authors":"Lucia Jiménez-Rojo, Susana de Vega, Gaskon Ibarretxe, Takashi Nakamura, Fernando J Unda","doi":"10.1387/ijdb.240029lj","DOIUrl":"https://doi.org/10.1387/ijdb.240029lj","url":null,"abstract":"<p><p>Tooth formation is a process tightly regulated by reciprocal interactions between epithelial and mesenchymal tissues. These epithelial-mesenchyme interactions regulate the expression of target genes via transcription factors. Among the regulatory elements governing this process, Epiprofin/Sp6 is a zinc finger transcription factor which is expressed in the embryonic dental epithelium and in differentiating pre-odontoblasts. <i>Epiprofin</i> knockout (<i>Epfn</i>-/-) mice present severe dental abnormalities, such as supernumerary teeth and enamel hypoplasia. Here, we describe dentin defects in molars and incisors of <i>Epfn</i>-/- mice. We observed that in the absence of Epfn, markers of early odontoblast differentiation, such as alkaline phosphatase activity, <i>Dsp/Dpp</i> expression, and Collagen Type I deposition, are downregulated. In addition, the expression of tight and gap junction proteins was severely impaired in the predontoblastic cell layer of developing <i>Epfn</i>-/- molars. Altogether, our data shows that Epfn is crucial for the proper differentiation of dental mesenchymal cells towards functional odontoblasts and subsequent dentin-matrix deposition.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140870544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estrogen signaling in development: recent insights from the zebrafish. 发育过程中的雌激素信号传导:斑马鱼的最新研究成果。
Pub Date : 2024-01-01 DOI: 10.1387/ijdb.230116rw
Hannah M Wesselman, Rebecca A Wingert

While traditionally recognized as a sex hormone, estrogen has a potent effect on the development of tissues beyond those of the reproductive system. Estrogen synthesis enzymes and estrogen receptors are broadly expressed in vertebrate tissues, further indicating their importance in various processes. These include the tissues of the zebrafish, which is a particularly suitable model for studying early development due to its rapid ex utero ontogeny and conserved genetic and cellular composition with other vertebrates. In this review, we provide readers with an overview of estrogen signaling, discuss important attributes of the zebrafish animal model with a special focus on the kidney, and explore recent insights from zebrafish studies about the roles of estrogen signaling in organogenesis across germ layer derivatives that range from the kidney to the brain and liver.

虽然雌激素在传统上被认为是一种性激素,但它对生殖系统以外的组织发育也有很大影响。雌激素合成酶和雌激素受体在脊椎动物组织中广泛表达,进一步表明了它们在各种过程中的重要性。其中包括斑马鱼的组织,斑马鱼是研究早期发育的一个特别合适的模型,因为斑马鱼在子宫外发育迅速,其基因和细胞组成与其他脊椎动物一致。在这篇综述中,我们将为读者介绍雌激素信号传导的概况,讨论斑马鱼动物模型的重要特性,特别关注肾脏,并探讨斑马鱼研究中关于雌激素信号传导在从肾脏到大脑和肝脏等胚层衍生物的器官发生中的作用的最新见解。
{"title":"Estrogen signaling in development: recent insights from the zebrafish.","authors":"Hannah M Wesselman, Rebecca A Wingert","doi":"10.1387/ijdb.230116rw","DOIUrl":"10.1387/ijdb.230116rw","url":null,"abstract":"<p><p>While traditionally recognized as a sex hormone, estrogen has a potent effect on the development of tissues beyond those of the reproductive system. Estrogen synthesis enzymes and estrogen receptors are broadly expressed in vertebrate tissues, further indicating their importance in various processes. These include the tissues of the zebrafish, which is a particularly suitable model for studying early development due to its rapid <i>ex utero</i> ontogeny and conserved genetic and cellular composition with other vertebrates. In this review, we provide readers with an overview of estrogen signaling, discuss important attributes of the zebrafish animal model with a special focus on the kidney, and explore recent insights from zebrafish studies about the roles of estrogen signaling in organogenesis across germ layer derivatives that range from the kidney to the brain and liver.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139992195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of changes of apelin and apelin receptor (APJ) expression in cervix-uterus and placental axis in an LPS-induced preterm labor model. 评估LPS诱导早产模型中子宫颈和胎盘轴中apelin和apelin受体(APJ)表达的变化。
Pub Date : 2023-01-01 DOI: 10.1387/ijdb.230156sa
Sema Avci, Ezgi Golal, Nuray Acar

Although preterm birth is among the preventable causes of maternal and infant death, its mechanism has not yet been clarified. When evaluated in terms of the results, the psycho-social burden of mother-infant losses and the costs of rehabilitation, care, and treatment for postpartum sequelae are high. When evaluated in terms of its causes, infection/inflammation has an important place. Therefore, it is essential to understand the role of pro- and anti-inflammatory proteins in the process. In our study, apelin and apelin receptor (APJ) expression in the cervix-uterus and placental axis were evaluated at tissue and protein levels in pregnant and non-pregnant control, sham, PBS, and LPS groups in the infection model in which LPS induction was performed by midline laparotomy, in CD-1 mice. The evaluation of this axis regarding apelin and apelin receptor in the preterm birth model is new in the literature. Apelin is expressed more intensely in uterine epithelial cells than in the cervix. In the placenta, expression is more intense in the junctional zone compared to other zones. Apelin protein levels decrease significantly in the cervix and placenta whereas it increases in the uterus. While no change was observed in the expression of the apelin receptor at the tissue and protein level in the cervix and uterus, it increased in both aspects in the placenta in the invasive procedure groups. We propose that the decrease in apelin protein due to LPS in the preterm delivery model may be related to the effort to compensate for the balance deteriorated in the pro-inflammatory direction with post-transitional modification at the tissue level. The tendency of apelin to increase with pregnancy has led to the conclusion that it is necessary for a healthy pregnancy. Although the apelin receptor does not change with inflammation, it is necessary to investigate the mechanisms associated with its stress and trauma-induced increase, since it increases in the invasive procedure group.

尽管早产是可预防的母婴死亡原因之一,但其机制尚未阐明。当根据结果进行评估时,母婴损失的心理社会负担以及产后后遗症的康复、护理和治疗费用都很高。当根据其原因进行评估时,感染/炎症具有重要地位。因此,了解促炎和抗炎蛋白在这一过程中的作用至关重要。在我们的研究中,在CD-1小鼠的感染模型中,在组织和蛋白质水平上评估了妊娠和非妊娠对照组、假手术组、PBS组和LPS组中子宫颈、子宫颈和胎盘轴中apelin和apelin受体(APJ)的表达,在感染模型中通过中线剖腹术进行LPS诱导。关于早产模型中apelin和apelin受体的这一轴的评估在文献中是新的。Apelin在子宫上皮细胞中的表达比在宫颈中更强烈。在胎盘中,与其他区域相比,交界区的表达更强烈。Apelin蛋白水平在子宫颈和胎盘中显著降低,而在子宫中则增加。虽然在宫颈和子宫的组织和蛋白质水平上没有观察到apelin受体的表达变化,但在侵入性手术组的胎盘中,它在这两个方面都增加了。我们提出,在早产模型中,LPS导致的apelin蛋白的减少可能与在组织水平上通过过渡后修饰来补偿促炎方向上恶化的平衡有关。apelin随妊娠期增加的趋势导致了一个结论,即它对健康妊娠是必要的。尽管apelin受体不会随着炎症而改变,但有必要研究其应激和创伤诱导的增加的机制,因为它在侵入性手术组中增加。
{"title":"Evaluation of changes of apelin and apelin receptor (APJ) expression in cervix-uterus and placental axis in an LPS-induced preterm labor model.","authors":"Sema Avci, Ezgi Golal, Nuray Acar","doi":"10.1387/ijdb.230156sa","DOIUrl":"10.1387/ijdb.230156sa","url":null,"abstract":"<p><p>Although preterm birth is among the preventable causes of maternal and infant death, its mechanism has not yet been clarified. When evaluated in terms of the results, the psycho-social burden of mother-infant losses and the costs of rehabilitation, care, and treatment for postpartum sequelae are high. When evaluated in terms of its causes, infection/inflammation has an important place. Therefore, it is essential to understand the role of pro- and anti-inflammatory proteins in the process. In our study, apelin and apelin receptor (APJ) expression in the cervix-uterus and placental axis were evaluated at tissue and protein levels in pregnant and non-pregnant control, sham, PBS, and LPS groups in the infection model in which LPS induction was performed by midline laparotomy, in CD-1 mice. The evaluation of this axis regarding apelin and apelin receptor in the preterm birth model is new in the literature. Apelin is expressed more intensely in uterine epithelial cells than in the cervix. In the placenta, expression is more intense in the junctional zone compared to other zones. Apelin protein levels decrease significantly in the cervix and placenta whereas it increases in the uterus. While no change was observed in the expression of the apelin receptor at the tissue and protein level in the cervix and uterus, it increased in both aspects in the placenta in the invasive procedure groups. We propose that the decrease in apelin protein due to LPS in the preterm delivery model may be related to the effort to compensate for the balance deteriorated in the pro-inflammatory direction with post-transitional modification at the tissue level. The tendency of apelin to increase with pregnancy has led to the conclusion that it is necessary for a healthy pregnancy. Although the apelin receptor does not change with inflammation, it is necessary to investigate the mechanisms associated with its stress and trauma-induced increase, since it increases in the invasive procedure group.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71490791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chick chorioallantoic membrane: a valuable 3D in vivo model for screening nanoformulations for tumor antiangiogenic therapeutics. 小鸡绒毛膜:用于筛选肿瘤抗血管生成疗法纳米制剂的宝贵三维体内模型。
Pub Date : 2023-01-01 DOI: 10.1387/ijdb.230198pb
Anna Senrung, Tanya Tripathi, Divya Janjua, Sunita Kumari Yadav, Arun Chhokar, Nikita Aggarwal, Joni Yadav, Apoorva Chaudhary, Udit Joshi, Pallavi Sethi, Alok Chandra Bharti

Drug discovery is an extensive process. From identifying lead compounds to approval for clinical application, it goes through a sequence of labor-intensive in vitro, in vivo preclinical screening and clinical trials. Among thousands of drugs screened only a few get approval for clinical trials. Furthermore, these approved drugs are often discontinued due to systemic toxicity and comorbidity at clinically administered dosages. To overcome these limitations, nanoformulations have emerged as the most sought-after strategy to safely and effectively deliver drugs within tumors at therapeutic concentrations. Most importantly, the employment of suitably variable preclinical models is considered highly critical for the therapeutic evaluation of candidate drugs or their formulations. A review of literature from the past 10 years on antiangiogenic nanoformulations shows the employment of limited types of preclinical models mainly the 2-dimensional (2D) monolayer cell culture and murine models as the mainstay for drug uptake, toxicity and efficiency studies. To top it all, murine models are highly expensive, time-consuming and require expertise in handling them. The current review highlights the utilization of the age-old chicken chorioallantoic membrane (CAM), a well-defined angiogenic model in the investigation of antiangiogenic compounds and nanoformulations in an economic framework. For practical applicability, we have evaluated the CAM model to demonstrate the screening of antiangiogenic compounds and that tumor cells can be implanted onto developing CAM for growing xenografts by recruiting host endothelial and other cellular components. In addition, the exploitation of CAM tumor xenograft models for the evaluation of nanoparticle distribution has also been reinforced by demonstrating that intravenously administered iron oxide nanoparticles (IONPs) passively accumulate and exhibit intracellular as well as extracellular compartment accumulation in highly vascular xenografts. Finally, the ethical considerations, benefits, and drawbacks, of using CAM as an experimental model for testing potential therapeutics are also highlighted.

药物发现是一个漫长的过程。从确定先导化合物到批准临床应用,需要经过一系列劳动密集型的体外、体内临床前筛选和临床试验。在成千上万种经过筛选的药物中,只有少数能获准进行临床试验。此外,这些获批药物在临床用药剂量下往往会因全身毒性和并发症而停药。为了克服这些局限性,纳米制剂已成为在肿瘤内以治疗浓度安全有效地递送药物的最受欢迎的策略。最重要的是,采用适当可变的临床前模型对于候选药物或其制剂的治疗评估至关重要。回顾过去 10 年有关抗血管生成纳米制剂的文献,可以发现临床前模型的类型有限,主要是二维(2D)单层细胞培养和小鼠模型,是药物吸收、毒性和效率研究的主流。最重要的是,小鼠模型成本高、耗时长,而且需要专业的操作技能。本综述重点介绍了如何利用鸡绒毛膜(CAM)这一历史悠久、定义明确的血管生成模型,在经济的框架内研究抗血管生成化合物和纳米制剂。在实际应用方面,我们对 CAM 模型进行了评估,以证明抗血管生成化合物的筛选,以及肿瘤细胞可以通过招募宿主内皮细胞和其他细胞成分,植入发育中的 CAM 上,以生长异种移植物。此外,通过证明静脉注射氧化铁纳米粒子(IONPs)可在高血管性异种移植物中被动积聚并表现出细胞内和细胞外分区积聚,也加强了利用 CAM 肿瘤异种移植物模型评估纳米粒子分布的可能性。最后,还强调了使用 CAM 作为测试潜在疗法的实验模型的伦理考虑因素、益处和缺点。
{"title":"Chick chorioallantoic membrane: a valuable 3D <i>in vivo</i> model for screening nanoformulations for tumor antiangiogenic therapeutics.","authors":"Anna Senrung, Tanya Tripathi, Divya Janjua, Sunita Kumari Yadav, Arun Chhokar, Nikita Aggarwal, Joni Yadav, Apoorva Chaudhary, Udit Joshi, Pallavi Sethi, Alok Chandra Bharti","doi":"10.1387/ijdb.230198pb","DOIUrl":"10.1387/ijdb.230198pb","url":null,"abstract":"<p><p>Drug discovery is an extensive process. From identifying lead compounds to approval for clinical application, it goes through a sequence of labor-intensive <i>in vitro</i>, <i>in vivo</i> preclinical screening and clinical trials. Among thousands of drugs screened only a few get approval for clinical trials. Furthermore, these approved drugs are often discontinued due to systemic toxicity and comorbidity at clinically administered dosages. To overcome these limitations, nanoformulations have emerged as the most sought-after strategy to safely and effectively deliver drugs within tumors at therapeutic concentrations. Most importantly, the employment of suitably variable preclinical models is considered highly critical for the therapeutic evaluation of candidate drugs or their formulations. A review of literature from the past 10 years on antiangiogenic nanoformulations shows the employment of limited types of preclinical models mainly the 2-dimensional (2D) monolayer cell culture and murine models as the mainstay for drug uptake, toxicity and efficiency studies. To top it all, murine models are highly expensive, time-consuming and require expertise in handling them. The current review highlights the utilization of the age-old chicken chorioallantoic membrane (CAM), a well-defined angiogenic model in the investigation of antiangiogenic compounds and nanoformulations in an economic framework. For practical applicability, we have evaluated the CAM model to demonstrate the screening of antiangiogenic compounds and that tumor cells can be implanted onto developing CAM for growing xenografts by recruiting host endothelial and other cellular components. In addition, the exploitation of CAM tumor xenograft models for the evaluation of nanoparticle distribution has also been reinforced by demonstrating that intravenously administered iron oxide nanoparticles (IONPs) passively accumulate and exhibit intracellular as well as extracellular compartment accumulation in highly vascular xenografts. Finally, the ethical considerations, benefits, and drawbacks, of using CAM as an experimental model for testing potential therapeutics are also highlighted.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The International journal of developmental biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1