Pub Date : 2024-12-02DOI: 10.1158/2159-8290.CD-24-1288
Despite exponentially increased industry investment in oncology research and development with more than $80 billion spent annually, patient enrollment in clinical trials remains below 5% globally. Our multistakeholder international cancer coalition envisions ecosystem transformation with capacity building through a global "hub-and-spoke" network model to expand access to and accelerate clinical trials, thus ending cancer as a major cause of death in this lifetime.
{"title":"Advancing Global Health Equity in Oncology Clinical Trial Access.","authors":"","doi":"10.1158/2159-8290.CD-24-1288","DOIUrl":"10.1158/2159-8290.CD-24-1288","url":null,"abstract":"<p><p>Despite exponentially increased industry investment in oncology research and development with more than $80 billion spent annually, patient enrollment in clinical trials remains below 5% globally. Our multistakeholder international cancer coalition envisions ecosystem transformation with capacity building through a global \"hub-and-spoke\" network model to expand access to and accelerate clinical trials, thus ending cancer as a major cause of death in this lifetime.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"2317-2323"},"PeriodicalIF":29.7,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1158/2159-8290.CD-23-1323
Norihiro Yamaguchi, Y Gloria Wu, Ethan Ravetch, Mai Takahashi, Abdul G Khan, Akimasa Hayashi, Wenbin Mei, Dennis Hsu, Shigeaki Umeda, Elisa de Stanchina, Ivo C Lorenz, Christine A Iacobuzio-Donahue, Sohail F Tavazoie
Pancreatic ductal adenocarcinoma (PDAC) is an increasingly diagnosed cancer that kills 90% of afflicted patients, with most patients receiving palliative chemotherapy. We identified neuronal pentraxin 1 (NPTX1) as a cancer-secreted protein that becomes overexpressed in human and murine PDAC cells during metastatic progression and identified adhesion molecule with Ig-like domain 2 (AMIGO2) as its receptor. Molecular, genetic, biochemical, and pharmacologic experiments revealed that secreted NPTX1 acts cell-autonomously on the AMIGO2 receptor to drive PDAC metastatic colonization of the liver-the primary site of PDAC metastasis. NPTX1-AMIGO2 signaling enhanced hypoxic growth and was critically required for hypoxia-inducible factor-1α (HIF1α) nuclear retention and function. NPTX1 is overexpressed in human PDAC tumors and upregulated in liver metastases. Therapeutic targeting of NPTX1 with a high-affinity monoclonal antibody substantially reduced PDAC liver metastatic colonization. We thus identify NPTX1-AMIGO2 as druggable critical upstream regulators of the HIF1α hypoxic response in PDAC. Significance: We identified the NPTX1-AMIGO2 axis as a regulatory mechanism upstream of HIF1α-driven hypoxia response that promotes PDAC liver metastasis. Therapeutic NPTX1 targeting outperformed a common chemotherapy regimen in inhibiting liver metastasis and suppressed primary tumor growth in preclinical models, revealing a novel therapeutic strategy targeting hypoxic response in PDAC.
{"title":"A Targetable Secreted Neural Protein Drives Pancreatic Cancer Metastatic Colonization and HIF1α Nuclear Retention.","authors":"Norihiro Yamaguchi, Y Gloria Wu, Ethan Ravetch, Mai Takahashi, Abdul G Khan, Akimasa Hayashi, Wenbin Mei, Dennis Hsu, Shigeaki Umeda, Elisa de Stanchina, Ivo C Lorenz, Christine A Iacobuzio-Donahue, Sohail F Tavazoie","doi":"10.1158/2159-8290.CD-23-1323","DOIUrl":"10.1158/2159-8290.CD-23-1323","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is an increasingly diagnosed cancer that kills 90% of afflicted patients, with most patients receiving palliative chemotherapy. We identified neuronal pentraxin 1 (NPTX1) as a cancer-secreted protein that becomes overexpressed in human and murine PDAC cells during metastatic progression and identified adhesion molecule with Ig-like domain 2 (AMIGO2) as its receptor. Molecular, genetic, biochemical, and pharmacologic experiments revealed that secreted NPTX1 acts cell-autonomously on the AMIGO2 receptor to drive PDAC metastatic colonization of the liver-the primary site of PDAC metastasis. NPTX1-AMIGO2 signaling enhanced hypoxic growth and was critically required for hypoxia-inducible factor-1α (HIF1α) nuclear retention and function. NPTX1 is overexpressed in human PDAC tumors and upregulated in liver metastases. Therapeutic targeting of NPTX1 with a high-affinity monoclonal antibody substantially reduced PDAC liver metastatic colonization. We thus identify NPTX1-AMIGO2 as druggable critical upstream regulators of the HIF1α hypoxic response in PDAC. Significance: We identified the NPTX1-AMIGO2 axis as a regulatory mechanism upstream of HIF1α-driven hypoxia response that promotes PDAC liver metastasis. Therapeutic NPTX1 targeting outperformed a common chemotherapy regimen in inhibiting liver metastasis and suppressed primary tumor growth in preclinical models, revealing a novel therapeutic strategy targeting hypoxic response in PDAC.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"2489-2508"},"PeriodicalIF":29.7,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611693/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1158/2159-8290.CD-23-0866
Patrick Loi, Amy E Schade, Carrie L Rodriguez, Anjana Krishnan, Naiara Perurena, Van T M Nguyen, Yilin Xu, Marina Watanabe, Rachel A Davis, Alycia Gardner, Natalie F Pilla, Kaia Mattioli, Olesja Popow, Nuray Gunduz, Tamsin R M Lannagan, Samantha Fitzgerald, Ewa T Sicinska, Jia-Ren Lin, William Tan, Lauren K Brais, Kevin M Haigis, Marios Giannakis, Kimmie Ng, Sandro Santagata, Kristian Helin, Owen J Sansom, Karen Cichowski
Significance: Combined EZH2 and RAS pathway inhibitors kill KRAS-mutant colorectal cancer cells and promote durable tumor regression in vivo. These agents function by cooperatively suppressing the WNT pathway, driving differentiation, and epigenetically reprogramming cells to permit the induction of apoptotic signals, which then kill these more differentiated tumor cells.
{"title":"Epigenetic and Oncogenic Inhibitors Cooperatively Drive Differentiation and Kill KRAS-Mutant Colorectal Cancers.","authors":"Patrick Loi, Amy E Schade, Carrie L Rodriguez, Anjana Krishnan, Naiara Perurena, Van T M Nguyen, Yilin Xu, Marina Watanabe, Rachel A Davis, Alycia Gardner, Natalie F Pilla, Kaia Mattioli, Olesja Popow, Nuray Gunduz, Tamsin R M Lannagan, Samantha Fitzgerald, Ewa T Sicinska, Jia-Ren Lin, William Tan, Lauren K Brais, Kevin M Haigis, Marios Giannakis, Kimmie Ng, Sandro Santagata, Kristian Helin, Owen J Sansom, Karen Cichowski","doi":"10.1158/2159-8290.CD-23-0866","DOIUrl":"10.1158/2159-8290.CD-23-0866","url":null,"abstract":"<p><strong>Significance: </strong>Combined EZH2 and RAS pathway inhibitors kill KRAS-mutant colorectal cancer cells and promote durable tumor regression in vivo. These agents function by cooperatively suppressing the WNT pathway, driving differentiation, and epigenetically reprogramming cells to permit the induction of apoptotic signals, which then kill these more differentiated tumor cells.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"2430-2449"},"PeriodicalIF":29.7,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609823/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141909760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1158/2159-8290.CD-23-1529
Olaf Klingbeil, Damianos Skopelitis, Claudia Tonelli, Toyoki Yoshimoto, Aktan Alpsoy, Maria C Panepinto, Francesca Minicozzi, Joseph R Merrill, Amanda M Cafiero, Disha Aggarwal, Suzanne Russo, Taehoon Ha, Osama E Demerdash, Tse-Luen Wee, David L Spector, Scott K Lyons, David A Tuveson, Paolo Cifani, Christopher R Vakoc
The Hippo signaling pathway is commonly dysregulated in human cancer, which leads to a powerful tumor dependency on the YAP/TAZ transcriptional coactivators. In this study, we used paralog cotargeting CRISPR screens to identify kinases MARK2/3 as absolute catalytic requirements for YAP/TAZ function in diverse carcinoma and sarcoma contexts. Underlying this observation is the direct MARK2/3-dependent phosphorylation of NF2 and YAP/TAZ, which effectively reverses the tumor suppressive activity of the Hippo module kinases LATS1/2. To simulate targeting of MARK2/3, we adapted the CagA protein from Helicobacter pylori as a catalytic inhibitor of MARK2/3, which we show can regress established tumors in vivo. Together, these findings reveal MARK2/3 as powerful codependencies of YAP/TAZ in human cancer, targets that may allow for pharmacology that restores Hippo pathway-mediated tumor suppression. Significance: We show how genetic redundancy conceals tight functional relationships between signaling and transcriptional activation in cancer. Blocking the function of MARK2/3 kinases leads to the reactivation of the Hippo tumor suppressive pathway and may have therapeutic potential in YAP/TAZ-dysregulated carcinomas and sarcomas. See related commentary by Gauthier-Coles and Sheltzer, p. 2312.
{"title":"MARK2/MARK3 Kinases Are Catalytic Codependencies of YAP/TAZ in Human Cancer.","authors":"Olaf Klingbeil, Damianos Skopelitis, Claudia Tonelli, Toyoki Yoshimoto, Aktan Alpsoy, Maria C Panepinto, Francesca Minicozzi, Joseph R Merrill, Amanda M Cafiero, Disha Aggarwal, Suzanne Russo, Taehoon Ha, Osama E Demerdash, Tse-Luen Wee, David L Spector, Scott K Lyons, David A Tuveson, Paolo Cifani, Christopher R Vakoc","doi":"10.1158/2159-8290.CD-23-1529","DOIUrl":"10.1158/2159-8290.CD-23-1529","url":null,"abstract":"<p><p>The Hippo signaling pathway is commonly dysregulated in human cancer, which leads to a powerful tumor dependency on the YAP/TAZ transcriptional coactivators. In this study, we used paralog cotargeting CRISPR screens to identify kinases MARK2/3 as absolute catalytic requirements for YAP/TAZ function in diverse carcinoma and sarcoma contexts. Underlying this observation is the direct MARK2/3-dependent phosphorylation of NF2 and YAP/TAZ, which effectively reverses the tumor suppressive activity of the Hippo module kinases LATS1/2. To simulate targeting of MARK2/3, we adapted the CagA protein from Helicobacter pylori as a catalytic inhibitor of MARK2/3, which we show can regress established tumors in vivo. Together, these findings reveal MARK2/3 as powerful codependencies of YAP/TAZ in human cancer, targets that may allow for pharmacology that restores Hippo pathway-mediated tumor suppression. Significance: We show how genetic redundancy conceals tight functional relationships between signaling and transcriptional activation in cancer. Blocking the function of MARK2/3 kinases leads to the reactivation of the Hippo tumor suppressive pathway and may have therapeutic potential in YAP/TAZ-dysregulated carcinomas and sarcomas. See related commentary by Gauthier-Coles and Sheltzer, p. 2312.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"2471-2488"},"PeriodicalIF":29.7,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1158/2159-8290.CD-24-1432
Gavriel Y Matt, Edgar Sioson, Kyla Shelton, Jian Wang, Congyu Lu, Airen Zaldivar Peraza, Karishma Gangwani, Robin Paul, Colleen Reilly, Aleksandar Acić, Qi Liu, Stephanie R Sandor, Clay McLeod, Jaimin Patel, Fan Wang, Cindy Im, Zhaoming Wang, Yadav Sapkota, Carmen L Wilson, Nickhill Bhakta, Kirsten K Ness, Gregory T Armstrong, Melissa M Hudson, Leslie L Robison, Jinghui Zhang, Yutaka Yasui, Xin Zhou
{"title":"Correction: St. Jude Survivorship Portal: Sharing and Analyzing Large Clinical and Genomic Datasets from Pediatric Cancer Survivors.","authors":"Gavriel Y Matt, Edgar Sioson, Kyla Shelton, Jian Wang, Congyu Lu, Airen Zaldivar Peraza, Karishma Gangwani, Robin Paul, Colleen Reilly, Aleksandar Acić, Qi Liu, Stephanie R Sandor, Clay McLeod, Jaimin Patel, Fan Wang, Cindy Im, Zhaoming Wang, Yadav Sapkota, Carmen L Wilson, Nickhill Bhakta, Kirsten K Ness, Gregory T Armstrong, Melissa M Hudson, Leslie L Robison, Jinghui Zhang, Yutaka Yasui, Xin Zhou","doi":"10.1158/2159-8290.CD-24-1432","DOIUrl":"10.1158/2159-8290.CD-24-1432","url":null,"abstract":"","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"14 12","pages":"2554"},"PeriodicalIF":29.7,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1158/2159-8290.CD-24-0093
Nana Adjoa Ben-Crentsil, Wazim Mohammed Ismail, Maria E Balasis, Hannah Newman, Ariel Quintana, Moritz Binder, Traci Kruer, Surendra Neupane, Meghan C Ferrall-Fairbanks, Jenna Fernandez, Terra L Lasho, Christy M Finke, Mohammed L Ibrahim, Kathy L McGraw, Michael Wysota, Amy L Aldrich, Christopher B Ryder, Christopher T Letson, Joshua Traina, Amy F McLemore, Nathalie Droin, Aditi Shastri, Seongseok Yun, Eric Solary, David A Sallman, Amer A Beg, Li Ma, Alexandre Gaspar-Maia, Mrinal M Patnaik, Eric Padron
Significance: This work identifies MALAT1 as a requisite downstream effector of oncogenic feedforward inflammatory circuits necessary for the development of TET2-mutated CH and fulminant myeloid malignancy. We elucidate a novel mechanism by which MALAT1 "shields" p65 from dephosphorylation to potentiate this circuit and nominate MALAT1 inhibition as a future therapeutic strategy.
{"title":"RNA Shielding of p65 Is Required to Potentiate Oncogenic Inflammation in TET2-Mutated Clonal Hematopoiesis.","authors":"Nana Adjoa Ben-Crentsil, Wazim Mohammed Ismail, Maria E Balasis, Hannah Newman, Ariel Quintana, Moritz Binder, Traci Kruer, Surendra Neupane, Meghan C Ferrall-Fairbanks, Jenna Fernandez, Terra L Lasho, Christy M Finke, Mohammed L Ibrahim, Kathy L McGraw, Michael Wysota, Amy L Aldrich, Christopher B Ryder, Christopher T Letson, Joshua Traina, Amy F McLemore, Nathalie Droin, Aditi Shastri, Seongseok Yun, Eric Solary, David A Sallman, Amer A Beg, Li Ma, Alexandre Gaspar-Maia, Mrinal M Patnaik, Eric Padron","doi":"10.1158/2159-8290.CD-24-0093","DOIUrl":"10.1158/2159-8290.CD-24-0093","url":null,"abstract":"<p><strong>Significance: </strong>This work identifies MALAT1 as a requisite downstream effector of oncogenic feedforward inflammatory circuits necessary for the development of TET2-mutated CH and fulminant myeloid malignancy. We elucidate a novel mechanism by which MALAT1 \"shields\" p65 from dephosphorylation to potentiate this circuit and nominate MALAT1 inhibition as a future therapeutic strategy.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"2509-2531"},"PeriodicalIF":29.7,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611684/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142072059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1158/2159-8290.CD-24-0046
Liron D Grossmann, Chia-Hui Chen, Yasin Uzun, Anusha Thadi, Adam J Wolpaw, Kevin Louault, Yael Goldstein, Lea F Surrey, Daniel Martinez, Matteo Calafatti, Mark Gerelus, Peng Gao, Lobin Lee, Khushbu Patel, Rebecca S Kaufman, Guy Shani, Alvin Farrel, Sharon Moshitch-Moshkovitz, Paris Grimaldi, Matthew Shapiro, Nathan M Kendsersky, Jarrett M Lindsay, Colleen E Casey, Kateryna Krytska, Laura Scolaro, Matthew Tsang, David Groff, Smita Matkar, Josh R Kalna, Emily Mycek, Jayne McDevitt, Erin Runbeck, Tasleema Patel, Kathrin M Bernt, Shahab Asgharzadeh, Yves A DeClerck, Yael P Mossé, Kai Tan, John M Maris
Relapse rates in high-risk neuroblastoma remain exceedingly high. The malignant cells that are responsible for relapse have not been identified, and mechanisms of therapy resistance remain poorly understood. In this study, we used single-nucleus RNA sequencing and bulk whole-genome sequencing to identify and characterize the residual malignant persister cells that survive chemotherapy from a cohort of 20 matched diagnosis and definitive surgery tumor samples from patients treated with high-risk neuroblastoma induction chemotherapy. We show that persister cells share common mechanisms of chemotherapy escape, including suppression of MYC(N) activity and activation of NFκB signaling, and the latter is further enhanced by cell-cell communication between the malignant cells and the tumor microenvironment. Overall, our work dissects the transcriptional landscape of cellular persistence in high-risk neuroblastoma and paves the way to the development of new therapeutic strategies to prevent disease relapse. Significance: Approximately 50% of patients with high-risk neuroblastoma die of relapsed refractory disease. We identified the malignant cells that likely contribute to relapse and discovered key signaling pathways that mediate cellular persistence. Inhibition of these pathways and their downstream effectors is postulated to eliminate persister cells and prevent relapse. See related commentary by Wolf et al., p. 2308.
{"title":"Identification and Characterization of Chemotherapy-Resistant High-Risk Neuroblastoma Persister Cells.","authors":"Liron D Grossmann, Chia-Hui Chen, Yasin Uzun, Anusha Thadi, Adam J Wolpaw, Kevin Louault, Yael Goldstein, Lea F Surrey, Daniel Martinez, Matteo Calafatti, Mark Gerelus, Peng Gao, Lobin Lee, Khushbu Patel, Rebecca S Kaufman, Guy Shani, Alvin Farrel, Sharon Moshitch-Moshkovitz, Paris Grimaldi, Matthew Shapiro, Nathan M Kendsersky, Jarrett M Lindsay, Colleen E Casey, Kateryna Krytska, Laura Scolaro, Matthew Tsang, David Groff, Smita Matkar, Josh R Kalna, Emily Mycek, Jayne McDevitt, Erin Runbeck, Tasleema Patel, Kathrin M Bernt, Shahab Asgharzadeh, Yves A DeClerck, Yael P Mossé, Kai Tan, John M Maris","doi":"10.1158/2159-8290.CD-24-0046","DOIUrl":"10.1158/2159-8290.CD-24-0046","url":null,"abstract":"<p><p>Relapse rates in high-risk neuroblastoma remain exceedingly high. The malignant cells that are responsible for relapse have not been identified, and mechanisms of therapy resistance remain poorly understood. In this study, we used single-nucleus RNA sequencing and bulk whole-genome sequencing to identify and characterize the residual malignant persister cells that survive chemotherapy from a cohort of 20 matched diagnosis and definitive surgery tumor samples from patients treated with high-risk neuroblastoma induction chemotherapy. We show that persister cells share common mechanisms of chemotherapy escape, including suppression of MYC(N) activity and activation of NFκB signaling, and the latter is further enhanced by cell-cell communication between the malignant cells and the tumor microenvironment. Overall, our work dissects the transcriptional landscape of cellular persistence in high-risk neuroblastoma and paves the way to the development of new therapeutic strategies to prevent disease relapse. Significance: Approximately 50% of patients with high-risk neuroblastoma die of relapsed refractory disease. We identified the malignant cells that likely contribute to relapse and discovered key signaling pathways that mediate cellular persistence. Inhibition of these pathways and their downstream effectors is postulated to eliminate persister cells and prevent relapse. See related commentary by Wolf et al., p. 2308.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"2387-2406"},"PeriodicalIF":29.7,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609622/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1158/2159-8290.CD-24-1451
Excerpts from the 14th edition of the annual American Association for Cancer Research Cancer Progress Report (https://cancerprogressreport.aacr.org/progress/) and the third edition of the American Association for Cancer Research Cancer Disparities Progress Report (https://cancerprogressreport.aacr.org/disparities/) to US Congress and the public, both released in 2024, highlight significant strides made possible through medical research, much of which is supported by federal investments in the NIH, NCI, FDA, and Centers for Disease Control and Prevention, as well as recent progress in understanding the overlapping and intersecting causes of cancer disparities and in addressing health inequities through evidence-based public policies.
{"title":"Cancer in 2024.","authors":"","doi":"10.1158/2159-8290.CD-24-1451","DOIUrl":"https://doi.org/10.1158/2159-8290.CD-24-1451","url":null,"abstract":"<p><p>Excerpts from the 14th edition of the annual American Association for Cancer Research Cancer Progress Report (https://cancerprogressreport.aacr.org/progress/) and the third edition of the American Association for Cancer Research Cancer Disparities Progress Report (https://cancerprogressreport.aacr.org/disparities/) to US Congress and the public, both released in 2024, highlight significant strides made possible through medical research, much of which is supported by federal investments in the NIH, NCI, FDA, and Centers for Disease Control and Prevention, as well as recent progress in understanding the overlapping and intersecting causes of cancer disparities and in addressing health inequities through evidence-based public policies.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"14 12","pages":"2324-2331"},"PeriodicalIF":29.7,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1158/2159-8290.CD-24-1483
Katherine M Aird, Aadel A Chaudhuri, Jennifer L Guerriero, Shiri Gur-Cohen, Benjamin Izar, Brittany D Jenkins, Delphine Merino, Alejo E Rodriguez-Fraticelli, Shensi Shen, Itai Yanai
{"title":"Reflections on Advances in Cancer Research in 2024.","authors":"Katherine M Aird, Aadel A Chaudhuri, Jennifer L Guerriero, Shiri Gur-Cohen, Benjamin Izar, Brittany D Jenkins, Delphine Merino, Alejo E Rodriguez-Fraticelli, Shensi Shen, Itai Yanai","doi":"10.1158/2159-8290.CD-24-1483","DOIUrl":"https://doi.org/10.1158/2159-8290.CD-24-1483","url":null,"abstract":"","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"14 12","pages":"2346-2351"},"PeriodicalIF":29.7,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1158/2159-8290.cd-24-1357
Amber B. Wolf, C. Patrick Reynolds, Eveline Barbieri
Summary:The study by Grossmann and colleagues uses single-nucleus RNA sequencing in a cohort of matched high-risk neuroblastoma primary tumor samples, obtained from the same patient at diagnosis and definitive surgery, to identify persister cells that survive induction chemotherapy. These persister cells utilize mechanisms of chemoresistance that are both tumor-intrinsic and tumor-extrinsic, are highly dependent on the original genetic profile of the tumor, and represent novel, patient-specific targets to precisely inhibit chemoresistance and disease recurrence.See related article by Grossmann et.al., p. 2387
{"title":"Characterization of Persister Cells Provides Insights into Mechanisms of Therapy Resistance in Neuroblastoma","authors":"Amber B. Wolf, C. Patrick Reynolds, Eveline Barbieri","doi":"10.1158/2159-8290.cd-24-1357","DOIUrl":"https://doi.org/10.1158/2159-8290.cd-24-1357","url":null,"abstract":"Summary:The study by Grossmann and colleagues uses single-nucleus RNA sequencing in a cohort of matched high-risk neuroblastoma primary tumor samples, obtained from the same patient at diagnosis and definitive surgery, to identify persister cells that survive induction chemotherapy. These persister cells utilize mechanisms of chemoresistance that are both tumor-intrinsic and tumor-extrinsic, are highly dependent on the original genetic profile of the tumor, and represent novel, patient-specific targets to precisely inhibit chemoresistance and disease recurrence.See related article by Grossmann et.al., p. 2387","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"198 1","pages":""},"PeriodicalIF":28.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}