Pub Date : 2024-12-06DOI: 10.1158/2159-8290.cd-24-0840
Anna E. Maciag, James P. Stice, Bin Wang, Alok K. Sharma, Albert H. Chan, Ken Lin, Devansh Singh, Marcin Dyba, Yue Yang, Saman Setoodeh, Brian P. Smith, Jin Hyun Ju, Stevan Jeknic, Dana Rabara, Zuhui Zhang, Erik K. Larsen, Dominic Esposito, John-Paul Denson, Michela Ranieri, Mary Meynardie, Sadaf Mehdizadeh, Patrick A. Alexander, Maria Abreu Blanco, David M. Turner, Rui Xu, Felice C. Lightstone, Kwok-Kin Wong, Andrew G. Stephen, Keshi Wang, Dhirendra K. Simanshu, Kerstin W. Sinkevicius, Dwight V. Nissley, Eli Wallace, Frank McCormick, Pedro J. Beltran
Approved inhibitors of KRASG12C prevent oncogenic activation by sequestering the inactive, GDP-bound (OFF) form rather than directly binding and inhibiting the active, GTP-bound (ON) form. This approach provides no direct target coverage of the active protein. Expectedly, adaptive resistance to KRASG12C (OFF)-only inhibitors is observed in association with increased expression and activity of KRASG12C(ON). To provide optimal KRASG12C target coverage, we have developed BBO-8520, a first-in-class, direct dual inhibitor of KRASG12C(ON) and (OFF) forms. BBO-8520 binds in the Switch-II/Helix3 pocket, covalently modifies the target cysteine and disables effector binding to KRASG12C(ON). BBO-8520 exhibits potent signaling inhibition in growth factor activated states where current (OFF)-only inhibitors demonstrate little measurable activity. In vivo, BBO-8520 demonstrates rapid target engagement and inhibition of signaling, resulting in durable tumor regression in multiple models, including those resistant to KRASG12C(OFF)-only inhibitors. BBO-8520 is in Phase 1 clinical trials in patients with KRASG12C non-small cell lung cancer (NSCLC).
{"title":"Discovery of BBO-8520, a first-in-class direct and covalent dual inhibitor of GTP-bound (ON) and GDP-bound (OFF) KRASG12C","authors":"Anna E. Maciag, James P. Stice, Bin Wang, Alok K. Sharma, Albert H. Chan, Ken Lin, Devansh Singh, Marcin Dyba, Yue Yang, Saman Setoodeh, Brian P. Smith, Jin Hyun Ju, Stevan Jeknic, Dana Rabara, Zuhui Zhang, Erik K. Larsen, Dominic Esposito, John-Paul Denson, Michela Ranieri, Mary Meynardie, Sadaf Mehdizadeh, Patrick A. Alexander, Maria Abreu Blanco, David M. Turner, Rui Xu, Felice C. Lightstone, Kwok-Kin Wong, Andrew G. Stephen, Keshi Wang, Dhirendra K. Simanshu, Kerstin W. Sinkevicius, Dwight V. Nissley, Eli Wallace, Frank McCormick, Pedro J. Beltran","doi":"10.1158/2159-8290.cd-24-0840","DOIUrl":"https://doi.org/10.1158/2159-8290.cd-24-0840","url":null,"abstract":"Approved inhibitors of KRASG12C prevent oncogenic activation by sequestering the inactive, GDP-bound (OFF) form rather than directly binding and inhibiting the active, GTP-bound (ON) form. This approach provides no direct target coverage of the active protein. Expectedly, adaptive resistance to KRASG12C (OFF)-only inhibitors is observed in association with increased expression and activity of KRASG12C(ON). To provide optimal KRASG12C target coverage, we have developed BBO-8520, a first-in-class, direct dual inhibitor of KRASG12C(ON) and (OFF) forms. BBO-8520 binds in the Switch-II/Helix3 pocket, covalently modifies the target cysteine and disables effector binding to KRASG12C(ON). BBO-8520 exhibits potent signaling inhibition in growth factor activated states where current (OFF)-only inhibitors demonstrate little measurable activity. In vivo, BBO-8520 demonstrates rapid target engagement and inhibition of signaling, resulting in durable tumor regression in multiple models, including those resistant to KRASG12C(OFF)-only inhibitors. BBO-8520 is in Phase 1 clinical trials in patients with KRASG12C non-small cell lung cancer (NSCLC).","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"17 1","pages":""},"PeriodicalIF":28.2,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142788768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-05DOI: 10.1158/2159-8290.CD-23-1480
Yi Xu, Xianlu L Peng, Michael P East, Ian C McCabe, Grace C Stroman, Madison R Jenner, Priscilla S Chan, Ashley B Morrison, Emily C Shen, Silvia G Hererra, Chinmaya U Joisa, Naim U Rashid, Alina C Iuga, Shawn M Gomez, Lisa Miller-Phillips, Stefan Boeck, Volker Heinemann, Michael Haas, Steffen Ormanns, Gary L Johnson, Jen Jen Yeh
Effective therapies for pancreatic ductal adenocarcinoma (PDAC) have been largely elusive. Here, we perform Multiplexed kinase Inhibitor Bead Mass Spectrometry on 102 patient derived xenografts derived from 14 unique primary PDAC to define the tumor-intrinsic kinome landscape. Our findings uncover three kinome subgroups making up two tumor-intrinsic kinome subtypes that we call kinotypes. The kinotypes show enrichment of different kinase classes and recapitulate previously described molecular subtypes, basal-like and classical. The kinotype characterizing basal-like tumors shows enrichment of receptor tyrosine kinases, whereas the kinotype characterizing classical tumors is enriched in understudied kinases involved in Wnt signaling and immune pathways. We validate our findings in two clinical trials and show that only patients with basal-like tumors derive significant benefit from EGFR inhibitors. Our results provide a comprehensive tumor-intrinsic kinome landscape of PDAC that strongly supports actionable kinotype specific kinase targets and provides a roadmap for kinase inhibitor therapy in PDAC.
{"title":"Tumor-intrinsic kinome landscape of pancreatic cancer reveals new therapeutic approaches.","authors":"Yi Xu, Xianlu L Peng, Michael P East, Ian C McCabe, Grace C Stroman, Madison R Jenner, Priscilla S Chan, Ashley B Morrison, Emily C Shen, Silvia G Hererra, Chinmaya U Joisa, Naim U Rashid, Alina C Iuga, Shawn M Gomez, Lisa Miller-Phillips, Stefan Boeck, Volker Heinemann, Michael Haas, Steffen Ormanns, Gary L Johnson, Jen Jen Yeh","doi":"10.1158/2159-8290.CD-23-1480","DOIUrl":"10.1158/2159-8290.CD-23-1480","url":null,"abstract":"<p><p>Effective therapies for pancreatic ductal adenocarcinoma (PDAC) have been largely elusive. Here, we perform Multiplexed kinase Inhibitor Bead Mass Spectrometry on 102 patient derived xenografts derived from 14 unique primary PDAC to define the tumor-intrinsic kinome landscape. Our findings uncover three kinome subgroups making up two tumor-intrinsic kinome subtypes that we call kinotypes. The kinotypes show enrichment of different kinase classes and recapitulate previously described molecular subtypes, basal-like and classical. The kinotype characterizing basal-like tumors shows enrichment of receptor tyrosine kinases, whereas the kinotype characterizing classical tumors is enriched in understudied kinases involved in Wnt signaling and immune pathways. We validate our findings in two clinical trials and show that only patients with basal-like tumors derive significant benefit from EGFR inhibitors. Our results provide a comprehensive tumor-intrinsic kinome landscape of PDAC that strongly supports actionable kinotype specific kinase targets and provides a roadmap for kinase inhibitor therapy in PDAC.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":""},"PeriodicalIF":29.7,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142779338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1158/2159-8290.CD-24-0168
Dian Kortleve, Dora Hammerl, Mandy van Brakel, Rebecca Wijers, Daphne Roelofs, Kim Kroese, Mieke M Timmermans, Chen-Yi Liao, Shaozhuo Huang, Anita Trapman-Jansen, Renée Foekens, Justine Michaux, Monique T A de Beijer, Sonja I Buschow, Jeroen A A Demmers, Marleen Kok, Erik H J Danen, Michal Bassani-Sternberg, John W M Martens, Rachel J M Abbott, Reno Debets
Triple-negative breast cancer (TNBC) has an urgent need for new therapies. We discovered Ropporin-1 (ROPN1) as a target to treat TNBC with T cells. ROPN1 showed high and homogenous expression in 90% of primary and metastatic TNBC but not in healthy tissues. Human leukocyte antigen-A2-binding peptides were detected via immunopeptidomics and predictions and used to retrieve T-cell receptors (TCR) from naïve repertoires. Following gene introduction into T cells and stringent selection, we retrieved a highly specific TCR directed against the epitope FLYTYIAKV that did not recognize noncognate epitopes from alternative source proteins. Notably, this TCR-mediated killing of three-dimensional (3D) tumoroids in vitro and tumor cells in vivo and outperformed standard-of-care drugs. Finally, the T-cell product expressing this TCR and manufactured using a clinical protocol fulfilled standard safety and efficacy assays. Collectively, we have identified and preclinically validated ROPN1 as a target and anti-ROPN1 TCR T cells as a treatment for the vast majority of patients with TNBC. Significance: Metastatic TNBC has a dismal prognosis. This study discovers Ropporin-1 as a target for T-cell therapy for most patients. The selected TCR is highly specific and sensitive in advanced models, and preclinical testing shows that the T-cell product expressing this TCR, manufactured according to good manufacturing practice, has favorable safety and potency.
三阴性乳腺癌(TNBC)迫切需要新疗法。我们发现Ropporin-1(ROPN1)是用T细胞治疗TNBC的靶点。ROPN1在90%的原发性和转移性TNBC中均有高表达,但在健康组织中却没有。通过免疫肽组学和预测方法检测到了HLA-A2结合肽,并将其用于从幼稚细胞库中检索T细胞受体(TCR)。在将基因导入 T 细胞并进行严格筛选后,我们获得了一种针对表位 FLYTYIAKV 的高度特异性 TCR,它不能识别来自替代源蛋白的非识别表位。值得注意的是,这种 TCR 在体外可介导杀伤三维肿瘤细胞,在体内可介导杀伤肿瘤细胞,其效果优于标准治疗药物。最后,用临床方案生产的表达这种 TCR 的 T 细胞产品符合标准的安全性和有效性检测。总之,我们已经确定并通过临床前验证了 ROPN1 作为靶点和抗 ROPN1 TCR T 细胞作为绝大多数 TNBC 患者的治疗方法。
{"title":"TCR-Engineered T Cells Directed against Ropporin-1 Constitute a Safe and Effective Treatment for Triple-Negative Breast Cancer.","authors":"Dian Kortleve, Dora Hammerl, Mandy van Brakel, Rebecca Wijers, Daphne Roelofs, Kim Kroese, Mieke M Timmermans, Chen-Yi Liao, Shaozhuo Huang, Anita Trapman-Jansen, Renée Foekens, Justine Michaux, Monique T A de Beijer, Sonja I Buschow, Jeroen A A Demmers, Marleen Kok, Erik H J Danen, Michal Bassani-Sternberg, John W M Martens, Rachel J M Abbott, Reno Debets","doi":"10.1158/2159-8290.CD-24-0168","DOIUrl":"10.1158/2159-8290.CD-24-0168","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) has an urgent need for new therapies. We discovered Ropporin-1 (ROPN1) as a target to treat TNBC with T cells. ROPN1 showed high and homogenous expression in 90% of primary and metastatic TNBC but not in healthy tissues. Human leukocyte antigen-A2-binding peptides were detected via immunopeptidomics and predictions and used to retrieve T-cell receptors (TCR) from naïve repertoires. Following gene introduction into T cells and stringent selection, we retrieved a highly specific TCR directed against the epitope FLYTYIAKV that did not recognize noncognate epitopes from alternative source proteins. Notably, this TCR-mediated killing of three-dimensional (3D) tumoroids in vitro and tumor cells in vivo and outperformed standard-of-care drugs. Finally, the T-cell product expressing this TCR and manufactured using a clinical protocol fulfilled standard safety and efficacy assays. Collectively, we have identified and preclinically validated ROPN1 as a target and anti-ROPN1 TCR T cells as a treatment for the vast majority of patients with TNBC. Significance: Metastatic TNBC has a dismal prognosis. This study discovers Ropporin-1 as a target for T-cell therapy for most patients. The selected TCR is highly specific and sensitive in advanced models, and preclinical testing shows that the T-cell product expressing this TCR, manufactured according to good manufacturing practice, has favorable safety and potency.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"2450-2470"},"PeriodicalIF":29.7,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1158/2159-8290.CD-24-0190
Dhan Chand, David A Savitsky, Shanmugarajan Krishnan, Gabriel Mednick, Chloe Delepine, Pilar Garcia-Broncano, Kah Teong Soh, Wei Wu, Margaret K Wilkens, Olga Udartseva, Sylvia Vincent, Bishnu Joshi, Justin G Keith, Mariana Manrique, Marilyn Marques, Antoine Tanne, Daniel L Levey, Haiyong Han, Serina Ng, Jackson Ridpath, Olivia Huber, Benjamin Morin, Claire Galand, Sean Bourdelais, Randi B Gombos, Rebecca Ward, Yu Qin, Jeremy D Waight, Matthew R Costa, Alvaro Sebastian-Yague, Nils-Petter Rudqvist, Malgorzata Pupecka-Swider, Vignesh Venkatraman, Andrew Slee, Jaymin M Patel, Joseph E Grossman, Nicholas S Wilson, Daniel D Von Hoff, Justin Stebbing, Tyler J Curiel, Jennifer S Buell, Steven J O'Day, Robert B Stein
Significance: This study reveals that Fc-enhanced anti-CTLA-4 harnesses novel mechanisms to overcome the limitations of conventional anti-CTLA-4, effectively treating poorly immunogenic and treatment-refractory cancers. Our findings support the development of a new class of immuno-oncology agents, capable of extending clinical benefit to patients with cancers resistant to current immunotherapies.
{"title":"Botensilimab, an Fc-Enhanced Anti-CTLA-4 Antibody, Is Effective against Tumors Poorly Responsive to Conventional Immunotherapy.","authors":"Dhan Chand, David A Savitsky, Shanmugarajan Krishnan, Gabriel Mednick, Chloe Delepine, Pilar Garcia-Broncano, Kah Teong Soh, Wei Wu, Margaret K Wilkens, Olga Udartseva, Sylvia Vincent, Bishnu Joshi, Justin G Keith, Mariana Manrique, Marilyn Marques, Antoine Tanne, Daniel L Levey, Haiyong Han, Serina Ng, Jackson Ridpath, Olivia Huber, Benjamin Morin, Claire Galand, Sean Bourdelais, Randi B Gombos, Rebecca Ward, Yu Qin, Jeremy D Waight, Matthew R Costa, Alvaro Sebastian-Yague, Nils-Petter Rudqvist, Malgorzata Pupecka-Swider, Vignesh Venkatraman, Andrew Slee, Jaymin M Patel, Joseph E Grossman, Nicholas S Wilson, Daniel D Von Hoff, Justin Stebbing, Tyler J Curiel, Jennifer S Buell, Steven J O'Day, Robert B Stein","doi":"10.1158/2159-8290.CD-24-0190","DOIUrl":"10.1158/2159-8290.CD-24-0190","url":null,"abstract":"<p><strong>Significance: </strong>This study reveals that Fc-enhanced anti-CTLA-4 harnesses novel mechanisms to overcome the limitations of conventional anti-CTLA-4, effectively treating poorly immunogenic and treatment-refractory cancers. Our findings support the development of a new class of immuno-oncology agents, capable of extending clinical benefit to patients with cancers resistant to current immunotherapies.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"2407-2429"},"PeriodicalIF":29.7,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609826/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1158/2159-8290.cd-24-1350
Samuel F. Bakhoum
Summary:Aneuploidy, an imbalance in chromosome number, is a hallmark of human cancers with chromosomal instability, and it remains a major therapeutic challenge. In this issue, Ippolito and colleagues identify RNA and protein turnover as targetable therapeutic vulnerabilities in aneuploid cancers.See related article by Ippolito et al., p. 2532
{"title":"Targeting RNA and Protein Turnover in Aneuploid Cancers","authors":"Samuel F. Bakhoum","doi":"10.1158/2159-8290.cd-24-1350","DOIUrl":"https://doi.org/10.1158/2159-8290.cd-24-1350","url":null,"abstract":"Summary:Aneuploidy, an imbalance in chromosome number, is a hallmark of human cancers with chromosomal instability, and it remains a major therapeutic challenge. In this issue, Ippolito and colleagues identify RNA and protein turnover as targetable therapeutic vulnerabilities in aneuploid cancers.See related article by Ippolito et al., p. 2532","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"65 1","pages":""},"PeriodicalIF":28.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1158/2159-8290.cd-24-1476
Matteo Repetto, Nicole Fernandez, Alexander Drilon, Debyani Chakravarty
Summary: This article discusses the specific advances made in precision oncology in 2024. We comment on the evolving nature of predictive molecular events used to select patients who will most benefit clinically from treatment. We also discuss advances in the development of strategic treatment regimens for combination therapies, rational drug design of small-molecule inhibitors, and structurally informed drug repurposing.
{"title":"Precision Oncology: 2024 in Review","authors":"Matteo Repetto, Nicole Fernandez, Alexander Drilon, Debyani Chakravarty","doi":"10.1158/2159-8290.cd-24-1476","DOIUrl":"https://doi.org/10.1158/2159-8290.cd-24-1476","url":null,"abstract":"Summary: This article discusses the specific advances made in precision oncology in 2024. We comment on the evolving nature of predictive molecular events used to select patients who will most benefit clinically from treatment. We also discuss advances in the development of strategic treatment regimens for combination therapies, rational drug design of small-molecule inhibitors, and structurally informed drug repurposing.","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"73 1","pages":""},"PeriodicalIF":28.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1158/2159-8290.CD-24-1288
Despite exponentially increased industry investment in oncology research and development with more than $80 billion spent annually, patient enrollment in clinical trials remains below 5% globally. Our multistakeholder international cancer coalition envisions ecosystem transformation with capacity building through a global "hub-and-spoke" network model to expand access to and accelerate clinical trials, thus ending cancer as a major cause of death in this lifetime.
{"title":"Advancing Global Health Equity in Oncology Clinical Trial Access.","authors":"","doi":"10.1158/2159-8290.CD-24-1288","DOIUrl":"10.1158/2159-8290.CD-24-1288","url":null,"abstract":"<p><p>Despite exponentially increased industry investment in oncology research and development with more than $80 billion spent annually, patient enrollment in clinical trials remains below 5% globally. Our multistakeholder international cancer coalition envisions ecosystem transformation with capacity building through a global \"hub-and-spoke\" network model to expand access to and accelerate clinical trials, thus ending cancer as a major cause of death in this lifetime.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"2317-2323"},"PeriodicalIF":29.7,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1158/2159-8290.cd-24-1349
Gregory Gauthier-Coles, Jason M. Sheltzer
Summary:In this issue, Klingbeil and colleagues deploy a paralog co-targeting strategy to reveal microtubule affinity–regulating kinases 2 and 3 as redundant negative regulators of the Hippo pathway and potentially actionable targets in YAP/TAZ-addicted tumors.See related article by Klingbeil et.al., p. 2471
{"title":"Paralog Co-Targeting Identifies Selective Genetic Redundancies across Cancer Types","authors":"Gregory Gauthier-Coles, Jason M. Sheltzer","doi":"10.1158/2159-8290.cd-24-1349","DOIUrl":"https://doi.org/10.1158/2159-8290.cd-24-1349","url":null,"abstract":"Summary:In this issue, Klingbeil and colleagues deploy a paralog co-targeting strategy to reveal microtubule affinity–regulating kinases 2 and 3 as redundant negative regulators of the Hippo pathway and potentially actionable targets in YAP/TAZ-addicted tumors.See related article by Klingbeil et.al., p. 2471","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"5 1","pages":""},"PeriodicalIF":28.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1158/2159-8290.CD-23-1323
Norihiro Yamaguchi, Y Gloria Wu, Ethan Ravetch, Mai Takahashi, Abdul G Khan, Akimasa Hayashi, Wenbin Mei, Dennis Hsu, Shigeaki Umeda, Elisa de Stanchina, Ivo C Lorenz, Christine A Iacobuzio-Donahue, Sohail F Tavazoie
Pancreatic ductal adenocarcinoma (PDAC) is an increasingly diagnosed cancer that kills 90% of afflicted patients, with most patients receiving palliative chemotherapy. We identified neuronal pentraxin 1 (NPTX1) as a cancer-secreted protein that becomes overexpressed in human and murine PDAC cells during metastatic progression and identified adhesion molecule with Ig-like domain 2 (AMIGO2) as its receptor. Molecular, genetic, biochemical, and pharmacologic experiments revealed that secreted NPTX1 acts cell-autonomously on the AMIGO2 receptor to drive PDAC metastatic colonization of the liver-the primary site of PDAC metastasis. NPTX1-AMIGO2 signaling enhanced hypoxic growth and was critically required for hypoxia-inducible factor-1α (HIF1α) nuclear retention and function. NPTX1 is overexpressed in human PDAC tumors and upregulated in liver metastases. Therapeutic targeting of NPTX1 with a high-affinity monoclonal antibody substantially reduced PDAC liver metastatic colonization. We thus identify NPTX1-AMIGO2 as druggable critical upstream regulators of the HIF1α hypoxic response in PDAC. Significance: We identified the NPTX1-AMIGO2 axis as a regulatory mechanism upstream of HIF1α-driven hypoxia response that promotes PDAC liver metastasis. Therapeutic NPTX1 targeting outperformed a common chemotherapy regimen in inhibiting liver metastasis and suppressed primary tumor growth in preclinical models, revealing a novel therapeutic strategy targeting hypoxic response in PDAC.
{"title":"A Targetable Secreted Neural Protein Drives Pancreatic Cancer Metastatic Colonization and HIF1α Nuclear Retention.","authors":"Norihiro Yamaguchi, Y Gloria Wu, Ethan Ravetch, Mai Takahashi, Abdul G Khan, Akimasa Hayashi, Wenbin Mei, Dennis Hsu, Shigeaki Umeda, Elisa de Stanchina, Ivo C Lorenz, Christine A Iacobuzio-Donahue, Sohail F Tavazoie","doi":"10.1158/2159-8290.CD-23-1323","DOIUrl":"10.1158/2159-8290.CD-23-1323","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is an increasingly diagnosed cancer that kills 90% of afflicted patients, with most patients receiving palliative chemotherapy. We identified neuronal pentraxin 1 (NPTX1) as a cancer-secreted protein that becomes overexpressed in human and murine PDAC cells during metastatic progression and identified adhesion molecule with Ig-like domain 2 (AMIGO2) as its receptor. Molecular, genetic, biochemical, and pharmacologic experiments revealed that secreted NPTX1 acts cell-autonomously on the AMIGO2 receptor to drive PDAC metastatic colonization of the liver-the primary site of PDAC metastasis. NPTX1-AMIGO2 signaling enhanced hypoxic growth and was critically required for hypoxia-inducible factor-1α (HIF1α) nuclear retention and function. NPTX1 is overexpressed in human PDAC tumors and upregulated in liver metastases. Therapeutic targeting of NPTX1 with a high-affinity monoclonal antibody substantially reduced PDAC liver metastatic colonization. We thus identify NPTX1-AMIGO2 as druggable critical upstream regulators of the HIF1α hypoxic response in PDAC. Significance: We identified the NPTX1-AMIGO2 axis as a regulatory mechanism upstream of HIF1α-driven hypoxia response that promotes PDAC liver metastasis. Therapeutic NPTX1 targeting outperformed a common chemotherapy regimen in inhibiting liver metastasis and suppressed primary tumor growth in preclinical models, revealing a novel therapeutic strategy targeting hypoxic response in PDAC.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"2489-2508"},"PeriodicalIF":29.7,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611693/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1158/2159-8290.CD-23-0866
Patrick Loi, Amy E Schade, Carrie L Rodriguez, Anjana Krishnan, Naiara Perurena, Van T M Nguyen, Yilin Xu, Marina Watanabe, Rachel A Davis, Alycia Gardner, Natalie F Pilla, Kaia Mattioli, Olesja Popow, Nuray Gunduz, Tamsin R M Lannagan, Samantha Fitzgerald, Ewa T Sicinska, Jia-Ren Lin, William Tan, Lauren K Brais, Kevin M Haigis, Marios Giannakis, Kimmie Ng, Sandro Santagata, Kristian Helin, Owen J Sansom, Karen Cichowski
Significance: Combined EZH2 and RAS pathway inhibitors kill KRAS-mutant colorectal cancer cells and promote durable tumor regression in vivo. These agents function by cooperatively suppressing the WNT pathway, driving differentiation, and epigenetically reprogramming cells to permit the induction of apoptotic signals, which then kill these more differentiated tumor cells.
{"title":"Epigenetic and Oncogenic Inhibitors Cooperatively Drive Differentiation and Kill KRAS-Mutant Colorectal Cancers.","authors":"Patrick Loi, Amy E Schade, Carrie L Rodriguez, Anjana Krishnan, Naiara Perurena, Van T M Nguyen, Yilin Xu, Marina Watanabe, Rachel A Davis, Alycia Gardner, Natalie F Pilla, Kaia Mattioli, Olesja Popow, Nuray Gunduz, Tamsin R M Lannagan, Samantha Fitzgerald, Ewa T Sicinska, Jia-Ren Lin, William Tan, Lauren K Brais, Kevin M Haigis, Marios Giannakis, Kimmie Ng, Sandro Santagata, Kristian Helin, Owen J Sansom, Karen Cichowski","doi":"10.1158/2159-8290.CD-23-0866","DOIUrl":"10.1158/2159-8290.CD-23-0866","url":null,"abstract":"<p><strong>Significance: </strong>Combined EZH2 and RAS pathway inhibitors kill KRAS-mutant colorectal cancer cells and promote durable tumor regression in vivo. These agents function by cooperatively suppressing the WNT pathway, driving differentiation, and epigenetically reprogramming cells to permit the induction of apoptotic signals, which then kill these more differentiated tumor cells.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"2430-2449"},"PeriodicalIF":29.7,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609823/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141909760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}