首页 > 最新文献

The protein journal最新文献

英文 中文
Expression, Purification and Characterization of Recombinant Disintegrin from Gloydius Brevicaudus Venom in Escherichia Coli. 在大肠杆菌中表达、纯化和表征来自 Gloydius Brevicaudus 毒液的重组崩解素。
Pub Date : 2024-06-01 Epub Date: 2024-05-11 DOI: 10.1007/s10930-024-10198-w
Yinxiang Lan, Xiuliang Qiu, Yunlu Xu

Disintegrins, a family of snake venom protein, which are capable of modulating the activity of integrins that play a fundamental role in the regulation of many physiological and pathological processes. The main purpose of this study is to obtain the recombinant disintegrin (r-DI) and evaluate its biological activity. In this study, we explored a high-level expression prokaryotic system and purification strategy for r-DI. Then, r-DI was treated to assay effects on cell growth, migration, and invasion. The affinity for the interactions of r-DI with integrin was determined using Surface plasmon resonance (SPR) analyses. The r-DI can be expressed in Escherichia coli and purified by one-step chromatography. The r-DI can inhibit B16F10 cells proliferation, migration, and invasion. Also, we found that r-DI could interact with the integrin αIIbβ3 (GPIIb/IIIa). The r-DI can be expressed, purified, characterized through functional assays, and can also maintain strong biological activities. Thus, this study showed potential therapeutic effects of r-DI for further functional and structural studies.

崩解素是蛇毒蛋白的一个家族,能够调节整合素的活性,而整合素在许多生理和病理过程的调节中发挥着重要作用。本研究的主要目的是获得重组崩解素(r-DI)并评估其生物活性。在这项研究中,我们探索了一种高水平的原核表达系统和 r-DI 的纯化策略。然后,对 r-DI 进行处理,检测其对细胞生长、迁移和侵袭的影响。利用表面等离子体共振(SPR)分析确定了 r-DI 与整合素相互作用的亲和力。r-DI 可以在大肠杆菌中表达,并通过一步色谱法纯化。r-DI 可抑制 B16F10 细胞的增殖、迁移和侵袭。此外,我们还发现 r-DI 可与整合素 αIIbβ3 (GPIIb/IIIa)相互作用。r-DI 可以表达、纯化,并通过功能测试进行表征,还能保持很强的生物活性。因此,这项研究显示了 r-DI 的潜在治疗作用,可用于进一步的功能和结构研究。
{"title":"Expression, Purification and Characterization of Recombinant Disintegrin from Gloydius Brevicaudus Venom in Escherichia Coli.","authors":"Yinxiang Lan, Xiuliang Qiu, Yunlu Xu","doi":"10.1007/s10930-024-10198-w","DOIUrl":"10.1007/s10930-024-10198-w","url":null,"abstract":"<p><p>Disintegrins, a family of snake venom protein, which are capable of modulating the activity of integrins that play a fundamental role in the regulation of many physiological and pathological processes. The main purpose of this study is to obtain the recombinant disintegrin (r-DI) and evaluate its biological activity. In this study, we explored a high-level expression prokaryotic system and purification strategy for r-DI. Then, r-DI was treated to assay effects on cell growth, migration, and invasion. The affinity for the interactions of r-DI with integrin was determined using Surface plasmon resonance (SPR) analyses. The r-DI can be expressed in Escherichia coli and purified by one-step chromatography. The r-DI can inhibit B16F10 cells proliferation, migration, and invasion. Also, we found that r-DI could interact with the integrin αIIbβ3 (GPIIb/IIIa). The r-DI can be expressed, purified, characterized through functional assays, and can also maintain strong biological activities. Thus, this study showed potential therapeutic effects of r-DI for further functional and structural studies.</p>","PeriodicalId":94249,"journal":{"name":"The protein journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140909674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of Terminal Peptide Extensions of Retinal Inosine 5´Monophosphate Dehydrogenase 1 Isoforms on their DNA-binding Activities. 视网膜肌苷-5´单磷酸脱氢酶 1 异构体的末端肽延伸对其 DNA 结合活性的影响
Pub Date : 2024-06-01 Epub Date: 2024-05-11 DOI: 10.1007/s10930-024-10202-3
Mohsen Nabi Afjadi, Razieh Yazdanparast, Ebrahim Barzegari

The main structural difference between the mutation-susceptible retinal isoforms of inosine 5´-monophosphate dehydrogenase-1 (IMPDH-1) with the canonical form resides in the C- and N-terminal peptide extensions with unknown structural/functional impacts. In this report, we aimed to experimentally evaluate the functional impact of these extensions on the specific/non-specific single-stranded DNA (ssDNA)-binding activities relative to those of the canonical form. Our in silico findings indicated the possible contribution of the C-terminal segment to the reduced flexibility of the Bateman domain of the enzyme. In addition, the in silico data indicated that the N-terminal tail acts by altering the distance between the tetramers in the concave octamer complex (the native form) of the enzyme. The overall impact of these predicted structural variations became evident, first, through higher Km values with respect to either of the substrates relative to the canonical isoform, as reported previously (Andashti et al. in Mol Cell Biochem 465(1):155-164, 2020). Secondary, the binding of the recombinant mouse retinal isoform IMPDH1 (603) to its specific Rhodopsin target gene was significantly augmented while its binding to non-specific ssDNA was lower than that of the canonical isoform. The DNA-binding activity of the other mouse retinal isoform, IMPDH1(546), to specific and non-specific ssDNA was lower than that of the canonical form most probably due to the in silico predicted rigidity created in the Bateman domain by the C-terminal peptide extension. Furthermore, the DNA binding to the Rhodopsin target gene by each of the IMPDH isoforms influenced in the presence of GTP (Guanosine triphosphate) and ATP (Adenosine triphosphate).

肌苷-5´-单磷酸脱氢酶-1(IMPDH-1)的易突变视网膜异构体与标准形式之间的主要结构差异在于 C 端和 N 端肽延伸部分,其结构/功能影响尚不清楚。在本报告中,我们旨在通过实验评估这些扩展肽对特异性/非特异性单链 DNA(ssDNA)结合活性的功能影响。我们的硅学研究结果表明,C-末端片段可能导致酶的贝特曼结构域灵活性降低。此外,硅学数据还表明,N 端尾部的作用是改变酶的凹八聚体复合物(原生形式)中四聚体之间的距离。这些预测的结构变化的总体影响显而易见,首先,与标准同工型相比,与任何一种底物的 Km 值都更高,这在以前的报告中已有报道(Andashti 等人,发表于《细胞生物化学分子》465(1):155-164, 2020 年)。其次,重组小鼠视网膜异构体 IMPDH1 (603) 与特异性视网膜蛋白靶基因的结合明显增强,而与非特异性 ssDNA 的结合则低于典型异构体。另一种小鼠视网膜异构体 IMPDH1(546)与特异性和非特异性 ssDNA 的 DNA 结合活性均低于同源异构体,这很可能是由于 C 端多肽延伸在 Bateman 结构域中产生了硅学预测的刚性。此外,在 GTP(三磷酸腺苷)和 ATP(三磷酸腺苷)存在的情况下,每种 IMPDH 异构体都会影响 DNA 与黄体素靶基因的结合。
{"title":"The Impact of Terminal Peptide Extensions of Retinal Inosine 5´Monophosphate Dehydrogenase 1 Isoforms on their DNA-binding Activities.","authors":"Mohsen Nabi Afjadi, Razieh Yazdanparast, Ebrahim Barzegari","doi":"10.1007/s10930-024-10202-3","DOIUrl":"10.1007/s10930-024-10202-3","url":null,"abstract":"<p><p>The main structural difference between the mutation-susceptible retinal isoforms of inosine 5´-monophosphate dehydrogenase-1 (IMPDH-1) with the canonical form resides in the C- and N-terminal peptide extensions with unknown structural/functional impacts. In this report, we aimed to experimentally evaluate the functional impact of these extensions on the specific/non-specific single-stranded DNA (ssDNA)-binding activities relative to those of the canonical form. Our in silico findings indicated the possible contribution of the C-terminal segment to the reduced flexibility of the Bateman domain of the enzyme. In addition, the in silico data indicated that the N-terminal tail acts by altering the distance between the tetramers in the concave octamer complex (the native form) of the enzyme. The overall impact of these predicted structural variations became evident, first, through higher K<sub>m</sub> values with respect to either of the substrates relative to the canonical isoform, as reported previously (Andashti et al. in Mol Cell Biochem 465(1):155-164, 2020). Secondary, the binding of the recombinant mouse retinal isoform IMPDH1 (603) to its specific Rhodopsin target gene was significantly augmented while its binding to non-specific ssDNA was lower than that of the canonical isoform. The DNA-binding activity of the other mouse retinal isoform, IMPDH1(546), to specific and non-specific ssDNA was lower than that of the canonical form most probably due to the in silico predicted rigidity created in the Bateman domain by the C-terminal peptide extension. Furthermore, the DNA binding to the Rhodopsin target gene by each of the IMPDH isoforms influenced in the presence of GTP (Guanosine triphosphate) and ATP (Adenosine triphosphate).</p>","PeriodicalId":94249,"journal":{"name":"The protein journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140909675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EPDRNA: A Model for Identifying DNA-RNA Binding Sites in Disease-Related Proteins. EPDRNA:识别疾病相关蛋白质中 DNA-RNA 结合位点的模型
Pub Date : 2024-06-01 Epub Date: 2024-03-16 DOI: 10.1007/s10930-024-10183-3
CanZhuang Sun, YongE Feng

Protein-DNA and protein-RNA interactions are involved in many biological processes and regulate many cellular functions. Moreover, they are related to many human diseases. To understand the molecular mechanism of protein-DNA binding and protein-RNA binding, it is important to identify which residues in the protein sequence bind to DNA and RNA. At present, there are few methods for specifically identifying the binding sites of disease-related protein-DNA and protein-RNA. In this study, so we combined four machine learning algorithms into an ensemble classifier (EPDRNA) to predict DNA and RNA binding sites in disease-related proteins. The dataset used in model was collated from UniProt and PDB database, and PSSM, physicochemical properties and amino acid type were used as features. The EPDRNA adopted soft voting and achieved the best AUC value of 0.73 at the DNA binding sites, and the best AUC value of 0.71 at the RNA binding sites in 10-fold cross validation in the training sets. In order to further verify the performance of the model, we assessed EPDRNA for the prediction of DNA-binding sites and the prediction of RNA-binding sites on the independent test dataset. The EPDRNA achieved 85% recall rate and 25% precision on the protein-DNA interaction independent test set, and achieved 82% recall rate and 27% precision on the protein-RNA interaction independent test set. The online EPDRNA webserver is freely available at http://www.s-bioinformatics.cn/epdrna .

蛋白质-DNA 和蛋白质-RNA 相互作用参与许多生物过程,并调节许多细胞功能。此外,它们还与许多人类疾病有关。要了解蛋白质-DNA 结合和蛋白质-RNA 结合的分子机制,就必须确定蛋白质序列中哪些残基与 DNA 和 RNA 结合。目前,特异性鉴定与疾病相关的蛋白质-DNA 和蛋白质-RNA 结合位点的方法很少。在这项研究中,我们将四种机器学习算法组合成一个集合分类器(EPDRNA),预测疾病相关蛋白质中的DNA和RNA结合位点。模型中使用的数据集来自 UniProt 和 PDB 数据库,以 PSSM、理化性质和氨基酸类型为特征。EPDRNA采用软投票法,在训练集的10倍交叉验证中,DNA结合位点的最佳AUC值为0.73,RNA结合位点的最佳AUC值为0.71。为了进一步验证模型的性能,我们评估了 EPDRNA 在独立测试数据集上预测 DNA 结合位点和预测 RNA 结合位点的情况。在蛋白质-DNA相互作用独立测试集上,EPDRNA的召回率达到85%,精确度达到25%;在蛋白质-RNA相互作用独立测试集上,EPDRNA的召回率达到82%,精确度达到27%。在线 EPDRNA 网络服务器可在 http://www.s-bioinformatics.cn/epdrna 免费获取。
{"title":"EPDRNA: A Model for Identifying DNA-RNA Binding Sites in Disease-Related Proteins.","authors":"CanZhuang Sun, YongE Feng","doi":"10.1007/s10930-024-10183-3","DOIUrl":"10.1007/s10930-024-10183-3","url":null,"abstract":"<p><p>Protein-DNA and protein-RNA interactions are involved in many biological processes and regulate many cellular functions. Moreover, they are related to many human diseases. To understand the molecular mechanism of protein-DNA binding and protein-RNA binding, it is important to identify which residues in the protein sequence bind to DNA and RNA. At present, there are few methods for specifically identifying the binding sites of disease-related protein-DNA and protein-RNA. In this study, so we combined four machine learning algorithms into an ensemble classifier (EPDRNA) to predict DNA and RNA binding sites in disease-related proteins. The dataset used in model was collated from UniProt and PDB database, and PSSM, physicochemical properties and amino acid type were used as features. The EPDRNA adopted soft voting and achieved the best AUC value of 0.73 at the DNA binding sites, and the best AUC value of 0.71 at the RNA binding sites in 10-fold cross validation in the training sets. In order to further verify the performance of the model, we assessed EPDRNA for the prediction of DNA-binding sites and the prediction of RNA-binding sites on the independent test dataset. The EPDRNA achieved 85% recall rate and 25% precision on the protein-DNA interaction independent test set, and achieved 82% recall rate and 27% precision on the protein-RNA interaction independent test set. The online EPDRNA webserver is freely available at http://www.s-bioinformatics.cn/epdrna .</p>","PeriodicalId":94249,"journal":{"name":"The protein journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140141293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of Protein-Protein Interaction Associated Functions Based on Gene Ontology. 基于基因本体的蛋白质-蛋白质相互作用相关功能的鉴定。
Pub Date : 2024-06-01 Epub Date: 2024-03-04 DOI: 10.1007/s10930-024-10180-6
Yu-Hang Zhang, FeiMing Huang, JiaBo Li, WenFeng Shen, Lei Chen, KaiYan Feng, Tao Huang, Yu-Dong Cai

Protein-protein interactions (PPIs) involve the physical or functional contact between two or more proteins. Generally, proteins that can interact with each other always have special relationships. Some previous studies have reported that gene ontology (GO) terms are related to the determination of PPIs, suggesting the special patterns on the GO terms of proteins in PPIs. In this study, we explored the special GO term patterns on human PPIs, trying to uncover the underlying functional mechanism of PPIs. The experimental validated human PPIs were retrieved from STRING database, which were termed as positive samples. Additionally, we randomly paired proteins occurring in positive samples, yielding lots of negative samples. A simple calculation was conducted to count the number of positive samples for each GO term pair, where proteins in samples were annotated by GO terms in the pair individually. The similar number for negative samples was also counted and further adjusted due to the great gap between the numbers of positive and negative samples. The difference of the above two numbers and the relative ratio compared with the number on positive samples were calculated. This ratio provided a precise evaluation of the occurrence of GO term pairs for positive samples and negative samples, indicating the latent GO term patterns for PPIs. Our analysis unveiled several nuclear biological processes, including gene transcription, cell proliferation, and nutrient metabolism, as key biological functions. Interactions between major proliferative or metabolic GO terms consistently correspond with significantly reported PPIs in recent literature.

蛋白质-蛋白质相互作用(PPI)涉及两种或两种以上蛋白质之间的物理或功能接触。一般来说,能相互作用的蛋白质总是有特殊的关系。之前的一些研究报告指出,基因本体(GO)术语与 PPIs 的判定有关,提示了 PPIs 中蛋白质的 GO 术语的特殊模式。本研究探讨了人类 PPIs 的特殊 GO 术语模式,试图揭示 PPIs 的潜在功能机制。我们从 STRING 数据库中检索了经过实验验证的人类 PPIs,并将其称为阳性样本。此外,我们还将阳性样本中出现的蛋白质随机配对,产生了大量阴性样本。我们进行了简单的计算,统计了每对 GO 术语的阳性样本数量,其中样本中的蛋白质分别由这对术语中的 GO 术语注释。由于阳性样本和阴性样本的数量差距很大,因此也对阴性样本的类似数量进行了计算和进一步调整。计算上述两个数字的差值以及与阳性样本数字相比的相对比率。这一比率精确地评估了阳性样本和阴性样本中 GO 术语对的出现情况,显示了 PPIs 的潜在 GO 术语模式。我们的分析揭示了几个核生物过程,包括基因转录、细胞增殖和营养代谢,这些都是关键的生物功能。主要增殖或代谢 GO 术语之间的相互作用与近期文献中报道的 PPIs 一致。
{"title":"Identification of Protein-Protein Interaction Associated Functions Based on Gene Ontology.","authors":"Yu-Hang Zhang, FeiMing Huang, JiaBo Li, WenFeng Shen, Lei Chen, KaiYan Feng, Tao Huang, Yu-Dong Cai","doi":"10.1007/s10930-024-10180-6","DOIUrl":"10.1007/s10930-024-10180-6","url":null,"abstract":"<p><p>Protein-protein interactions (PPIs) involve the physical or functional contact between two or more proteins. Generally, proteins that can interact with each other always have special relationships. Some previous studies have reported that gene ontology (GO) terms are related to the determination of PPIs, suggesting the special patterns on the GO terms of proteins in PPIs. In this study, we explored the special GO term patterns on human PPIs, trying to uncover the underlying functional mechanism of PPIs. The experimental validated human PPIs were retrieved from STRING database, which were termed as positive samples. Additionally, we randomly paired proteins occurring in positive samples, yielding lots of negative samples. A simple calculation was conducted to count the number of positive samples for each GO term pair, where proteins in samples were annotated by GO terms in the pair individually. The similar number for negative samples was also counted and further adjusted due to the great gap between the numbers of positive and negative samples. The difference of the above two numbers and the relative ratio compared with the number on positive samples were calculated. This ratio provided a precise evaluation of the occurrence of GO term pairs for positive samples and negative samples, indicating the latent GO term patterns for PPIs. Our analysis unveiled several nuclear biological processes, including gene transcription, cell proliferation, and nutrient metabolism, as key biological functions. Interactions between major proliferative or metabolic GO terms consistently correspond with significantly reported PPIs in recent literature.</p>","PeriodicalId":94249,"journal":{"name":"The protein journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the Specific Implications of Amino Acids in the Antibody Development. 了解氨基酸在抗体发展中的具体影响。
Pub Date : 2024-06-01 Epub Date: 2024-05-09 DOI: 10.1007/s10930-024-10201-4
Akshata Gavade, Anil Kumar Nagraj, Riya Patel, Roylan Pais, Pratiksha Dhanure, Juergen Scheele, Werner Seiz, Jaspal Patil

As the demand for immunotherapy to treat and manage cancers, infectious diseases and other disorders grows, a comprehensive understanding of amino acids and their intricate role in antibody engineering has become a prime requirement. Naturally produced antibodies may not have the most suitable amino acids at the complementarity determining regions (CDR) and framework regions, for therapeutic purposes. Therefore, to enhance the binding affinity and therapeutic properties of an antibody, the specific impact of certain amino acids on the antibody's architecture must be thoroughly studied. In antibody engineering, it is crucial to identify the key amino acid residues that significantly contribute to improving antibody properties. Therapeutic antibodies with higher binding affinity and improved functionality can be achieved through modifications or substitutions with highly suitable amino acid residues. Here, we have indicated the frequency of amino acids and their association with the binding free energy in CDRs. The review also analyzes the experimental outcome of two studies that reveal the frequency of amino acids in CDRs and provides their significant correlation between the outcomes. Additionally, it discusses the various bond interactions within the antibody structure and antigen binding. A detailed understanding of these amino acid properties should assist in the analysis of antibody sequences and structures needed for designing and enhancing the overall performance of therapeutic antibodies.

随着治疗和控制癌症、传染病和其他疾病的免疫疗法需求的增长,全面了解氨基酸及其在抗体工程中的复杂作用已成为首要要求。天然生产的抗体在互补决定区(CDR)和框架区可能没有最适合治疗目的的氨基酸。因此,为了提高抗体的结合亲和力和治疗特性,必须深入研究某些氨基酸对抗体结构的具体影响。在抗体工程中,找出对改善抗体特性有重大贡献的关键氨基酸残基至关重要。通过修饰或替换非常合适的氨基酸残基,可以获得具有更高的结合亲和力和更好的功能性的治疗性抗体。在此,我们指出了 CDR 中氨基酸的频率及其与结合自由能的关系。综述还分析了揭示 CDR 中氨基酸频率的两项研究的实验结果,并提供了结果之间的显著相关性。此外,它还讨论了抗体结构和抗原结合中的各种键相互作用。详细了解这些氨基酸的特性有助于分析设计和提高治疗性抗体整体性能所需的抗体序列和结构。
{"title":"Understanding the Specific Implications of Amino Acids in the Antibody Development.","authors":"Akshata Gavade, Anil Kumar Nagraj, Riya Patel, Roylan Pais, Pratiksha Dhanure, Juergen Scheele, Werner Seiz, Jaspal Patil","doi":"10.1007/s10930-024-10201-4","DOIUrl":"10.1007/s10930-024-10201-4","url":null,"abstract":"<p><p>As the demand for immunotherapy to treat and manage cancers, infectious diseases and other disorders grows, a comprehensive understanding of amino acids and their intricate role in antibody engineering has become a prime requirement. Naturally produced antibodies may not have the most suitable amino acids at the complementarity determining regions (CDR) and framework regions, for therapeutic purposes. Therefore, to enhance the binding affinity and therapeutic properties of an antibody, the specific impact of certain amino acids on the antibody's architecture must be thoroughly studied. In antibody engineering, it is crucial to identify the key amino acid residues that significantly contribute to improving antibody properties. Therapeutic antibodies with higher binding affinity and improved functionality can be achieved through modifications or substitutions with highly suitable amino acid residues. Here, we have indicated the frequency of amino acids and their association with the binding free energy in CDRs. The review also analyzes the experimental outcome of two studies that reveal the frequency of amino acids in CDRs and provides their significant correlation between the outcomes. Additionally, it discusses the various bond interactions within the antibody structure and antigen binding. A detailed understanding of these amino acid properties should assist in the analysis of antibody sequences and structures needed for designing and enhancing the overall performance of therapeutic antibodies.</p>","PeriodicalId":94249,"journal":{"name":"The protein journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140900562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of Recombinant Stonustoxin Alpha Subunit and Preparation of polyclonal antiserum for Stonustoxin Neutralization Studies. 重组石蒜毒素α亚基的表达和用于石蒜毒素中和研究的多克隆抗血清的制备。
Pub Date : 2024-05-17 DOI: 10.1007/s10930-024-10203-2
Amir Sajjad Hojjati-Razgi, Shahram Nazarian, Hossein Samiei-Abianeh, Amir Vazirizadeh, Emad Kordbacheh, Seyed Mojtaba Aghaie

Stonustoxin (SNTX) is a lethal protein found in stonefish venom, responsible for many of the symptoms associated with stonefish envenomation. To counter stonefish venom challenges, antivenom is a well-established and effective solution. In this study, we aimed to produce the recombinant alpha subunit protein of Stonustoxin from Synanceia horrida and prepare antibodies against it The SNTXα gene sequence was optimized for E. coli BL21 (DE3) expression and cloned into the pET17b vector. Following purification, the recombinant protein was subcutaneously injected into rabbits, and antibodies were extracted from rabbit´s serum using a G protein column As a result of codon optimization, the codon adaptation index for the SNTXα cassette increased to 0.94. SDS-PAGE analysis validated the expression of SNTXα, with a band observed at 73.5 kDa with a yield of 60 mg/l. ELISA results demonstrated rabbits antibody titers were detectable up to a 1:256,000 dilution. The isolated antibody from rabbit´s serum exhibited a concentration of 1.5 mg/ml, and its sensitivity allowed the detection of a minimum protein concentration of 9.7 ng. In the neutralization assay the purified antibody against SNTXα protected mice challenged with 2 LD50. In conclusion, our study successfully expressed the alpha subunit of Stonustoxin in a prokaryotic host, enabling the production of antibodies for potential use in developing stonefish antivenom.

石首鱼毒素(SNTX)是一种存在于石首鱼毒液中的致命蛋白质,是造成许多与石首鱼中毒相关症状的原因。为应对石首鱼毒液的挑战,抗蛇毒血清是一种行之有效的解决方案。在这项研究中,我们的目标是生产石首鱼毒素的重组α亚基蛋白,并制备针对它的抗体。 SNTXα 基因序列经过优化,可在大肠杆菌 BL21 (DE3) 中表达,并克隆到 pET17b 载体中。纯化后,将重组蛋白注射到兔子皮下,用 G 蛋白柱从兔子血清中提取抗体。SDS-PAGE 分析验证了 SNTXα 的表达,观察到一条 73.5 kDa 的条带,产量为 60 mg/l。酶联免疫吸附试验(ELISA)结果表明,兔子的抗体滴度在 1:256,000 稀释度时仍可检测到。从兔血清中分离出的抗体浓度为 1.5 毫克/毫升,其灵敏度可检测到最小浓度为 9.7 纳克的蛋白质。在中和试验中,纯化的 SNTXα 抗体能保护受到 2 LD50 病毒挑战的小鼠。总之,我们的研究成功地在原核宿主中表达了石首毒蛋白的α亚基,从而能够生产抗体,用于开发石首鱼抗血清。
{"title":"Expression of Recombinant Stonustoxin Alpha Subunit and Preparation of polyclonal antiserum for Stonustoxin Neutralization Studies.","authors":"Amir Sajjad Hojjati-Razgi, Shahram Nazarian, Hossein Samiei-Abianeh, Amir Vazirizadeh, Emad Kordbacheh, Seyed Mojtaba Aghaie","doi":"10.1007/s10930-024-10203-2","DOIUrl":"https://doi.org/10.1007/s10930-024-10203-2","url":null,"abstract":"<p><p>Stonustoxin (SNTX) is a lethal protein found in stonefish venom, responsible for many of the symptoms associated with stonefish envenomation. To counter stonefish venom challenges, antivenom is a well-established and effective solution. In this study, we aimed to produce the recombinant alpha subunit protein of Stonustoxin from Synanceia horrida and prepare antibodies against it The SNTXα gene sequence was optimized for E. coli BL21 (DE3) expression and cloned into the pET17b vector. Following purification, the recombinant protein was subcutaneously injected into rabbits, and antibodies were extracted from rabbit´s serum using a G protein column As a result of codon optimization, the codon adaptation index for the SNTXα cassette increased to 0.94. SDS-PAGE analysis validated the expression of SNTXα, with a band observed at 73.5 kDa with a yield of 60 mg/l. ELISA results demonstrated rabbits antibody titers were detectable up to a 1:256,000 dilution. The isolated antibody from rabbit´s serum exhibited a concentration of 1.5 mg/ml, and its sensitivity allowed the detection of a minimum protein concentration of 9.7 ng. In the neutralization assay the purified antibody against SNTXα protected mice challenged with 2 LD50. In conclusion, our study successfully expressed the alpha subunit of Stonustoxin in a prokaryotic host, enabling the production of antibodies for potential use in developing stonefish antivenom.</p>","PeriodicalId":94249,"journal":{"name":"The protein journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of Recombinant Stonustoxin Alpha Subunit and Preparation of polyclonal antiserum for Stonustoxin Neutralization Studies. 重组石蒜毒素α亚基的表达和用于石蒜毒素中和研究的多克隆抗血清的制备。
Pub Date : 2024-05-17 DOI: 10.1007/s10930-024-10203-2
Amir Sajjad Hojjati-Razgi, S. Nazarian, Hossein Samiei-Abianeh, Amir Vazirizadeh, Emad Kordbacheh, S. M. Aghaie
{"title":"Expression of Recombinant Stonustoxin Alpha Subunit and Preparation of polyclonal antiserum for Stonustoxin Neutralization Studies.","authors":"Amir Sajjad Hojjati-Razgi, S. Nazarian, Hossein Samiei-Abianeh, Amir Vazirizadeh, Emad Kordbacheh, S. M. Aghaie","doi":"10.1007/s10930-024-10203-2","DOIUrl":"https://doi.org/10.1007/s10930-024-10203-2","url":null,"abstract":"","PeriodicalId":94249,"journal":{"name":"The protein journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction of Cecropin A (1-7) Analogs with DNA Analyzed by Multi-spectroscopic Methods. 通过多光谱方法分析塞可宾 A (1-7) 类似物与 DNA 的相互作用。
Pub Date : 2024-04-01 Epub Date: 2024-01-24 DOI: 10.1007/s10930-023-10177-7
Libo Yuan, Ke Wang, Yuan Fang, Xiujuan Xu, Yingcun Chen, Dongxin Zhao, Kui Lu

Cecropin A (1-7) is a cationic antimicrobial peptide which contain lots of basic amino acids. To understand the effect of basic amino acids on cecropin A (1-7), analogues CA2, CA3 and CA4 which have more arginine or lysine at the N-terminal or C-terminal were designed and synthesized. The interaction of cecropin A (1-7) and its analogs with DNA was studied using ultraviolet-visible spectroscopy, fluorescence spectroscopy and circular dichroism spectroscopy. Multispectral analysis showed that basic amino acids improved the interaction between the analogues and DNA. The interaction between CA4 and DNA is most pronounced. Fluorescence spectrum indicated that Ksv value of CA4 is 1.19 × 105  L mol-1 compared to original peptide cecropin A (1-7) of 3.73 × 104  L mol-1. The results of antimicrobial experiments with cecropin A (1-7) and its analogues showed that basic amino acids enhanced the antimicrobial effect of the analogues. The antimicrobial activity of CA4 against E. coli was eightfold higher than that of cecropin A (1-7). The importance of basic amino acid in peptides is revealed and provides useful information for subsequent studies of antimicrobial peptides.

Cecropin A(1-7)是一种阳离子抗菌肽,含有大量碱性氨基酸。为了了解碱性氨基酸对 Cecropin A (1-7) 的影响,我们设计并合成了在 N 端或 C 端含有更多精氨酸或赖氨酸的类似物 CA2、CA3 和 CA4。利用紫外-可见光谱、荧光光谱和圆二色光谱研究了麦角蛋白 A(1-7)及其类似物与 DNA 的相互作用。多光谱分析显示,碱性氨基酸改善了类似物与 DNA 之间的相互作用。CA4 与 DNA 的相互作用最为明显。荧光光谱显示,CA4 的 Ksv 值为 1.19 × 105 L mol-1,而原肽 cecropin A (1-7) 的 Ksv 值为 3.73 × 104 L mol-1。用 cecropin A (1-7) 及其类似物进行的抗菌实验结果表明,碱性氨基酸增强了类似物的抗菌效果。CA4 对大肠杆菌的抗菌活性是麦角素 A(1-7)的 8 倍。这揭示了碱性氨基酸在肽中的重要性,为后续的抗菌肽研究提供了有用的信息。
{"title":"Interaction of Cecropin A (1-7) Analogs with DNA Analyzed by Multi-spectroscopic Methods.","authors":"Libo Yuan, Ke Wang, Yuan Fang, Xiujuan Xu, Yingcun Chen, Dongxin Zhao, Kui Lu","doi":"10.1007/s10930-023-10177-7","DOIUrl":"10.1007/s10930-023-10177-7","url":null,"abstract":"<p><p>Cecropin A (1-7) is a cationic antimicrobial peptide which contain lots of basic amino acids. To understand the effect of basic amino acids on cecropin A (1-7), analogues CA2, CA3 and CA4 which have more arginine or lysine at the N-terminal or C-terminal were designed and synthesized. The interaction of cecropin A (1-7) and its analogs with DNA was studied using ultraviolet-visible spectroscopy, fluorescence spectroscopy and circular dichroism spectroscopy. Multispectral analysis showed that basic amino acids improved the interaction between the analogues and DNA. The interaction between CA4 and DNA is most pronounced. Fluorescence spectrum indicated that Ksv value of CA4 is 1.19 × 10<sup>5</sup>  L mol<sup>-1</sup> compared to original peptide cecropin A (1-7) of 3.73 × 10<sup>4</sup>  L mol<sup>-1</sup>. The results of antimicrobial experiments with cecropin A (1-7) and its analogues showed that basic amino acids enhanced the antimicrobial effect of the analogues. The antimicrobial activity of CA4 against E. coli was eightfold higher than that of cecropin A (1-7). The importance of basic amino acid in peptides is revealed and provides useful information for subsequent studies of antimicrobial peptides.</p>","PeriodicalId":94249,"journal":{"name":"The protein journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139543117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An update on Glycerophosphodiester Phosphodiesterases; From Bacteria to Human. 甘油磷酸二酯磷酸二酯酶的最新进展;从细菌到人类。
Pub Date : 2024-04-01 Epub Date: 2024-03-16 DOI: 10.1007/s10930-024-10190-4
Seyyedeh Mina Hejazian, Saeed Pirmoradi, Sepideh Zununi Vahed, Ripon Kumar Roy, Seyed Mahdi Hosseiniyan Khatibi

The hydrolysis of deacylated glycerophospholipids into sn-glycerol 3-phosphate and alcohol is facilitated by evolutionarily conserved proteins known as glycerophosphodiester phosphodiesterases (GDPDs). These proteins are crucial for the pathogenicity of bacteria and for bioremediation processes aimed at degrading organophosphorus esters that pose a hazard to both humans and the environment. Additionally, GDPDs are enzymes that respond to multiple nutrients and could potentially serve as candidate genes for addressing deficiencies in zinc, iron, potassium, and especially phosphate in important plants like rice. In mammals, glycerophosphodiesterases (GDEs) play a role in regulating osmolytes, facilitating the biosynthesis of anandamine, contributing to the development of skeletal muscle, promoting the differentiation of neurons and osteoblasts, and influencing pathological states. Due to their capacity to enhance a plant's ability to tolerate various nutrient deficiencies and their potential as pharmaceutical targets in humans, GDPDs have received increased attention in recent times. This review provides an overview of the functions of GDPD families as vital and resilient enzymes that regulate various pathways in bacteria, plants, and humans.

称为甘油磷酸二酯磷酸二酯酶(GDPDs)的进化保守蛋白促进了脱乙酰甘油磷脂水解为 sn-甘油-3-磷酸酯和醇的过程。这些蛋白质对细菌的致病性以及旨在降解对人类和环境造成危害的有机磷酯的生物修复过程至关重要。此外,GDPDs 是对多种营养物质做出反应的酶,有可能成为解决水稻等重要植物中锌、铁、钾,特别是磷酸盐缺乏问题的候选基因。在哺乳动物中,甘油磷酸二酯酶(GDEs)在调节渗透压、促进安乃近的生物合成、促进骨骼肌的发育、促进神经元和成骨细胞的分化以及影响病理状态等方面发挥作用。由于 GDPDs 能够增强植物耐受各种营养素缺乏的能力,并有可能成为人类的药物靶标,因此近来受到越来越多的关注。本综述概述了 GDPD 家族的功能,它们是调控细菌、植物和人类各种途径的重要而顽强的酶。
{"title":"An update on Glycerophosphodiester Phosphodiesterases; From Bacteria to Human.","authors":"Seyyedeh Mina Hejazian, Saeed Pirmoradi, Sepideh Zununi Vahed, Ripon Kumar Roy, Seyed Mahdi Hosseiniyan Khatibi","doi":"10.1007/s10930-024-10190-4","DOIUrl":"10.1007/s10930-024-10190-4","url":null,"abstract":"<p><p>The hydrolysis of deacylated glycerophospholipids into sn-glycerol 3-phosphate and alcohol is facilitated by evolutionarily conserved proteins known as glycerophosphodiester phosphodiesterases (GDPDs). These proteins are crucial for the pathogenicity of bacteria and for bioremediation processes aimed at degrading organophosphorus esters that pose a hazard to both humans and the environment. Additionally, GDPDs are enzymes that respond to multiple nutrients and could potentially serve as candidate genes for addressing deficiencies in zinc, iron, potassium, and especially phosphate in important plants like rice. In mammals, glycerophosphodiesterases (GDEs) play a role in regulating osmolytes, facilitating the biosynthesis of anandamine, contributing to the development of skeletal muscle, promoting the differentiation of neurons and osteoblasts, and influencing pathological states. Due to their capacity to enhance a plant's ability to tolerate various nutrient deficiencies and their potential as pharmaceutical targets in humans, GDPDs have received increased attention in recent times. This review provides an overview of the functions of GDPD families as vital and resilient enzymes that regulate various pathways in bacteria, plants, and humans.</p>","PeriodicalId":94249,"journal":{"name":"The protein journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140141339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refolding, Crystallization, and Crystal Structure Analysis of a Scavenger Receptor Cysteine-Rich Domain of Human Salivary Agglutinin Expressed in Escherichia coli. 大肠杆菌中表达的人唾液凝集素清道夫受体富半胱氨酸结构域的重折叠、结晶和晶体结构分析。
Pub Date : 2024-04-01 Epub Date: 2024-01-24 DOI: 10.1007/s10930-023-10173-x
Changyu Zhang, Peng Lu, Sibo Wei, Chaoyue Hu, Mitsuko Miyoshi, Ken Okamoto, Hideaki Itoh, Suguru Okuda, Michio Suzuki, Hiroshi Kawakami, Koji Nagata

Scavenger receptors are a protein superfamily that typically consists of one or more repeats of the scavenger receptor cysteine-rich structural domain (SRCRD), which is an ancient and highly conserved protein module. The expression and purification of eukaryotic proteins containing multiple disulfide bonds has always been challenging. The expression systems that are commonly used to express SRCRD proteins mainly consist of eukaryotic protein expression systems. Herein, we established a high-level expression strategy of a Type B SRCRD unit from human salivary agglutinin using the Escherichia coli expression system, followed by a refolding and purification process. The untagged recombinant SRCRD was expressed in E. coli using the pET-32a vector, which was followed by a refolding process using the GSH/GSSG redox system. The SRCRD expressed in E. coli SHuffle T7 showed better solubility after refolding than that expressed in E. coli BL21(DE3), suggesting the importance of the disulfide bond content prior to refolding. The quality of the refolded protein was finally assessed using crystallization and crystal structure analysis. As proteins refolded from inclusion bodies exhibit a high crystal quality and reproducibility, this method is considered a reliable strategy for SRCRD protein expression and purification. To further confirm the structural integrity of the refolded SRCRD protein, the purified protein was subjected to crystallization using sitting-drop vapor diffusion method. The obtained crystals of SRCRD diffracted X-rays to a resolution of 1.47 Å. The solved crystal structure appeared to be highly conserved, with four disulfide bonds appropriately formed. The surface charge distribution of homologous SRCRD proteins indicates that the negatively charged region at the surface is associated with their calcium-dependent ligand recognition. These results suggest that a high-quality SRCRD protein expressed by E. coli SHuffle T7 can be successfully folded and purified, providing new options for the expression of members of the scavenger receptor superfamily.

清道夫受体是一个蛋白质超家族,通常由一个或多个重复的清道夫受体富半胱氨酸结构域(SCRD)组成,这是一个古老而高度保守的蛋白质模块。表达和纯化含有多个二硫键的真核蛋白质一直是一项挑战。常用于表达 SRCRD 蛋白的表达系统主要包括真核蛋白质表达系统。在此,我们利用大肠杆菌表达系统建立了一种从人类唾液凝集素中提取的 B 型 SRCRD 单元的高水平表达策略,随后进行了重折叠和纯化过程。使用 pET-32a 载体在大肠杆菌中表达未标记的重组 SRCRD,然后使用 GSH/GSSG 氧化还原系统进行重折叠。在大肠杆菌 SHuffle T7 中表达的 SRCRD 在重折叠后比在大肠杆菌 BL21(DE3) 中表达的 SRCRD 表现出更好的溶解性,这表明重折叠前二硫键含量的重要性。最后,利用结晶和晶体结构分析评估了重折叠蛋白质的质量。由于从包涵体中重折的蛋白质具有较高的晶体质量和重现性,因此这种方法被认为是 SRCRD 蛋白表达和纯化的可靠策略。为了进一步确认重折叠 SRCRD 蛋白的结构完整性,纯化后的蛋白采用坐滴蒸气扩散法进行结晶。得到的 SRCRD 晶体的 X 射线衍射分辨率为 1.47 Å。同源 SRCRD 蛋白的表面电荷分布表明,其表面的负电荷区域与钙依赖性配体识别有关。这些结果表明,用大肠杆菌 SHuffle T7 表达的高质量 SRCRD 蛋白可以成功折叠和纯化,为清道夫受体超家族成员的表达提供了新的选择。
{"title":"Refolding, Crystallization, and Crystal Structure Analysis of a Scavenger Receptor Cysteine-Rich Domain of Human Salivary Agglutinin Expressed in Escherichia coli.","authors":"Changyu Zhang, Peng Lu, Sibo Wei, Chaoyue Hu, Mitsuko Miyoshi, Ken Okamoto, Hideaki Itoh, Suguru Okuda, Michio Suzuki, Hiroshi Kawakami, Koji Nagata","doi":"10.1007/s10930-023-10173-x","DOIUrl":"10.1007/s10930-023-10173-x","url":null,"abstract":"<p><p>Scavenger receptors are a protein superfamily that typically consists of one or more repeats of the scavenger receptor cysteine-rich structural domain (SRCRD), which is an ancient and highly conserved protein module. The expression and purification of eukaryotic proteins containing multiple disulfide bonds has always been challenging. The expression systems that are commonly used to express SRCRD proteins mainly consist of eukaryotic protein expression systems. Herein, we established a high-level expression strategy of a Type B SRCRD unit from human salivary agglutinin using the Escherichia coli expression system, followed by a refolding and purification process. The untagged recombinant SRCRD was expressed in E. coli using the pET-32a vector, which was followed by a refolding process using the GSH/GSSG redox system. The SRCRD expressed in E. coli SHuffle T7 showed better solubility after refolding than that expressed in E. coli BL21(DE3), suggesting the importance of the disulfide bond content prior to refolding. The quality of the refolded protein was finally assessed using crystallization and crystal structure analysis. As proteins refolded from inclusion bodies exhibit a high crystal quality and reproducibility, this method is considered a reliable strategy for SRCRD protein expression and purification. To further confirm the structural integrity of the refolded SRCRD protein, the purified protein was subjected to crystallization using sitting-drop vapor diffusion method. The obtained crystals of SRCRD diffracted X-rays to a resolution of 1.47 Å. The solved crystal structure appeared to be highly conserved, with four disulfide bonds appropriately formed. The surface charge distribution of homologous SRCRD proteins indicates that the negatively charged region at the surface is associated with their calcium-dependent ligand recognition. These results suggest that a high-quality SRCRD protein expressed by E. coli SHuffle T7 can be successfully folded and purified, providing new options for the expression of members of the scavenger receptor superfamily.</p>","PeriodicalId":94249,"journal":{"name":"The protein journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139543118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The protein journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1